
Figurate numbers and sums of numerical powers:
Fermat, Pascal, Bernoulli

David Pengelley�

In the year 1636, one of the greatest mathematicians of the early seventeenth century, the
Frenchman Pierre de Fermat (1601�1665), wrote to his correspondent Gilles Persone de Roberval
(1602�1675) that he could solve �what is perhaps the most beautiful problem of all arithmetic�
[3], and stated that he could do this using the following theorem on the �gurate numbers derived
from natural progressions, as he �rst stated in a letter to another correspondent, Marin Mersenne
(1588�1648) in Paris:
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Pierre de Fermat, from
Letter to Mersenne. September/October, 1636,
and again to Roberval, November 4, 1636

The last number multiplied by the next larger number is double the collateral triangle;
the last number multiplied by the triangle of the next larger is three times the collateral pyramid;
the last number multiplied by the pyramid of the next larger is four times the collateral triangulo-triangle;
and so on inde�nitely in this same manner [3], [12, p. 230f], [6, vol. II, pp. 70, 84�85].
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Fermat, most famous for his last theorem,1 worked on many problems, some of which had ancient
origins. Fermat had a law degree and spent most of his life as a government o¢ cial in Toulouse.
There are many indications that he did mathematics partly as a diversion from his professional
duties, solely for personal grati�cation. That was not unusual in his day, since a mathematical
profession comparable to today�s did not exist. Very few scholars in Europe made a living through
their research accomplishments. Fermat had one especially unusual trait: characteristically he did
not divulge proofs for the discoveries he wrote of to others; rather, he challenged them to �nd proofs
of their own. While he enjoyed the attention and esteem he received from his correspondents, he
never showed interest in publishing a book with his results. He never traveled to the centers of
mathematical activity, not even Paris, preferring to communicate with the scienti�c community
through an exchange of letters, facilitated by the Parisian theologian Marin Mersenne, who served
as a clearinghouse for scienti�c correspondence from all over Europe, in the absence as yet of
scienti�c research journals. While Fermat made very important contributions to the development
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1Fermat claimed that the equation xn+yn = zn has no solution in positive whole numbers x; y; z when n > 2. One
of the greatest triumphs of twentieth-century mathematics was the proof in the 1990s of his famous long-standing
claim.
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Figure 1: Fermat

of the di¤erential and integral calculus and to analytic geometry [12, Chapters III, IV], his life-long
passion belonged to the study of properties of the integers, now known as number theory, and it is
here that Fermat has had the most lasting in�uence on the subsequent course of mathematics. In
hindsight, Fermat was one of the great mathematical pioneers, who built a whole new paradigm
for number theory on the accomplishments of his predecessors, and laid the foundations for a
mathematical theory that would later be referred to as the �queen of mathematics.�

What was this �most beautiful problem of all arithmetic�to which Fermat refers in his letter
to Roberval? And what are the �gurate numbers about which he makes his geometric sounding
claims? He writes as if these numbers are themselves geometric �gures like triangles and pyramids.
In fact they are the numbers that �count�how many equally spaced dots occur in forming discrete
versions of these geometric �gures, and such �gurate numbers had �rst been studied millennia
earlier. Fermat�s �most beautiful problem of all arithmetic�, which he claimed he could solve using
�gurate numbers, also had a long history. He was referring to �nding formulas for sums of powers
in a natural progression, i.e., in an arithmetic progression 1; 2; : : : ; n whose �last number� is n.
We shall see shortly what is meant by a sum of powers, and see why formulas for sums of powers
became central in mathematics as the ideas of calculus emerged through the seventeenth century.

Both �gurate numbers and formulas for sums of powers were important in mathematics long
before and after Fermat. Previous and subsequent episodes of our projects on this theme address
other eras, and the whole story is told in full in [11]. This project focuses on the intertwined
study of the �gurate numbers and formulas for sums of powers through the work of three of the
greatest seventeenth century mathematicians, Pierre de Fermat, Blaise Pascal (1623�1662), and
Jakob Bernoulli (1654�1705). We will see that while �gurate numbers are not generally well known
by that name today, they are the same numbers that count combination of choices, that appear
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as coe¢ cients in binomial expansions, and that appear in Pascal�s Triangle, and are thus still the
most important numbers in combinatorial mathematics today.

Fermat�s �gurate numbers and sums of powers

Already in the classical Greek era, �gurate numbers were of great interest, and formulas for sums
of powers were sought for solving area and volume problems. The Pythagoreans, a mysterious
group led by Pythagoras in ancient Greece around the sixth century b.c.e., believed that number
was the substance of all things, and geometric patterns seen in dots or pebbles in the sand showed
them relationships between numbers. For instance, in Figure 2 we see dot pictures for three types
of numbers the Pythagoreans probably considered, and we can obtain some formulas for discrete
sums from them.

Figure 2: Square, rectangular, and triangular numbers

Exercise 1. Using the dot pictures of Figure 2, explain how to obtain summation formulas like

nX
i=1

(2i� 1) = n2;
nX
i=1

2i = n (n+ 1) ;
nX
i=1

i =
n (n+ 1)

2
;

and then prove these formulas by mathematical induction.

We can now also understand Fermat�s �rst claim, if we realize that for the progression 1; 2; : : : ; n,
what Fermat means by the collateral triangle is the triangle with rows of dots whose quantity ranges
from 1 through n, as in Figure 2. We will call the total number of dots in such a triangle a triangular
number.

Exercise 2. Interpret and justify Fermat�s �rst claim about the collateral triangle using the results
of the previous exercise.

The further �gurate numbers, such as Fermat�s collateral pyramid, will generalize this by count-
ing dots in analogous higher-dimensional �gures. We shall study these shortly, but �rst we begin
the parallel story of sums of powers.

In classical Greek mathematics we �nd an interest not just in knowing how to sum the terms in
a progression, as in the closed formula appearing on the right side of

Pn
i=1 i =

n(n+1)
2 . We also �nd

sums like
Pn
i=1 i

2 and
Pn
i=1 i

3, which today we call sums of powers, i.e., the sum of n terms in the
progression each raised to a �xed power. These arose in speci�c determinations of areas and volumes
of geometric objects with curved sides, by what is today called the Greek method of exhaustion.
For instance, Archimedes of Syracuse (c. 287�212 b.c.e.), perhaps the greatest mathematician of
antiquity, determined areas bounded by parabolas and spirals. To see the connection to sums of
powers, the reader should recall and review from modern calculus that an area bounded by curves
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is given by an integral, de�ned as a limit of sums that approximate the area with sums of areas
of rectangles. Recall, for instance, that for the important integral

R 1
0 x

kdx, with k an arbitrary
�xed natural number, the simplest Riemann sums will involve

Pn
i=1 i

k, and that to determine the
integral as a limiting value of the Riemann sums, one will need some very good knowledge about
the size of these sums as n grows. While you may be tempted simply to evaluate this integral by
antidi¤erentiation using the fundamental theorem of calculus, note that neither antidi¤erentiation
nor the fundamental theorem of calculus were even dreamt of by anyone in the world until the second
half of the seventeenth century, two millennia after Archimedes and several decades after Fermat�s
work. However, by Fermat�s time in the �rst half of the seventeenth century, �nding formulas for
sums of powers

Pn
i=1 i

k for the purpose of computing the integrals
R 1
0 x

kdx was a major quest in
mathematics. We should therefore not be surprised that Archimedes desired knowledge about sums
of squares

Pn
i=1 i

2, since
R 1
0 x

2dx gives an area bounded by a parabola, and the reader may check
that the same integral arises when �nding the area bounded by an Archimedean spiral, a curve
described today by r = a� in polar coordinates. In Fermat�s time the curves y = xk for k > 2 were
called higher parabolas by analogy.

Exercise 3. Carry out an analysis with sums of rectangles to approximate the area
R 1
0 x

kdx of the
region under the curve y = xk by an expression involving

Pn
i=1 i

k, and state what limit needs
to be computed to determine the area. Specialize to the case k = 2 to specify what limit will
give the area under the parabola.

Archimedes actually solved his area problem for the parabola by two incredibly clever methods
that did not require using a sum of squares, and the reader may see these in [10]. But he found
the area bounded by a turn of his spiral by discovering, proving, and utilizing a result about the
sum of squares,

Pn
i=1 i

2, within the Greek method of exhaustion. We will not show his geometric
viewpoint or proof of his result on a sum of squares, but will state his result here in modern
numerical terminology:

(n+ 1)n2 +
nX
i=1

i = 3
nX
i=1

i2:

Exercise 4. Use this equality of Archimedes, and the earlier formula for the sum of terms in the
progression, to �nd an explicit polynomial formula for

Pn
i=1 i

2.

Exercise 5. Now use the explicit polynomial formula you have for
Pn
i=1 i

2 to compute the neces-
sary limit to obtain the value of

R 1
0 x

2dx:

Exercise 6. Show from the polynomial formula for
Pn
i=1 i

2 that

n3

3
<

nX
i=1

i2 <
(n+ 1)3

3
;

and determine the value of
R 1
0 x

2dx directly from these inequalities without needing the precise
formula for

Pn
i=1 i

2.

Exercise 7. Roberval wrote to Fermat that he could �nd the areas under all the higher parabolas
(which we would label as the integrals

R 1
0 x

kdx for k > 2) using the inequalities

nk+1

k + 1
<

nX
i=1

ik <
(n+ 1)k+1

k + 1
;
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which he claimed hold. Indeed, calculate
R 1
0 x

kdx by considering lower and upper sums of
rectangles based on left and right endpoints of equally spaced partitions of the interval, and
by using Roberval�s inequalities to compute the appropriate limit. Fermat went further with
sums of powers, claiming he could �nd explicit formulas for them.

Let us now reconnect our exploration of sums of powers to �gurate numbers by seeing how we
can obtain the polynomial formula for

Pn
i=1 i

2 from Fermat�s second claim about �gurate numbers.
This was exactly the viewpoint expressed by Fermat, that the sums of powers problem can be
solved by understanding �gurate numbers. To do this, consider Fermat�s second claim, that �the
last number multiplied by the triangle of the next larger is three times the collateral pyramid�.
We need to know what he meant by the pyramid collateral to the number n. Analogous to the
collateral triangle, by the collateral pyramid Fermat means to count the dots in a three-dimensional
triangular pyramid with sides each having n dots (Figure 3).

Figure 3: Pyramidal numbers

We can now apply Fermat�s claim, by thinking �rst about the geometry of a triangular pyramid
with n dots on each side. We see that its vertical layers consist of n triangular numbers stacked
on top of each other, with side lengths from 1 to n. Since we know from before that the triangular
number with side length i has i(i+1)2 dots, we see that altogether the pyramid has

Pn
i=1

i(i+1)
2 dots.

Then since the �triangle of the next larger� (number than n) must have (n+1)(n+2)
2 dots, we see

that Fermat�s claim can be expressed as

n
(n+ 1) (n+ 2)

2
= 3

nX
i=1

i (i+ 1)

2

Now notice that we can separate the right side via

nX
i=1

i (i+ 1)

2
=

nX
i=1

i2

2
+

nX
i=1

i

2
;

and should now be able to solve for an explicit formula for
Pn
i=1 i

2, since we already have an explicit
formula for

Pn
i=1 i.

Exercise 8. Solve for an explicit formula for
Pn
i=1 i

2 using Fermat�s claim, and check to see if it
is the same formula that you found in a previous exercise from the equality of Archimedes.

The previous exercise performs exactly what Fermat had in mind when he said he could solve
the sums of powers problem using his claims about �gurate numbers.
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Exercise 9. We have seen how to obtain the formula for a sum of squares from the equality of
Archimedes, and also from Fermat�s second claim about �gurate numbers. But so far we have
proofs for neither of these precursors, so just for good measure, prove the formula for sums
of squares by mathematical induction.

Moving towards higher powers and higher �gurate numbers, we note here that formulas for
sums of cubes and sums of fourth powers were also known centuries before Fermat, and some work
towards general methods had been achieved. To give a �avor of the diversity of sources, knowledge
of a formula for sums of cubes appears implicitly in the work of the neo-Pythagorean Nicomachus
of Gerasa in the �rst century c.e., and explicitly in verse by Āryabhat.a in India written in 499
c.e., along with a proof by the Islamic mathematician Abū Bakr al-Karaj̄¬(c. 1000 c.e.) of the
House of Wisdom established in Baghdad in the ninth century. The Egyptian mathematician Abū
�Al̄¬al-H. asan ibn al-Haytham (965�1039) gives us the �rst steps along a path toward understanding
these formulas in general, in which he �nds formulas for sums of fourth powers in order to �nd the
volume of a general paraboloid of revolution (in contemporary terms this involves integrating x4).
His complicated method could in principle be generalized to higher powers. These developments
are explored in a precursor project to this one. What we do not see in these earlier works is a
connection between the �gurate numbers and sums of powers. This is what Fermat brought to the
scene, and to which we return.

Exercise 10. Guess a formula for sums of cubes: First calculate the �rst six sums and look for a
pattern. Then prove by mathematical induction that your guess is correct.

Exercise 11. Above we showed how Fermat�s second claim about �gurate numbers could be used
to derive a formula for a sum of squares. Generalize this approach to obtain the formula
for a sum of cubes from Fermat�s third claim. Of course a collateral triangulo-triangle is the
generalization of a pyramid to a four-dimensional object consisting of n stacked triangular
pyramids with side lengths ranging from 1 to n. Discuss what would be involved in carrying
this to even higher powers.

Exercise 12. From Fermat�s claim above, derive a formula for the number of dots in a 3-dimensional
triangular pyramid with n dots on a side.

Exercise 13. From Fermat�s �nal claim above, derive a formula for the number of dots in a 4-
dimensional triangulo-triangle with n dots on a side. Generalize to conjecture formulas for
higher dimensional �pyramids�.

Since Fermat did not reveal his methods, it is up to us to decipher what he may have been
thinking when he made his claims about �gurate numbers, and to see if they are true. We will be
able to do this by studying the �gurate numbers and discovering their agreement with the numbers
in the �arithmetical triangle�2 (Figure 4) of his contemporary and correspondent Blaise Pascal. The
numbers in the arithmetical triangle have yet other extremely important properties in combinatorial
mathematics, namely in their roles as combination numbers and binomial coe¢ cients.

Fermat�s claims are not merely geometric interpretations of relationships between certain whole
numbers; they are actually discrete analogues of results we already know about continuous objects
like areas and volumes. For instance, his �rst claim is a discrete version of the fact that for any
line segment, the product of the segment with itself creates a rectangle with area twice that of the
triangle with that side and height. Fermat�s use of the �next larger number�for one of the discrete

2Today called Pascal�s triangle.
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Figure 4: Pascal�s arithmetical triangle
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lengths is exactly what is necessary to ensure a precise two-to-one ratio of the discrete count of
dots in a rectangular �gure to the count of dots in an inscribed triangle at the corners, as we know
happens for the continuous measurements of the analogous areas. This is visible geometrically in
the packing of dots in the middle of Figure 2. Similarly, when he says �the last number multiplied
by the triangle of the next larger is three times the collateral pyramid,�he is expressing a delicate
discrete version of the fact that a three-dimensional pyramid on a triangular base has volume
one-third that of the prism created with the same base and height. Fermat claims that similar
relationships hold in all dimensions.

Let us formally de�ne the �gurate numbers by their recursive piling up property. Here Fn;j
will denote the �gurate number that is j-dimensional with n dots along each side. Call n its side
length. For instance, F3;2 is the planar triangular number with 3 dots per side, so by counting up
its rows of dots, F3;2 = 1 + 2 + 3 = 6. The piling up property, by which we de�ne larger �gurate
numbers from smaller ones, is encoded in the formula Fn+1;j+1 = Fn;j+1 + Fn+1;j . This formalizes
the idea that to increase the side length of a (j + 1)-dimensional �gurate number from n to n+ 1,
we simply add on another layer at its base, consisting of a j-dimensional �gurate number of side
length n + 1 (Figure 3). This de�ning formula is called a recursion relation, since it de�nes each
of the �gurate numbers in terms of those of lower dimension and side length, provided we start
correctly by specifying those numbers with the smallest dimension and those with the smallest
side length. While we could start from dimension one, it is useful to begin with zero-dimensional
�gurate numbers, all of which we will de�ne to have the value one. We thus de�ne

Fn;0 = 1 (n � 1);
F1;j = 1 (j � 0);

Fn+1;j+1 = Fn+1;j + Fn;j+1 (n � 1; j � 0):

We must check that our starting data determine just what was intended for Fermat�s �gurate
numbers. We have required that any �gurate number with side length one will have exactly one
dot, no matter what its dimension. And the recursion relation clearly produces the desired one-
dimensional �gurate numbers Fn;1 = n for all n � 1 from the starting data of zero-dimensional
numbers.

Now Fermat�s claimed formulas to Mersenne assume the form

nFn+1;1 = 2Fn;2;

nFn+1;2 = 3Fn;3;

nFn+1;3 = 4Fn;4;

:::

Exercise 14. Explain why Fermat�s claimed formulas to Mersenne assume the form

nFn+1;1 = 2Fn;2;

nFn+1;2 = 3Fn;3;

nFn+1;3 = 4Fn;4;

::: .

We shall study the �gurate numbers further to see why Fermat�s claim about them is true, and
simultaneously prepare the groundwork for reading Pascal�s work on sums of powers. The reader
may have noticed that the individual �gurate numbers seem familiar, from looking at Pascal�s
arithmetical triangle (Figure 4). The numbers shown there seem to match the �gurate numbers,
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i.e., Fn;j appears in Pascal�s �parallel row�(horizontal) labeled n and �perpendicular row�(vertical)
labeled j + 1. Indeed, in his Treatise on the Arithmetical Triangle, Pascal de�ned the numbers in
the triangle by starting the process o¤ with a 1 in the corner, and de�ned the rest simply by saying
that each number is the sum of the two numbers directly above and directly to the left of it, which
corresponds precisely to the recursion relation and starting data by which we formally de�ned the
�gurate numbers. So they must agree.

Perhaps you already also recognize the numbers in the arithmetical triangle as binomial coef-
�cients or combination numbers. The numbers occurring along Pascal�s ruled diagonals in Figure
4 appear to be the coe¢ cients in the expansion of a binomial; for instance, the coe¢ cients of
(a + b)4 = 1a4 + 4a3b + 6a2b2 + 4ab3 + 1b4 occur along the diagonal Pascal labels with 5. Our
modern notation for these binomial coe¢ cients is that

�
m
j

�
denotes the coe¢ cient of am�jbj in the

expansion of (a+ b)m. Indeed, if in the arithmetical triangle we index both the diagonals and their
individual entries beginning with zero (rather than one, as Pascal does), then the entry in diagonal
m at column j will be the binomial coe¢ cient

�
m
j

�
. This is easy to prove, by showing that they,

too, satisfy the recursion relation and starting data of the arithmetical triangle.

Exercise 15. Show that the coe¢ cients in the expansion of a binomial satisfy the starting data
and the recursion relation of the arithmetical triangle. In other words, if for all m � 0
we write (a + b)m =

Pm
j=0

�
m
j

�
am�jbj , show that these coe¢ cients satisfy the starting data�

m
0

�
=
�
m
m

�
= 1, and Pascal�s recursion relation

�
m+1
j

�
=
�
m
j

�
+
�
m
j�1
�
. (Hint: write (a+b)m+1 =

(a+ b) (a+ b)m.)

Since we have now identi�ed both the �gurate numbers and the binomial coe¢ cients as the
numbers in the arithmetical triangle generated by the basic recursion relation, their precise rela-
tionship follows just by comparing their indexing: Fi+1;j is the number in Pascal�s arithmetical
triangle in the row and column he labels i+ 1 and j + 1, which we reindexed (starting with zero)
to be labeled as i and j, which is in diagonal i + j and column j, so it is the binomial coe¢ cient�
i+j
j

�
. We have

Fi+1;j =

�
i+ j

j

�
for i; j � 0:

We can also verify a closed formula in terms of factorials for the numbers in the triangle:�
m

j

�
=

m!

j!(m� j)! =
m(m� 1) � � � (m� j + 1)

j!
for 0 � j � m;

where the notation i! (read �i factorial�) is de�ned to mean

i � (i� 1) � (i� 2) � � � 3 � 2 � 1;

and 0! is de�ned to be 1:

Exercise 16. Show that �
m

j

�
=

m!

j!(m� j)! for 0 � j � m:

(Hint: Show that this factorial formula satis�es the starting data and the recursion relation
of the arithmetical triangle.)

The ubiquitous numbers in the arithmetical triangle had already been in use for over 500 years,
in places ranging from China to the Islamic world, before Pascal developed and applied its properties
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in his Traité du Triangle Arithmétique (Treatise on the Arithmetical Triangle), written by 1654
[9]. A key fact, which Pascal called his Twelfth Consequence, is that neighboring numbers along a
diagonal in the triangle are always in a simple ratio:

(m� j)
�
m

j

�
= (j + 1)

�
m

j + 1

�
for j < m;

which is easily obtained from the factorial formula above.

Exercise 17. Prove Pascal�s Twelfth Consequence from the factorial formula for binomial coe¢ cients:

Translated into �gurate numbers, Pascal�s Twelfth Consequence reemerges as precisely Fermat�s
claim in his letter to Mersenne! For instance, letting j = 2 and m = n+ 2 yields

n

�
n+ 2

2

�
= 3

�
n+ 2

3

�
,

or nFn+1;2 = 3Fn;3;

exactly Fermat�s claim that �the last number multiplied by the triangle of the next larger is three
times the collateral pyramid.�The reader may now easily con�rm Fermat�s general claim.

Exercise 18. State Fermat�s general claim about �gurate numbers, and prove it from Pascal�s
Twelfth Consequence.

We have achieved our goal of understanding and verifying Fermat�s claims about �gurate num-
bers, although we cannot know that this is precisely how Fermat thought of things. In the process
we have connected the �gurate numbers to the arithmetical triangle and binomial coe¢ cients, and
found a factorial formula for them. All this will prove to be a powerful shift.

We have also seen how Fermat could use his knowledge of �gurate numbers to �nd formulas for
sums of powers, at least for squares and cubes. While it is clear that the process can be continued
inde�nitely, it quickly becomes impractically complicated, and it is also not clear that it yields any
new general insight about sums of powers. However, Pascal too wrote about sums of powers, using
the binomial coe¢ cient meaning of the �gurate numbers to great advantage, and this is where we
continue.

Pascal�s Arithmetical Triangle, binomials, and sums of powers of arithmetic pro-
gressions

Pascal wrote two treatises of interest to us at around the same time. In his Treatise on the
Arithmetical Triangle [8, v. 30], Pascal made a systematic study of the numbers in his triangle,
simultaneously encompassing their �gurate, combinatorial, and binomial roles. Although these
numbers had emerged in the mathematics of several cultures over many centuries [9], Pascal was
the �rst to connect binomial coe¢ cients with combinatorial coe¢ cients in probability.

A major motivation for Pascal�s treatise was a question from the beginnings of probability
theory, about the equitable division of stakes in an interrupted game of chance. The question had
been posed to Pascal around 1652 by Antoine Gombaud, the Chevalier de Méré, who wanted to
improve his chances at gambling: Suppose two players are playing a fair game, to continue until one
player wins a certain number of rounds, but the game is interrupted before either player reaches the
winning number. How should the stakes be divided equitably, based on the number of rounds each
player has won [9, p. 431, 451¤]? The solution requires the combinatorial properties inherent in
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Figure 5: Blaise Pascal

the numbers in the arithmetical triangle, as Pascal demonstrated in his Treatise, since they count
the number of ways various occurrences can combine to produce a given result.

Blaise Pascal (1623�1662) was born in Clermont-Ferrand, in central France. Even as a teenager
his father introduced him to meetings of Marin Mersenne�s circle of mathematical discussion in
Paris. He quickly became involved in the development of projective geometry, the �rst in a se-
quence of highly creative mathematical and scienti�c episodes in his life, punctuated by periods of
religious fervor. Around age twenty-one he spent several years developing a mechanical addition
and subtraction machine, in part to help his father in tax computations as a local administrator.
It was the �rst of its kind ever to be marketed. Then for several years he was at the center of
investigations of the problem of the vacuum, which led to an understanding of barometric pressure.
In fact, the scienti�c unit of pressure is named the pascal. He is also known for Pascal�s law on the
behavior of �uid pressure.

Around 1654 Pascal conducted his studies on the arithmetical triangle and its relationship to
probabilities. His correspondence with Fermat in that year marks the beginning of probability
theory. Several years later, Pascal re�ned his ideas on area problems via the method of indivisibles
already being developed by others, and solved various problems of areas, volumes, centers of gravity,
and lengths of curves.3 After only two years of work on the calculus of indivisibles, Pascal fell gravely
ill, abandoned almost all intellectual work to devote himself to prayer and charitable work, and died
three years later at age thirty-nine. In addition to his work in mathematics and physics, Pascal is
prominent for his Provincial Letters defending Christianity, which gave rise to his posthumously
published Pensées on religious philosophy [7, 5]. Pascal was an extremely complex person, and
one of the outstanding scientists of the mid-seventeenth century, but we will never know how much

3Later in the seventeenth century, Gottfried Wilhelm Leibniz (1646�1716), one of the two inventors of the in�n-
itesimal calculus, which supplanted the method of indivisibles, explicitly credited Pascal�s approach as stimulating
his own ideas on the so-called characteristic triangle of in�nitesimals in his fundamental theorem of calculus.
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more he might have accomplished with more sustained e¤orts and a longer life.
The relation of the arithmetical triangle to counting combinations, and thus their centrality in

probability theory, follows easily from the factorial formula above for the triangle�s numbers. The
reader may verify that

�
m
j

�
represents the number of di¤erent combinations of j elements that can

occur in a set of m elements

Exercise 19. Prove that the number of distinct �ve-card hands possible from a standard deck of
�fty-two playing cards is

�
52
5

�
. Then prove that

�
m
j

�
is the number of di¤erent combinations

of j elements that can occur in a set of m elements. Hint: First see why

m (m� 1) � � � (m� j + 1)

is the number of di¤erent ways of selecting a sequence of j elements from a sequence with m
elements (where di¤erent orderings of the same elements count as di¤erent sequences).

We have seen that the numbers in the arithmetical triangle have three interchangeable in-
terpretations: as �gurate numbers, combination numbers, and binomial coe¢ cients. Given this
multifaceted nature, it is no wonder that they arose early on, in various manners and parts of
the world, and that they are ubiquitous today. The arithmetical triangle in fact over�ows with
fascinating patterns.

Exercise 20. (Optional) Prove that the sum of the numbers in each diagonal of the arithmetical
triangle is a power of two. Hint: binomial theorem.

In about the same year as his Treatise on the Arithmetical Triangle, Pascal produced the text
we will now study, Potestatum Numericarum Summa (Sums of Numerical Powers) [13, v. III, pp.
341�367], which analyzes sums of powers of an arithmetic progression (a sequence of numbers with
a �xed di¤erence between each term and its successor) in terms of the numbers in the arithmetical
triangle, interpreted as binomial coe¢ cients. Pascal also makes the connection between these results
and area problems via the method of indivisibles.

Fermat�s great enthusiasm in 1636 for the problem of calculating sums of powers was not immedi-
ately embraced by others, and Pascal, although a direct correspondent of Fermat�s, was apparently
unaware of Fermat�s work when he made his own analysis about eighteen years later in Sums of
Numerical Powers. Here we will see the transition from a geometric to algebraic approach almost
complete, since Pascal, unlike others before him, and even Fermat, is bent on presenting a gener-
alized arithmetic solution for the problem, albeit still using mostly verbal descriptions of formulas,
instead of modern algebraic notation. We will �nd that Pascal obtains a compact formula directly
relating sums of powers for various exponents, using binomial coe¢ cients as the intermediary.

11111111

Blaise Pascal, from
Sums of Numerical Powers

Remark.

Given, starting with the unit, some consecutive numbers, for example 1; 2; 3; 4; one knows, by the
methods the Ancients made known to us, how to �nd the sum of their squares, and also the sum of
their cubes; but these methods, applicable only to the second and third degrees, do not extend to higher
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degrees. In this treatise, I will teach how to calculate not only the sum of squares and of cubes, but also
the sum of the fourth powers and those of higher powers up to in�nity: and that, not only for a sequence
of consecutive numbers beginning with the unit, but for a sequence beginning with any number, such
as the sequence 8; 9; 10; : : : : And I will not restrict myself to the natural sequence of numbers: my
method will apply also to a progression having as ratio [di¤erence] 2; 3; 4; or any other number,� that
is to say to a sequence of numbers di¤erent by two units, like 1; 3; 5; 7; : : : ; 2; 4; 6; 8; : : : ; or di¤ering
by three units like 1; 4; 7; 10; 13; : : : : And what is more, whatever the �rst term in the sequence may
be: if the �rst term is 1; as in the sequence with ratio three, 1; 4; 7; 10; : : :: or if it is another term
in the progression, as in the sequence 7; 10; 13; 16; 19; or even if it is alien to the progression, as in
the sequence with ratio three, 5; 8; 11; 14; : : : beginning with 5. It is remarkable that a single general
method will su¢ ce to treat all these di¤erent cases. This method is so simple that it will be explained
along several lines, and without the preparation of algebraic notations to which di¢ cult demonstrations
must have recourse. One can judge this after having read the following problem.

De�nition.

Consider a binomial A + 3, whose �rst term is the letter A, and the second a number: raise this
binomial to any power, the fourth for example, which gives

A4 + 12:A3 + 54:A2 + 108:A+ 81;

the numbers 12; 54; 108, which are multiplying the di¤erent powers of A, and are formed by the combi-
nation of the �gurate numbers with the second term, 3, of the binomial, will be called the coe¢ cients
of A.

Thus, in the cited example, 12 will be the coe¢ cient of the cube A; 54, that of the square; and
108, that of the �rst power.

As for the number 81, it will be called the pure number.

Lemma

Suppose any number, like 14, be given, and a binomial 14+3, whose �rst term is 14 and the second
any number 3, in such a manner that the di¤erence of the numbers 14 and 14 + 3 will equal 3. Let us
raise these numbers to a same power, the fourth for example: the fourth power of 14 is 144, that of the
binomial, 14 + 3, is

144 + 12:143 + 54:142 + 108:14 + 81:

In this expression, the powers of the �rst term, 14, of the binomial are obviously a¤ected by the same
coe¢ cients as the powers of A in the expansion of (A+3)4. This put down, the di¤erence of the two
fourth powers, 144 and

144 + 12:143 + 54:142 + 108:14 + 81;

is 12:143 + 54:142 + 108:14 + 81; this di¤erence comprises: on the one hand, the powers of 14 whose
degree is less than the proposed degree 4, these powers being a¤ected by the coe¢ cients which the
same powers of A have in the expansion of (A+ 3)4; on the other hand, the number 3 (the di¤erence
of the proposed numbers) raised to the fourth power [because the absolute number 81 is the fourth
power of the number 3]. From this we deduce the following Rule:

The di¤erence of like powers of two numbers comprises: the di¤erence of these numbers
raised to the proposed power; plus the sum of all the powers of lower degree of the smaller
of the two numbers, these powers being respectively multiplied by the coe¢ cients which the
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same powers of A have in the expansion of a binomial raised to the proposed power and having
as �rst term A and as second term the di¤erence of the given numbers.

Thus, the di¤erence of 144 and 114 will be

12:113 + 54:112 + 108:11 + 81;

since the di¤erence of the �rst powers is 3. And so forth.

A single general method for �nding the sum of like powers of the terms of any progression.

Given, beginning with any term, any sequence of terms of an arbitrary progression, �nd the
sum of like powers of these terms raised to any degree.

Suppose an arbitrary number 5 is chosen as the �rst term of a progression whose ratio [di¤erence],
arbitrarily chosen, is for example three; consider, in this progression, as many of the terms as one
wishes, for instance the terms 5; 8; 11; 14; and raise these terms to any power, suppose to the cube.
The question is to �nd the sum of the cubes 53 + 83 + 113 + 143.

These cubes are 125; 512; 1331; 2744; and their sum is 4712. Here is how one �nds this sum.
Let us consider the binomial A+3 having as �rst term A and as second term the di¤erence

of the progression.
Raise this binomial to the fourth power, the power immediately higher than the proposed

degree three; we obtain the expression

A4 + 12:A3 + 54:A2 + 108:A+ 81:

This admitted, we consider the number 17, which, in the proposed progression, immediately follows
the last term considered, 14. We take the fourth power of 17, known as 83521, and subtract from it:

First: the sum 38 of the terms considered, 5 + 8 + 11 + 14, multiplied by the number 108 which is
the coe¢ cient of A;

Second: the sum of the squares of the same terms 5; 8; 11; 14, multiplied by the number 54, which
is the coe¢ cient of A2:

And so on, in case one still has the powers of A of lesser degree than the proposed degree three.
With these subtractions made, one subtracts also the fourth power of the �rst term proposed, 5.
Finally one subtracts the number 3 (ratio [di¤erence] of the progression) itself raised to the fourth

power and taken as many times as one considers terms in the progression, here four times.
The remainder of the subtraction will be a multiple of the sum sought; it will be the product of this

sum with the number 12, which is the coe¢ cient of A3, that is to say the coe¢ cient of the term A
raised to the proposed power three.

Thus, in practice, one must form the fourth power of 17, being 83521, then subtracting from it
successively:

First, the sum of the terms proposed, 5 + 8 + 11 + 14, being 38, multiplied by 108,� that is, the
product 4104;

Then the sum of the squares of the same terms, 52 + 82 + 112 + 142, or 25 + 64 + 121 + 196, or
again 406, which, multiplied by 54, gives 21924;

Then the number 5 to the fourth power, which is 625;
Finally the number 3 to the fourth power, being 81, multiplied by four, which gives 324. In summary

one must subtract the numbers 4104; 21924; 625; 324, whose sum is 26977. Taking this sum away
from 83521, there remains 56544.

The remainder thus obtained is equal to the sum sought, 4712, multiplied by 12; and, in fact, 4712
multiplied by 12 equals 56544.
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The rule is, as one sees, easy to apply. Here now is how one proves it.
The number 17 raised to the fourth power, which one writes 174, is equal to

174 � 144 + 144 � 114 + 114 � 84 + 84 � 54 + 54.

In this expression, only the term 174 appears with the single sign +; the other terms are in turns
added and subtracted.

But the di¤erence of the terms 17 and 14 is 3; likewise the di¤erence of the terms 14 and 11, and
of the terms 11 and 8, and of the terms 8 and 5. Thenceforth, according to our preliminary lemma:
174 � 144 equals 12:143 + 54:142 + 108:14 + 81:

Likewise 144 � 114 equals 12:113 + 54:112 + 108:11 + 81:
Likewise 114 � 84 equals 12:83 + 54:82 + 108:8 + 81:
Likewise 84 � 54 equals 12:53 + 54:52 + 108:5 + 81:
The term 54 does not need to be transformed.
One then �nds as the value of 174:

12:143 + 54:142 + 108:14 + 81

+ 12:113 + 54:112 + 108:11 + 81

+ 12:83 + 54:82 + 108:8 + 81

+ 12:53 + 54:52 + 108:5 + 81

+ 54;

or, on interchanging the order of the terms:

5 + 8 + 11 + 14 multiplied by 108;

+ 52 + 82 + 112 + 142 multiplied by 54;

+ 53 + 83 + 113 + 143 multiplied by 12;

+ 81 + 81 + 81 + 81

+ 54:

If therefore one subtracts on both sides the sum:

5 + 8 + 11 + 14 multiplied by 108;

+ 52 + 82 + 112 + 142 multiplied by 54;

+ 81 + 81 + 81 + 81

+ 54;

There remains 174 diminished by the previously known quantities:

� 5� 8� 11� 14 multiplied by 108;
� 52 � 82 � 112 � 142 multiplied by 54;
� 81� 81� 81� 81
� 54;
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which will be found equal to the sum 53 + 83 + 113 + 143 multiplied by 12. Q.E.D.
One may thus present as follows the statement and the general solution of the proposed problem.

The sum of powers

Given, beginning with any term, any sequence of terms of an arbitrary progression, �nd the
sum of like powers of these terms raised to any degree.

We form a binomial having A as its �rst term, and for its second term the di¤erence of the given
progression; we raise this binomial to the degree immediately higher than the proposed degree, and we
consider the coe¢ cients of the various powers of A in the expansion obtained.

Now we raise to the same degree the term that, in the given progression, immediately follows the
last term considered. Then we subtract from the number obtained the following quantities:

First: The �rst term given in the progression,� that is, the smallest of the given terms,� itself raised
to the same power (immediately higher than the proposed degree).

Second: The di¤erence of the progression, raised to the same power, and taken as many times as
of the terms considered in the progression.

Third: The sums of the given terms, raised to the various degrees less than the proposed degree,
these sums being respectively multiplied by the coe¢ cients of the same powers of A in the expansion
of the binomial formed above.

The remainder of the subtraction thus accomplished is a multiple of the sum sought: it contains it
as many times as unity is contained in the coe¢ cient of the power of A whose degree is equal to the
proposed degree.

NOTE

The reader himself will deduce practical rules that apply in each particular case. Suppose, for
example, that one wishes to �nd the sum of a certain number of terms in the natural sequence [i.e.,
of natural numbers] beginning with an arbitrary number: here is the rule that one deduces from our
general method:

In a natural progression beginning with any number, the square of the number immediately
above the last term, diminished by the square of the �rst term and the number of terms given,
is equal to double the sum of the stated terms.

Suppose given a sequence of any consecutive numbers whose �rst term is arbitrary, for example the
four numbers 5; 6; 7; 8: I say that 92 � 52 � 4 equals the double of 5 + 6 + 7 + 8.

One will easily obtain analogous rules giving the sums of powers of higher degrees and which apply
to all progressions.

Conclusion.

Any who are a little acquainted with the doctrine of indivisibles will not fail to see what pro�t one
may make from the preceding results for the determination of curvilinear areas. These results permit
the immediate squaring of all types of parabolas and an in�nity of other curves.

If then we extend to continuous quantities the results found for numbers, by the method expounded
above, we will be able to state the following rules:

Rules relating to the natural progression beginning with unity.
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The sum of a certain number of lines is to the square of the largest as 1 is to 2.
The sum of the squares of the same lines is to the cube of the largest as 1 is to 3.
The sum of their cubes is to the fourth power of the largest as 1 is to 4.

General rule relating to the natural progression beginning with unity.

The sum of like powers of a certain number of lines is to the immediately greater power of
the largest among them as unity is to the exponent of this same power.

I will not pause here for the other cases, because this is not the place to study them. It will be enough
for me to have cursorily stated the preceding rules. One can discover the others without di¢ culty by
relying on the principle that one does not increase a continuous magnitude when one adds to it, in any
number one wishes, magnitudes of a lower4 order of in�nitude. Thus points add nothing to lines, lines
to surfaces, surfaces to solids; or� to speak in numbers as is proper in an arithmetical treatise,� roots
do not count in regard to squares, squares in regard to cubes, and cubes in regard to square-squares. In
such a way one must disregard, as nil, quantities of smaller order.

I have insisted on adding these few remarks, familiar to those who practise indivisibles, in order to
bring out the always wonderful connection that nature, in love with unity, establishes between objects
distant in appearance. It appears in this example, where we see the calculation of the dimensions of
continuous magnitudes joined with the summation of numerical powers.

11111111

Pascal�s approach to sums of powers is rich with detail, and ends with his view on how this
topic displays the connection between the continuous and the discrete. His idea of using a sum of
equations in which one side �telescopes�via cancellations is masterful, and is a tool widely used
in mathematics today. Pascal presents a rule obtained by generalizable example. The idea of a
generalizable example is to prove the claim for a particular number, but in a way that clearly
shows that it works for any number. This was a common method of proof for centuries, in part
because there was no notation adequate to handle the general case, and in particular no way of
using indexing as we do today to deal with sums of arbitrarily many terms.

Pascal�s study of sums of powers is expanded over Fermat�s in scope on two fronts: to arithmetic
progressions with arbitrary di¤erences and to those beginning with any number. The reader should
analyze whether his example convinces one of the general rule, and then apply it to obtain sums
of fourth and �fth powers.

Exercise 21. Apply Pascal�s method to obtain the sum of the fourth powers in the progression
5; 8; 11; 14, and then check your answer by direct calculation.

Exercise 22. Apply Pascal�s method to obtain the polynomial formula for the sum of the fourth
powers in a natural progression beginning with one, i.e.,

Pn
i=1 i

4.

Exercise 23. Apply Pascal�s method to obtain the polynomial formula for the sum of the �fth
powers in a natural progression beginning with one, i.e.,

Pn
i=1 i

5.

Pascal�s prescription does requires us to substitute known formulas for sums with previous
exponents, and then solve for the sum with desired exponent. But we can at least say that Pascal�s
prescription represents the �rst general recipe for sums of powers, and it is an attractive formulation,

4The French version mistakenly says �higher�here.
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connecting sums of powers to each other very directly using binomial coe¢ cients. Let us transcribe
his verbal prescription into modern notation for how to �nd the sum of the �rst n kth powers:

(k + 1)

nX
i=1

ik = (n+ 1)k+1 � 1k+1 � n � 1k+1 �
k�1X
j=1

�
k + 1

j

� nX
i=1

ij .

We call this Pascal�s equation. The reader may verify that his method generalizes to produce what
he claims in his verbal prescription for more general progressions.

Exercise 24. (Optional) Write out Pascal�s general result, in modern notation, and provide a proof
(based on the method of his example) to justify his general prescription for a sum of powers
of any arithmetic progression, i.e., with arbitrary di¤erence and beginning with any number.
Include a modern formulation of his algorithm, and apply it to compute some examples.

We can use Pascal�s equation to con�rm patterns that have slowly been emerging, namely
that sums-of-powers polynomials have a particular degree and predictable leading and trailing
coe¢ cients:

nX
i=1

ik =
nk+1

k + 1
+
1

2
nk + ? nk�1 + � � �+ ? n+ 0 for k � 1:

We can con�rm these features and even push one step further to discover and con�rm a simple
pattern for the coe¢ cients of nk�1 in the polynomial formulas.

Exercise 25. In the text and exercises we have obtained explicit polynomial formulas for sums of
powers up to exponent �ve. From these we conjecture

nX
i=1

ik =
nk+1

k + 1
+
1

2
nk + ? nk�1 + � � �+ ? n+ 0:

Use Pascal�s equation to prove these observed patterns for all k. (Hint: mathematical induc-
tion. You will need a strong form of induction, in which you assume the truth of all preceding
statements, not just the one prior to the one you are trying to verify. Why is this stronger
form of mathematical induction a valid method of proof?) Then push one step further to
conjecture and prove a pattern for the coe¢ cient of nk�1 in the formulas.

At this point we can also use Pascal�s equation to prove that sums of powers satisfy Roberval�s
inequalities discussed earlier, which he used to �nd the areas under all the higher parabola curves.

Exercise 26. Prove the inequality
Pn
i=1 i

k < (n+ 1)k+1= (k + 1) of Roberval using Pascal�s equa-
tion. Can you also use it to prove his second inequality nk+1= (k + 1) <

Pn
i=1 i

k, which is
harder to show?

The patterns in the coe¢ cients of the polynomial formula for sums of powers above begin to
reveal more of the connection between the continuous and the discrete. The term nk+1

k+1 is the areaR n
0 x

kdx under the curve y = xk between 0 and n. The left side of the above equation is the area
of a right-endpoint approximating sum of rectangles for this area, and thus the rest constitutes
�correcting terms� interpolating between the area under the curve and the sum of rectangles.
The second term, 12n

k, amounts to improving the right-endpoint approximation to a trapezoidal
approximation, and the next term also has geometric interpretation as a further correction.
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Exercise 27. There is a simple geometric interpretation of the second term in the polynomial
formula above. Draw a picture illustrating the di¤erence between the region under the curve
y = xk for 0 � x � n and the region of circumscribing rectangles with ends at integer values.
Interpreting their areas as

R n
0 x

kdx = nk+1

k+1 and
Pn
i=1 i

k, �nd an interpretation in the picture
of how the term 1

2n
k above represents part of the region between these two, and explain what

its connection is to the trapezoid rule from calculus as a numerical approximation for de�nite
integrals. This should suggest to you the sign of the next term in the formula above. What
should it be and why?

We can speculate that the other coe¢ cients in these polynomials continue to follow an interesting
pattern. We pursue this in the next part of our story, emerging at the turn of the eighteenth century
in the work of Jakob Bernoulli (1654�1705).

We end this section by remarking on Pascal�s Conclusion about indivisibles and the squaring
(area) of higher parabolas. Clearly for him the connection between �dimensions of continuous
magnitudes� and �summation of numerical powers� is striking and subtle, and was probably a
prime motivation for his investigations on sums of powers in an era when many were vying to
square higher parabolas and other curves. His view is that for continuous quantities, terms of
�lower order of in�nitude�(i.e., lesser dimension) add nothing, and one must �disregard [them] as
nil,�so that the sums of powers formulas above become

nX
i=1

ik � nk+1

k + 1
;

which is his statement about summing continuous quantities. Today we recognize this as analogous
to our integration formula Z n

0
tkdt =

nk+1

k + 1

for the area under a higher parabola. Turning these analogies into a tight logical connection between
discrete summation formulas and continuous area results was part of the long struggle to de�ne and
rigorize calculus, which began with the classical Greek mathematics exempli�ed by Archimedes,
and lasted until well into the nineteenth century.

Exercise 28. Use
nX
i=1

ik =
nk+1

k + 1
+
1

2
nk + � � �

as obtained in an exercise above to prove that

lim
n!1

Pn
i=1 i

k

nk+1
=

1

k + 1
;

a result known as Wallis�s theorem. Utilize Wallis�s theorem and the modern de�nition of the
integral as a limit of approximating sums to calculateZ x

0
tkdt =

xk+1

k + 1
for any real x > 0:

Discuss how this supports what Pascal is arguing in his Conclusion.
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Jakob Bernoulli �nds a pattern

Jakob (Jacques, James) Bernoulli (1654�1705) was one of two spectacular mathematical brothers
in a large family of mathematicians spanning several generations. The Bernoulli family had settled
in Basel, Switzerland, when �eeing the persecution of Protestants by Catholics in the Netherlands
in the sixteenth century.

Figure 6: The mathematical Bernoulli family [4, p. 416]

Jakob at �rst studied mathematics against the will of his father, who wanted him to become a
minister, and then traveled widely to learn from prominent mathematicians and scientists in France,
the Netherlands, and England. He was appointed professor of mathematics in Basel, and he and his
younger brother Johann (Jean, 1667�1748) were among the �rst to fully absorb Gottfried Leibniz�s
(1646�1716) newly invented methods of calculus, and to apply them to solve many fascinating
mathematical questions. For instance, in 1697 Jakob used a di¤erential equation to solve the
brachistochrone problem, i.e., to �nd the curve down which a frictionless bead will slide from one
point to another in the least time. His method began a new mathematical �eld, the calculus of
variations, in which one seeks among all curves the one that maximizes or minimizes some property
[9, pp. 547�549]. Bernoulli also used the calculus to discover numerous wonderful properties of the
logarithmic spiral, leading him to request that this �spira mirabilis�be engraved on his tombstone
[4, p. 417f], [17, pp. 148�153]. And he worked and published much on in�nite series.

Jakob wrote the earliest substantial book on probability theory, Ars Conjectandi (The Art
of Conjecturing). Its posthumous publication in 1713 contained much original work, including
the pattern we have been seeking in the formulas for sums of powers. It should not surprise us
that Jakob connects probability theory and sums of powers, for we have learned that the �gurate
numbers, binomial coe¢ cients, and combination numbers are simply di¤erent interpretations of the
numbers in the arithmetical triangle of Pascal.

While Pascal�s equation displayed a compact connection between sums of powers formulas for
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Figure 7: Jakob Bernoulli

various exponents, its recursive nature still prevents quick and easy calculation of the polynomial
formulas representing

Pn
i=1 i

k for various values of k. Nor did it reveal any general pattern in
all the coe¢ cients of these polynomials, even though we suspect there is one. Bernoulli addresses
both issues in his short addendum5 on sums of powers (Summae Potestatum) in a chapter of Ars
Conjectandi on permutations and combinations [1, v. 3, pp. 164�167], [2], [15, pp. 85�90]. Here
the Bernoulli numbers �rst appear, and our knowledge takes a tremendous leap forward. We will
comment in detail after our source, but we note as an aid beforehand that Bernoulli uses the integral
sign to represent �nite summations!

11111111

Jakob Bernoulli, from
The Art of Conjecturing

Part Two

A THEORY OF PERMUTATIONS AND COMBINATIONS
On combinations of particular numbers of things; which leads to �gurate numbers and their properties

[...] Scholium. We note in passing that many (among others, Faulhaber and Remmelin from Ulm,
Wallis, Mercator in his Logarithmotechnia, Prestet) have engaged themselves in the study of �gurate
numbers. But I have found no one who has given a universal and scienti�c demonstration of this
property. Wallis put forward his fundamental methods in the Arithm. In�nitorum, where he investigates
inductively6 the ratios of the series of Squares, Cubes, or other powers of the natural numbers to the

5We are indebted to Daniel E. Otero for this translation from Latin.
6That is, by inductive, as opposed to deductive, reasoning. Inductive reasoning argues from particular cases

(speci�c examples) towards a general conclusion. Deductive reasoning argues from a known principle to an unknown,
from the general to the speci�c, or from a premise to a logical conclusion. When Bernoulli refers here to inductive
reasoning, he is not referring to the method of deductive proof called mathematical induction, which is entirely
di¤erent.
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Figure 8: Ars Conjectandi
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series, having as many terms, of the largest of these powers. From this he moves [...] to the study of
Triangular, Pyramidal, and the remaining �gurate numbers. But it would have been more convenient and
appropriate in the nature of things had he instead �rst prepared a treatise on the �gurate numbers, with
universal and accurate demonstrations, and then later continued the investigation of sums of powers.
For after all, the method of demonstration by induction is not particularly scienti�c, and besides, each
series requires its own special methods. Those series which should be considered �rst, by general
estimation, and whose natures are most fundamental and simple, are seen to be the �gurate numbers,
which are generated by addition, while the powers are generated by multiplication. Moreover, the series
of �gurates, beginning with their respective zeros, have exact fractional ratios with the series having the
same number of constant terms equal to the largest of these,7 which is not necessarily so for the powers
(at least not in a �nite number of terms, regardless how many zeros, by excess or defect, are pre�xed
to it). Furthermore, from the knowledge of the sum of �gurates, it is no more di¢ cult to determine the
sums of powers, and so the author has concluded from these �rst ideas, as I will now do most brie�y.

Let there be given the series of natural numbers from unity: 1; 2; 3; 4; 5; etc., up to n, and suppose
that we ask for the sums of these, or of their squares, their cubes, etc.: In the Table of Combinations8

the inde�nite term in the [...]9 third column is found to be

n� 1 � n� 2
1 � 2 =

nn� 3n+ 2
2

;

and the sum of all the terms (that is, all nn�3n+22 ) is

n � n� 1 � n� 2
1 � 2 � 3 =

n3 � 3nn+ 2n
6

;

this gives10
Z
nn� 3n+ 2

2
or
Z
1

2
nn�

Z
3

2
n+

Z
1 =

n3 � 3nn+ 2n
6

:

So
Z
1

2
nn =

n3 � 3nn+ 2n
6

+

Z
3

2
n�

Z
1:

But
Z
3

2
n =

3

2

Z
n = (by what was shown above)

3

4
nn+

3

4
n;

and
R
1 = n; substituting these above givesZ

1

2
nn =

n3 � 3nn+ 2n
6

+
3nn+ 3n

4
� n = 1

6
n3 +

1

4
nn+

1

12
n,

and by doubling,
Z
nn (the sum of the squares of all n)

=
1

3
n3 +

1

2
nn+

1

6
n:

[...]11 And by proceeding to higher powers in turn, we easily build up the following formulas:

7The reader may wish to decipher this claim, and see that it is actually equivalent to Fermat�s claims in his letter to
Mersenne. Hint: Bernoulli means that to obtain an unchanging fractional ratio 1= (r + 1) using the sum of any series
of r-dimensional �gurate numbers in the numerator, one should pre�x the sequence with r zeros for determining the
number of constant terms in the denominator of the ratio. He then contrasts this with sums of powers, and compares
with the in�nite case; can you see what he is getting at?

8That is, the arithmetical triangle.
9We omit Bernoulli�s derivation of the sum of �rst powers, moving directly to a sum of squares.
11Bernoulli continues on to a sum of cubes.
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n:

Indeed, a pattern can be seen in the progressions herein, which can be continued by means of this
rule: Suppose that c is the value of any power; then the sum of all nc orZ

nc =
1

c+ 1
nc+1 +

1

2
nc +

c

2
Anc�1 +

c � c� 1 � c� 2
2 � 3 � 4 Bnc�3

+
c � c� 1 � c� 2 � c� 3 � c� 4

2 � 3 � 4 � 5 � 6 Cnc�5

+
c � c� 1 � c� 2 � c� 3 � c� 4 � c� 5 � c� 6

2 � 3 � 4 � 5 � 6 � 7 � 8 Dnc�7 : : : & so on,

where the value of the power n continues to decrease by two until it reaches n or nn. The uppercase

letters A, B, C, D, etc., in order, denote the coe¢ cients of the �nal term of
Z
nn;

Z
n4;

Z
n6;

Z
n8,

etc., namely

A =
1

6
; B = � 1

30
; C =

1

42
; D = � 1

30
.

These coe¢ cients are such that, when arranged with the other coe¢ cients of the same order, they add
up to unity: so, for D, which we said signi�ed � 1

30 , we have

1

9
+
1

2
+
2

3
� 7

15
+
2

9
(+D)� 1

30
= 1.

12The symbol � in Bernoulli�s table means that a term with a particular power of n is not shown because the
coe¢ cient is zero.
13There is an error in the original published Latin table of sums of powers formulas. The last coe¢ cient in the

formula for
R
n9 should be � 3

20
, not � 1

12
; we have corrected this here.
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By means of these formulas, I discovered in under a quarter hour�s work that the tenth (or quadrato-
sursolid) powers of the �rst thousand numbers from unity, when collected into a sum, yield

91409924241424243424241924242500:

Clearly this renders obsolete the work of Ismael Bulliald, who wrote so as to thicken the volumes of
his Arithmeticae In�nitorum with demonstrations involving immense labor, unexcelled by anyone else,
of the sums of up to the �rst six powers (which is only a part of what we have superseded in a single
page).

11111111

Exercise 29. See whether you can duplicate Bernoulli�s claim that he calculated (by hand, of
course) the sum of the tenth powers of the �rst thousand numbers in less than a quarter of
an hour.

Interestingly, while Bernoulli indicates his familiarity with the work of several others on sums
of powers, he mentions neither Fermat nor Pascal. John Wallis (1616�1703) had studied sums of
powers in his Arithmetica In�nitorum of 1655, with the same motivation as Fermat and Pascal, to
�nd the areas under higher parabolas. Bernoulli contrasts Wallis�s work with his own, including
comparing sums of �gurate numbers with sums of powers. While �nite sums of powers do not
behave as nicely as sums of �gurate numbers, Bernoulli�s subsequent formulas shed light on the
nature of the di¤erence between them by providing a precise expression for

Pn
i=1 i

k as a polynomial
in n.

Notice Bernoulli�s summation notation as he proceeds to analyze sums of powers. The expression
after the integral indicates both the general term and the ending index, i.e., he writes

R
n7 forPn

i=1 i
7. He also uses an asterisk to indicate �missing�terms, i.e., monomials with zero coe¢ cient.

Exercise 30. Today we use the notation
Pn
i=1 i

7 instead of Bernoulli�s
R
n7. What are the advan-

tages and disadvantages of the two notations?

Bernoulli �rst shows how to derive sum formulas for the �rst few exponents, using his knowledge
of the arithmetical triangle, by exactly the same method we presented when considering Fermat�s
claim to have solved the problem. He presents the results of calculation in a table of polynomials
for sums up to the tenth powers. And now suddenly he claims:

11111111

Indeed, a pattern can be seen in the progressions herein which can be continued by means of this
rule:

11111111

Perhaps readers will discover this pattern for themselves before reading closely Bernoulli�s descrip-
tion of it.

Exercise 31. (Optional) Guess, as did Bernoulli, the complete pattern of coe¢ cients for sums
of powers formulas just from the examples in Bernoulli�s table. Clearly the pattern is to be
sought down each column of Bernoulli�s table. The key is to multiply each column of numbers
by a common denominator, and then compare with the arithmetical triangle (computing the
sequence of successive di¤erences in a column, and the successive di¤erences in that sequence,
etc., may also help). Can you also express the general rule for calculating the special numbers
A;B;C;D; : : : , which Bernoulli introduces? Hint: What happens when n = 1?

25



The reader should check that in modern notation, Bernoulli is claiming

nX
i=1

ik =
nk+1

k + 1
+
nk

2
+

kX
j=2

1

k + 1

�
k + 1

j

�
Bjn

k+1�j for k � 1,

where we have represented the special sequence of numbers that Bernoulli calls A;B;C;D; : : : by
B2m for l � 1, and B2m+1 = 0. These numbers have been important in mathematics ever since
their introduction here by Bernoulli14. The great eighteenth century mathematician Leonhard
Euler (1707�1783) christened them the Bernoulli numbers.

Bernoulli also claims that he can compute his special sequence of numbers A;B;C;D; : : : . First
he notes that they

11111111

in order, denote the coe¢ cients of the �nal term of
Z
nn;

Z
n4;

Z
n6;

Z
n8.

11111111

Indeed, we notice that the coe¢ cient of n in the general formula he gives is always the �rst occur-
rence of a new Bernoulli number in the process. And he says:

11111111

These coe¢ cients are such that, when arranged with the other coe¢ cients of the same order, they
add up to unity.

11111111

Here he is simply evaluating both sides of his general formula at n = 1. Since the left side is then
1, the kth formula simpli�es to

1 =
1

k + 1
+
1

2
+

kX
j=2

1

k + 1

�
k + 1

j

�
Bj :

Since the last term in the sum is the newest Bernoulli number Bk, one can solve for it in terms
of the previous ones. Thus the Bernoulli numbers are recursively de�ned by these formulas. He
gives as an example the computation of D = B8 = � 1

30 from the formula for k = 8 and the
previous numbers. While this still leaves a step-by-step aspect to the determination of sums of
powers formulas, the process is now greatly simpli�ed. Moreover, we see a general pattern in the
relationship between the coe¢ cients for di¤erent values of k, since the Bernoulli numbers are the
same in the formulas for all k. These are the great steps forward that Bernoulli provided beyond
the work of Fermat and Pascal.

How might we attempt to verify the general validity of the pattern Bernoulli guessed? Since
Pascal gave us an equation relating the sums of kth powers to those of lower powers, we should
be able to proceed by strong mathematical induction on k, by simply substituting all the formulas
of Bernoulli�s into Pascal�s equation to verify the inductive claim at each stage. All but one of
Bernoulli�s formulas substituted in Pascal�s equation are assumed true inductively, and the kth is
thus shown true by verifying the equality itself.

14The evidence suggests that around the same time, Takakazu Seki (1642?�1708) in Japan also discovered the same
numbers [14, 16].
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Exercise 32. Prove Bernoulli�s claimed formulas by strong mathematical induction, in the manner
suggested in the text, using Pascal�s equation, Bernoulli�s claims, and the Bernoulli numbers
as de�ned recursively. At some point in your calculations you may need to prove and use the
identity

�
a
b

��
b
c

�
=
�
a
c

��
a�c
b�c
�
. Hint: When substituting Bernoulli�s claims into Pascal�s equation,

verify equality by calculating and comparing the coe¢ cients for an arbitrary power of n on
each side of the equation.

The reader may notice a pattern in the Bernoulli numbers not even mentioned by Bernoulli.

Exercise 33. What do you conjecture about the signs of the Bernoulli numbers? Compute several
more Bernoulli numbers to see whether your conjecture has promise.

Leonhard Euler in the eighteenth century was the �rst to prove Bernoulli�s claimed patterns in
the coe¢ cients of the sums of powers polynomials, as part of his development of spectacular new
mathematics for �nding sums of in�nite series, a discovery called the Euler-MacLaurin summation
formula. For instance, he was able to guess, and then prove, that the sum of the reciprocal squares,P1
i=1

1
i2
, is exactly �2=6, one of the most astonishing discoveries of the era. Before this time, almost

the only in�nite series whose sums were known were geometric series, and their sums never involved
totally unexpected numbers like �. This next episode of our story continues in another project.
Euler�s work led to modern methods of studying the distribution of prime numbers, one of the most
active research areas in mathematics today [11].

Notes to the instructor

This project is the third episode of four connected projects following the epic story of formulas for
sums of powers from the Pythagoreans to Euler; it is a central theme in the development of discrete
mathematics and combinatorics. The audience for this episode is students of intermediate discrete
mathematics or combinatorics, and the episode connects sums of powers to �gurate numbers,
binomial coe¢ cients, Pascal�s triangle, and Bernoulli numbers. The project is quite �exible, and
the instructor should be able to pick and choose, if desired, from the various activities o¤ered. For
a shorter project the instructor can choose selectively from this module; some exercises are marked
as optional if they are not critical to later work. Students may need substantial guidance with
some parts, and the instructor should be sure to work through all the details before assigning any
student work.

The goal is for students to learn many basic notations, techniques, and skills in the context of
an historically and mathematically authentic big motivating problem with multiple connections to
other mathematics. Hopefully this will be much more e¤ective and rewarding than simply being
asked to learn various skills for no immediately apparent application. Many of the techniques and
phenomena introduced in a discrete mathematics or combinatorics course simply arise naturally in
this project, like recursive de�nitions, delicate work with summations and inequalities, counting and
geometry, binomial coe¢ cients and combination numbers, and proofs by mathematical induction.
Instead of separately covering various such topics and techniques, that class time could simply be
spent on the project, and students will learn those things in the process.

The project also asks students to conjecture from patterns they generate, develop their math-
ematical intuition and judgement, and try proving their conjectures, i.e., putting students in the
creative mathematical driver seat in an authentic context. The setting of sums of powers in the
context of primary sources allows a richness of questions and interpretations, especially includes
deep connections to geometry and the two-way interplay with calculus, as well as basic algebra and
linear algebra, and a richness of proof techniques, including natural comparison of the e¢ cacy of
various proof methods.
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