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1 Introduction

In this project we will learn elementary set theory from the original historical sources by
two key figures in the development of set theory, Georg Cantor (1845–1918) and Richard
Dedekind (1831–1916). We will learn the basic properties of sets. We will also learn how to
define the size of a set, and how to compare different sizes of sets. This will lead us to the
notions of finite and infinite sets. We will conclude the project by exploring a rather unusual
world of infinite sets.

Georg Cantor, the founder of set theory, considered by many as one of the most original
minds in the history of mathematics, was born in St. Petersburg, Russia in 1845. His parents,
who were of Jewish descent, moved the family to Frankfurt, Germany in 1856. Georg entered
the Wiesbaden Gymnasium at the age of 15, and two years later began his university career
in Zürich, Switzerland. In 1863 he moved to the University of Berlin, which during Cantor’s
time was considered the world’s leading center of mathematical research. Four years later
Cantor received his doctorate under the supervision of the great Karl Weierstrass (1815–
1897). In 1869 Cantor obtained an unpaid lecturing post at the University of Halle, which
ten years later flourished into a full professorship. However, he never achieved his dream of
holding a Chair of Mathematics at Berlin. It is believed that one of the main reasons was
the nonacceptance of his theories of infinite sets by the leading mathematicians of that time,
most noticeably by Leopold Kronecker (1823–1891), a professor at the University of Berlin
and a very influential figure in German mathematics, both mathematically and politically.

Cantor married in 1874 and had two sons and four daughters. Ten years later Georg
suffered the first of several mental breakdowns that were to plague him for the rest of his
life. Cantor died in 1918 in a mental hospital at Halle. By that time his revolutionary
ideas were becoming accepted by some of the leading figures of the new century. One of
the greatest mathematicians of the twentieth century, David Hilbert (1862–1943), described
Cantor’s new mathematics as “the most astonishing product of mathematical thought” [9,
p. 359], and claimed that “no one shall ever expel us from the paradise which Cantor has
created for us” [9, p. 353]. More on Georg Cantor can be found in [5, 8, 9, 10] and in the
literature cited therein.

Julius Wilhelm Richard Dedekind was an important German mathematician, who was
also friend to, and an ally of, Cantor. He was born in Braunschweig, Germany in 1831. In
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1848 Richard entered the Collegium Carolinum in Braunschweig, and in 1850 he entered the
University of Göttingen—an important German center of mathematics and the home of the
great Carl Friedrich Gauss (1777–1855). Dedekind became the last student of Gauss. In 1852
Richard received his doctorate, and spent the next two years at the University of Berlin—
the mecca of mathematics of the second half of the nineteenth century. At the University of
Berlin, Dedekind and Bernhard Riemann (1826–1866) became contemporaries. They both
were awarded the Habilitation in 1854, upon which Dedekind returned to Göttingen to teach
as Privatdozent. In Göttingen, Dedekind became close friends with Lejeune Dirichlet (1805–
1859). After Dirichlet’s death, Dedekind edited Dirichlet’s lectures on number theory, which
were published in 1863. Dedekind also edited the works of Gauss and Riemann. From 1858
to 1862 Richard taught at the Polytechnic Institute in Zürich. In 1862 his alma mater the
Collegium Carolinum was upgraded to a Technische Hochschule (Institute of Technology),
and Dedekind returned to his native Braunschweig to teach at the Institute. He spent the rest
of his life there. Dedekind retired in 1894, but continued his active mathematical research
until his death.

Dedekind is mostly known for his research in algebra and set theory. He was the first to
define real numbers by means of cuts of rational numbers. To this day many schools around
the globe teach the theory of real numbers based on Dedekind’s cuts. Dedekind was the
first who introduced the concept of an ideal—a key concept in modern algebra—generalizing
the ideal numbers of Ernst Kummer (1810–1893). His contributions to set theory as well
as to the study of natural numbers and modular lattices are equally important. In fact, his
1900 paper on modular lattices is considered the first publication in a relatively new branch
of mathematics called lattice theory. Dedekind was a well-respected mathematician during
his lifetime. He was elected to the Academies of Berlin and Rome as well as to the French
Academy of Sciences, and also received honorary doctorates from the universities of Oslo,
Zürich, and Braunschweig.

The beginning of Dedekind’s friendship with Cantor dates back to 1874, when they first
met each other while on holidays at Interlaken, Switzerland. Their friendship and mutual
respect lasted until the end of their lives. Dedekind was one of the first who recognized the
importance of Cantor’s ideas, and became his important ally in promoting set theory.

It is only fitting to study set theory from the writings of Cantor and Dedekind. In
this project we will be working with the original historical source by Cantor “Beiträge zur
Begründung der transfiniten Mengenlehre” [3] which appeared in 1895, and the original
historical source by Dedekind “Was sind und was sollen die Zahlen?” [6] which appeared in
1888. An English translation of Cantor’s source is available in [4], and an English translation
of Dedekind’s source is available in [7].

2 Sets

In the first half of the project our main subject of study will be sets. This is how Cantor
defined a set:

Collection into a whole M of definite and separate objects of our intuition or our
thought. These objects are called the elements of M .
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Examples of sets can be found everywhere around us. For example, we can speak of the set
of all living human beings, the set of all cities in the US, the set of all propositions, the set of
all prime numbers, and so on. Each living human being is an element of the set of all living
human beings. Similarly each prime number is an element of the set of all prime numbers.

If S is a set and s is an element of S, then we write s ∈ S. If it so happens that s is not
an element of S, then we write s /∈ S. If S is the set whose elements are s, t, and u, then
we write S = {s, t, u}. The left brace and right brace visually indicate the “bounds” of the
set, while what is written within the bounds indicates the elements of the set. For example,
if S = {1, 2, 3}, then 2 ∈ S, but 4 /∈ S.

Sets are determined by their elements. The order in which the elements of a given set
are listed does not matter. For example, {1, 2, 3} and {3, 1, 2} are the same set. It also does
not matter whether some elements of a given set are listed more than once. For instance,
{1, 2, 2, 2, 3, 3} is still the set {1, 2, 3}.

Many sets are given a shorthand notation in mathematics as they are used so frequently.
A few elementary examples are the sets of natural numbers, integers, rationals, and reals,
which are denoted by the symbols N, Z, Q, and R, respectively.

A set may be defined by a property. For instance, the set of all true propositions, the set
of all even integers, the set of all odd integers, and so on. Formally, if P (x) is a property, we
write A = {x ∈ S : P (x)} to indicate that the set A consists of all elements x of S having
the property P (x). The colon : is commonly read as “such that,” and is also written as “|.”
So {x ∈ S |P (x)} is an alternative notation for {x ∈ S : P (x)}. For a concrete example,
consider A = {x ∈ R : x2 = 1}. Here the property P (x) is “x2 = 1.” Thus, A is the set of
all real numbers whose square is one.

Exercise 1 Translate the following to set notation, using predicates to define the respective
properties of the variables:

1. The set of all even integers.

2. The set of all odd integers.

3. The set of all prime numbers.

Exercise 2 Give an alternate representation of the following sets, using predicates to define
a property if the set cannot be listed explicitly:

1. {x ∈ R : x2 = 1}.

2. {x ∈ Z : x > −2 and x ≤ 3}.

3. {x ∈ N : x = 2y for some y ∈ N}.

2.1 Subset relation

For two sets, we may speak of whether or not one set is contained in the other. This is how
Dedekind defines this relation between sets. Note that Dedekind calls sets systems.
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A system A is said to be part of a system S when every element of A is also an
element of S. Since this relation between a system A and a system S will occur
continually in what follows, we shall express it briefly by the symbol A ≺ S.

Modern notation for A ≺ S is A ⊆ S, and we say that A is a subset of S. Formally,

A ⊆ S if and only if for all x, if x ∈ A, then x ∈ S.

When A is not a subset of S, then we write A 6⊆ S.

Exercise 3 Write formally what it means for A not to be a subset of S.

Dedekind goes on to show that the subset relation satisfies the following properties.

Exercise 4

1. Show that A ⊆ A.

2. Show that if A ⊆ B and B ⊆ C, then A ⊆ C.

Dedekind also defines what it means for A to be a proper part of S.

A system A is said to be a proper part of S, when A is a part of S, but...S is not a
part of A, i.e., there is in S an element which is not an element of A.

Nowdays we say that A is a proper subset of S, and write A ⊂ S.

Exercise 5

1. Write formally what it means for A to be a proper subset of S.

2. Show that if A ⊂ S, then A ⊆ S.

3. Does the converse hold? Justify your answer.

4. Prove that if A ⊂ B and B ⊂ C, then A ⊂ C.

Although the membership relation ∈ and the subset relation ⊆ are related to each other,
they behave quite differently.

Exercise 6

1. Give an example of a set A such that there is a set B with B ∈ A but B 6⊆ A.

2. Give an example of a set A such that there is a set B with B ⊆ A but B ∈ A.
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2.2 Set equality

One of the primary relations of set theory, as with any mathematical theory, is equality.
Intuitively, two sets are equal if they consist of the same elements. When two sets A and B
are equal we write A = B. Formally,

A = B if and only if for all x, x ∈ A if and only if x ∈ B.

Exercise 7 Prove that A = B if and only if A ⊆ B and B ⊆ A.

If two sets A and B are not equal, we write A 6= B.

Exercise 8

1. Write formally what it means for two sets not to be equal.

2. Give an example of two sets that are not equal.

Exercise 9

1. For any set A, show that A = A.

2. For any two sets A,B, show that A = B implies B = A.

3. For any three sets A,B,C, show that A = B and B = C imply A = C.

Exercise 10 Consider the sets A = {x ∈ Z : P (x)} and B = {x ∈ Z : O(x)}, where P (x)
is the predicate “x is prime” and O(x) is the predicate “x is odd.”

1. Examine A and B with respect to the subset relation. What can you conclude? Justify
your answer.

2. Are A and B equal? Justify your answer.

Exercise 11 Consider the sets

A = {x ∈ Z : x = 2(y − 2) for some y ∈ Z}

and
B = {x ∈ Z : x = 2z for some z ∈ Z}.

Are A and B equal? Justify your answer.
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2.3 Set operations

The same way we can add, multiply, and subtract numbers, we can create new sets from old
ones by taking their sum and product, as well as subtracting one set from another.

The sum of two sets is obtained by combining the elements of the two sets. Thus, for
two sets A,B, the union of A and B is the set whose elements are all of the elements of A
and B. We denote this operation by ∪. Formally,

A ∪B = {x : x ∈ A or x ∈ B}.

The product of two sets is obtained by taking those and only those elements that the two sets
have in common. Thus, for two sets A,B, the intersection of A and B is the set consisting
of the elements of both A and B. This operation is denoted by ∩. Formally,

A ∩B = {x : x ∈ A and x ∈ B}.

The difference of two sets consists of the elements of the first set that do not belong to the
second set. Thus, for two sets A,B, the difference of A and B is the set consisting of those
elements of A that are not in B. This operation is called set complement and is denoted by
−. Formally,

A−B = {x : x ∈ A and x /∈ B}.

The notations for the set operations ∪,∩,−, for the membership relation ∈, and for the subset
relation ⊆ that we use today were first introduced by the famous Italian mathematician
Giuseppe Peano (1858–1932).1

Exercise 12 Let A = {2, 3, 5, 7, 11, 13} and B = {A, 2, 11, 18}.

1. Find A ∪B.

2. Find A ∩B.

3. Find A−B.

Usually the sets that we work with are subsets of some ambient set. For instance, even
numbers, odd numbers, and prime numbers are all subsets of the set of natural numbers N.
Such an ambient set is referred to as a universal set (or a set of discourse) and is denoted by
U . In other words, a universal set is the underlying set that all the sets under examination
are subsets of. We may thus speak of the set difference U − A, which is the set of those
elements of U that do not belong to A. The set difference U − A is usually denoted by Ac.
Formally,

Ac = U − A = {x ∈ U : x /∈ A}.

Exercise 13 Let A = {x ∈ R : x2 = 2} and B = {x ∈ R : x ≥ 0}.

1. Find A ∩B.

1Our webpage http://www.cs.nmsu.edu/historical-projects/ offers a variety of historical projects.
For an historical project on Peano see the project [1].
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2. Find A ∪B.

3. Find A−B.

4. For U = R, find Ac and Bc.

5. Find N−B.

2.4 Empty set

As we just saw, the set operations may yield a set containing no elements.

Exercise 14

1. Let A be any set and let E be a set containing no elements. Prove that E ⊆ A.

2. Conclude that there is a unique set containing no elements.

We call the set containing no elements the empty set (or null set) and denote it by ∅.

Exercise 15 Write a formal definition of the empty set.

Exercise 16 Consider the following sets:

1. A = {x ∈ R : x2 + 1 = 0}

2. B = {x ∈ N : x2 = 2}

3. C = {x ∈ Q : x2 = 2}

4. D = {x, y ∈ N : x 6= y and x2 + y2 = 2}

Determine an equivalent representation for each of these sets. Justify your claims.

2.5 Set identities

There are a number of set identities that the set operations of union, intersection, and set
difference satisfy. They are very useful in calculations with sets. Below we give a table of
such set identities, where U is a universal set and A, B, and C are subsets of U .

Commutative Laws: A ∪B = B ∪A A ∩B = B ∩A
Associative Laws: (A ∪B) ∪ C = A ∪ (B ∪ C) (A ∩B) ∩ C = A ∩ (B ∩ C)
Distributive Laws: A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C) A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C)
Idempotent Laws: A ∪A = A A ∩A = A
Absorption Laws: A ∩ (A ∪B) = A A ∪ (A ∩B) = A
Identity Laws: A ∪ ∅ = A A ∩ U = A
Universal Bound Laws: A ∪ U = U A ∩ ∅ = ∅
DeMorgan’s Laws: (A ∪B)c = Ac ∩Bc (A ∩B)c = Ac ∪Bc

Complement Laws: A ∪Ac = U A ∩Ac = ∅
Complements of U and ∅ : U c = ∅ ∅c = U
Double Complement Law: (Ac)c = A
Set Difference Law: A−B = A ∩Bc
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Exercise 17

1. Prove the commutative laws.

2. Prove the associative laws.

3. Prove the idempotent laws.

4. Prove the identity laws.

5. Prove the universal bound laws.

Exercise 18

1. Prove the complement laws.

2. Prove the complement of U and ∅ laws.

3. Prove the double complement law.

4. Prove the difference law.

Exercise 19

1. Prove the absorbtion laws.

2. Prove DeMorgan’s laws.

3. Prove the distributive laws.

Exercise 20 Prove the following using only set identities:

1. (A ∪B)− C = (A− C) ∪ (B − C).

2. (A ∪B)− (C − A) = A ∪ (B − C).

3. A ∩ (((B ∪ Cc) ∪ (D ∩ Ec)) ∩ ((B ∪Bc) ∩ Ac)) = ∅.

2.6 Powerset

Let A be a set. Then we may speak of the set of all subsets of A. This is yet another
operation on sets, which is of great importance. We call the set of all subsets of A the
powerset of A and denote it by P (A). Formally,

P (A) = {B : B ⊆ A}.

For example, if A = {1, 2}, then the subsets of A are ∅, {1}, {2}, and A. Therefore, P (A) =
{∅, {1}, {2}, A}.

Exercise 21

1. Determine P (∅).
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2. Determine P ({1}).

3. Determine P ({1, 2, 3}).

Exercise 22

1. Calculate P ({∅}).

2. Calculate P ({∅, {∅}}).

3. Calculate P ({{∅}}).

4. Calculate P (P (∅)).

5. Calculate P (P ({∅})).

2.7 Cartesian products

We recall that the order in which we list the elements of a given set does not matter.
Nevertheless, it is common practice in mathematics (and other disciplines) to speak about
ordered pairs. Thus, we define the Cartesian product of two sets A,B to be the set of all
ordered pairs (a, b), where a ∈ A and b ∈ B. We denote the Cartesian product of A and B
by A×B. Formally,

A×B = {(a, b) : a ∈ A and b ∈ B}.

Exercise 23 Let A = {1, 2, 3} and B = {a, b}. Determine A×B and B × A.

Exercise 24

1. Let A consist of 4 elements and B consist of 5 elements. How many elements are in
A×B? Justify your answer.

2. More generally, let A consist of n elements and B consist of m elements. How many
elements are in A×B? Justify your answer.

2.8 Russell’s paradox

As we saw earlier in the project, sets are determined by properties. Since, formally speaking,
properties are predicates, it appears that all sets can be obtained by means of predicates.
Therefore, the whole of set theory and hence the whole of mathematics appears to be deriv-
able from the general principles of logic. This was the grand plan of the great German
mathematician, philosopher, and one of the founders of modern logic Gottlob Frege (1848–
1925). His plan is known as logicism. Unfortunately, soon after Frege published his program,
the famous British philosopher, mathematician, and antiwar activist Bertrand Russell (1872–
1970) found a fatal flaw in Frege’s arguments. This became known as Russell’s paradox.2

We conclude the first half of the project by examining closely Russell’s paradox. Russell’s
argument goes as follows (see, e.g., [12, p. 2]):

2For historical projects on Frege and Russell see the projects [11, 2] on our webpage
http://www.cs.nmsu.edu/historical-projects/.
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By a set, we mean any collection of objects, e.g., the set of all even integers, the
set of all saxophone players in Brooklyn, etc. The objects which make up a set are
called its members. Sets may themselves be members of sets, e.g., the set of all sets
of integers has sets as its members. Most sets are not members of themselves; the
set of cats, for example, is not a member of itself, because the set of cats is not a
cat. However, there may be sets which do belong to themselves, e.g., the set of all
sets. Now, consider the set A of all those sets X such that X is not a member of
X. Clearly, by definition, A is a member of A if any only if A is not a member of
A. So, if A is a member of A, then A is also not a member A; and if A is not a
member of A, then A is a member of A. In any case, A is a member of A and is
not a member of A.

Let A be the set of all those sets that are not members of themselves.

Exercise 25 Give a formal definition of A.

The question we will examine is whether A is a member of itself.

Exercise 26

1. First assume that A ∈ A and conclude that A /∈ A. Justify your argument.

2. Next assume that A /∈ A and conclude that A ∈ A. Justify your argument.

3. What can you conclude from (1) and (2)? Explain.

4. Discuss why Russell’s paradox contradicts Frege’s program.

5. How would you resolve the situation? Explain.

3 Functions, one-to-one correspondences, and cardinal

numbers

So far in this project we have studied such basic relations as membership, subset, and
equality relations. We have also studied basic operations on sets such as union, intersection,
set difference, powerset, and Cartesian product. Our next goal is to discuss the “size” of
sets. We have already encountered sets of large and small sizes. Some sets that we have
encountered were finite and some were infinite. Our next goal is to formalize the concept
of the size of a set. As we will see, this can be done by means of functions—one of the key
concepts in mathematics.

We will learn about functions, one-to-one and onto functions, one-to-one correspondences,
and how they allow us to formalize the concept of the size of a set. A formal definition of
the size of a set is that of the cardinality of a set. We will discuss what it means for two sets
to be equivalent, and study how to compare the sizes of different sets. We will introduce
countable sets and show that many sets are countable, including the set of integers and the
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set of rational numbers. We will also discuss Cantor’s diagonalization method which allows
us to show that not every infinite set is countable. This will show that infinite sets may
have different sizes. In particular, we will show that the set of real numbers is not countable.
We will also examine the cardinal number ℵ0, the first in the hierarchy of infinite cardinal
numbers, and obtain a method that allows us to create infinitely many infinite cardinal
numbers.

3.1 Functions

Let A and B be sets. Speaking informally, a function from A to be B is a rule associating
with each element of A one and only one element of B. This is how Dedekind defines a
function. Note that he refers to functions as transformations.

By a transformation φ of a system S we understand a law according to which to
every determinate element s of S there belongs a determinate thing which is called
the transform of s and denoted by φ(s); we say also that φ(s) corresponds to the
element s, that φ(s) results or is produced from s by the transformation φ, that s is
transformed into φ(s) by the transformation φ.

When there is a function f from A to be B, we write f : A → B. The set A is referred to
as the domain of f , and the set B is referred to as the codomain of f . Since the function f
associates with each a ∈ A a unique b ∈ B, we say that f sends a to b and write f(a) = b.

Formally speaking, a function f : A→ B is the set of ordered pairs (a, b), where a ∈ A,
b ∈ B, and f sends a to b. Note that from the definition of a function, we cannot have two
ordered pairs (a, b) and (a, c) with a 6= c. Thus, we can think of functions from A to B
as subsets F of A × B which satisfy the following property: For each a ∈ A there exists a
unique b ∈ B such that (a, b) ∈ F .

Exercise 27 Are the following relations functions? Justify your answer.

1. f(x) = x2 with domain and codomain R.

2. g(x) = 2x+ 1 with domain and codomain Q.

3. h(x) = ±x with domain and codomain Z.

4. u(x) =
√
x with domain and codomain N.

Exercise 28 Write each of the following functions as a set of ordered pairs.

1. f : R→ [−1, 1] defined by f(x) = cos(x).

2. g : R→ R defined by g(x) = 300x.

3. h : R+ → R defined by h(x) = ln(x).

For a function f : A → B, we call the set of all values of f the range or image of f .
Thus, the image of f is the set

Im(f) = {b ∈ B : b = f(a) for some a ∈ A}.
Exercise 29 Consider the function f = {(1, 2), (2, 3), (3, 3), (4, 5), (5,−1), (6, 2)}. Identify
the domain, codomain, and image of f .
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3.2 Images and inverse images

Let f : A → B be a function, S ⊆ A, and T ⊆ B. The image of S with respect to f is the
set of those elements of B which the elements of S are sent to. Therefore, the image of S
with respect to f is the set

f(S) = {f(s) : s ∈ S}.

On the other hand, the inverse image of T with respect to f is the set of those elements of
A that are sent to some element of T . Thus, the inverse image of T with respect to f is the
set

f−1(T ) = {a ∈ A : f(a) ∈ T}.

Exercise 30 For each of the following functions determine the image of S = {x ∈ R : 9 ≤
x2}.

1. f : R→ R defined by f(x) = |x|.

2. g : R→ R+ defined by g(x) = ex. Here and below R+ = {x ∈ R : x > 0}.

3. h : R→ R defined by h(x) = x− 9.

Exercise 31 For each of the following functions determine the inverse image of T = {x ∈
R : 0 ≤ x2 − 25}.

1. f : R→ R defined by f(x) = 3x3.

2. g : R+ → R defined by g(x) = ln(x).

3. h : R→ R defined by h(x) = x− 9.

3.3 When are two functions equal?

Let f and g be two functions from A to B. We say that f equals g and write f = g if
f(a) = g(a) for each a ∈ A.

Exercise 32 Determine whether each of the following pairs of functions are equal. Justify
your answer.

1. f = {(a, b) : a ∈ Z and b = 2a2 − a} and g = {(x, y) : x ∈ Z and y = x(2x− 1)}.

2. f : R+ → R+ defined by f(x) =
1

x
and g : R+ → R defined by g(x) =

1

x
.
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3.4 Composition

Given two functions f : A→ B and g : B → C, we can produce a new function h : A→ C
by composing f and g. This is how Dedekind defines the composition of two functions.

If φ is a transformation of a system S, and ψ a transformation of the transform
S ′ = φ(S), there always results a transformation θ of S, compounded out of φ and
ψ, which consists of this that to every element s of S there corresponds the transform

θ(s) = ψ(s′) = ψ(φ(s)),

where again we have put φ(s) = s′. This transformation θ can be denoted briefly by
the symbol ψ · φ or ψφ...

Thus, if f : A → B and g : B → C are two functions, then their composition is defined as
the function h : A→ C such that h(a) = g(f(a)) for each a ∈ A. We denote the composition
of f and g by g ◦ f .

Exercise 33 For each of the following three functions, defined over the appropriate subsets
of R, determine h ◦ (g ◦ f) and (h ◦ g) ◦ f . Are they equal?

1. f(x) =
1

x
, g(x) = ln(3x2 − ex), h(x) = x3.

2. f(x) = 3x− 1, g(x) = ln(ex), h(x) =
1

3x− 1
.

3. f(x) = xln(x), g(x) = x4 − 12x, h(x) =
x

x3 − x2
.

Exercise 34 In this exercise we generalize the results of Exercise 33 and show that h ◦ (g ◦
f) = (h ◦ g) ◦ f for any functions f : A→ B, g : B → C, and h : C → D.

1. State what you need to show to conclude that h ◦ (g ◦ f) = (h ◦ g) ◦ f .

2. Consider now some a ∈ A. What can you say about f(a)? What can you say about
(g ◦ f)(a)? What can you say about h((g ◦ f)(a))?

3. Consider the same a ∈ A as before. What can you say about (h ◦ g)(f(a))?

4. Use your solutions to (1)–(3) to conclude that h ◦ (g ◦ f) = (h ◦ g) ◦ f .

Let A be an arbitrary set. The identity function iA : A → A is the function defined by
iA(a) = a for each a ∈ A. In other words, the identity function iA sends each a ∈ A to itself.

Exercise 35 Let f : A→ B be a function.

1. Show that for the identity function iA on A we have f ◦ iA = f .

2. Show that for the identity function iB on B we have iB ◦ f = f .
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3.5 One-to-one and onto functions

Let f : A→ B be a function. As we saw, it could happen that f sends several elements of A
to the same element of B. We say that f is a one-to-one function (or an injective function)
if f sends each element of A to a unique element of B. Thus, f is one-to-one if for each
a1, a2 ∈ A, from f(a1) = f(a2) it follows that a1 = a2.

Exercise 36 Let f : A → B be a function. Show that the following two conditions are
equivalent:

1. f is one-to-one.

2. For each a1, a2 ∈ A, whenever a1 6= a2, then f(a1) 6= f(a2).

In fact, both of these conditions are equivalent to a third condition stating that S =
f−1(f(S)) for each S ⊆ A. But this is a little more challenging to prove. (Try!)

For a function f : A → B it could happen that the image of f is a proper subset of the
codomain of f . We say that f is an onto function (or a surjective function) if the image
of f equals the codomain of f . Thus, f is onto if for each b ∈ B there exists at least one
a ∈ A such that f(a) = b. One can show that f is onto if and only if T = f(f−1(T )) for
each T ⊆ B. This is a little more challenging to prove. (Give it a try!)

3.6 One-to-one correspondences and set equivalence

Let f : A→ B be a function. If it happens that f is both one-to-one and onto, then we say
that f is a one-to-one correspondence (or a bijection) between A and B.

Exercise 37 Consider the following two functions:

1. f : R→ R defined by f(x) = 4x− 15.

2. g : R→ R defined by f(x) = 15x3.

Prove that both f and g are one-to-one correspondences.

Let f : A → B be a one-to-one correspondence. Then to each a ∈ A there is a unique
b ∈ B such that f(a) = b. We define f−1 : B → A by

f−1(b) = the unique a such that f(a) = b.

Exercise 38 Let f : A→ B be a one-to-one correspondence.

1. Prove that f−1 is a function.

2. Prove that f−1 is one-to-one.

3. Prove that f−1 is onto.

4. Conclude that f−1 : B → A is a one-to-one correspondence.
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Exercise 39 Let f : A→ B be a one-to-one correspondence. By Exercise 38, f−1 : B → A
is also a one-to-one correspondence.

1. Prove that f−1 ◦ f = iA.

2. Prove that f ◦ f−1 = iB.

Informally speaking, if f : A→ B is a one-to-one function, then as each element in A is
sent to exactly one element in B, the size of B is at least as large as the size of A. On the
other hand, if f is onto, then as each element in B has at least one element in A that it is the
image of, the size of B is no greater than the size of A. Thus, one-to-one correspondences
provide us with a means to compare the sizes of sets. This key observation of Cantor led
him to the notion of two sets being equivalent. Let us read how Cantor defines that two sets
are equivalent.

We say that two aggregates M and N are “equivalent,” in signs

M ∼ N or N ∼M,

if it is possible to put them, by some law, in such a relation to one another that
to every element of each one of them corresponds one and only one element of the
other.

Next Cantor states that each set is equivalent to itself, and that if a set is equivalent to two
other sets, then the two sets are also equivalent.

Every aggregate is equivalent to itself:

M ∼M.

If two aggregates are equivalent to a third, they are equivalent to one another, that
is to say:

from M ∼ P and N ∼ P follows M ∼ N.

Exercise 40 Prove the above two claims of Cantor.

3.7 Cardinality of a set, cardinal numbers

As we saw in the previous section, two sets A and B having the same size can be formalized
by saying that the sets A and B are equivalent. All equivalent sets have the same size. One
of the key breakthroughs of Cantor was to introduce new numbers, which he called cardinal
numbers, measuring the size of sets. Let us read how Cantor defined the cardinality of a set.

Every aggregate M has a definite “power,” which we also call its “cardinal number.”

We will call by the name “power” or “cardinal number” of M the general concept
which, by means of our active faculty of thought, arises from the aggregate M when
we make abstraction of the nature of its various elements m and of the order in which
they are given.

We denote the result of this double act of abstraction, the cardinal number or power
of M , by

M.
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Exercise 41 What do you think Cantor means by “cardinal number”? Why? Given a set

A consisting of ten round marbles, each of a different color, what is A?

In the next excerpt, Cantor connects the two key notions, that of cardinality and that of
set equivalence.

Of fundamental importance is the theorem that two aggregates M and N have the
same cardinal number if, and only if, they are equivalent: thus,

from M ∼ N , we get M = N ,

and

from M = N , we get M ∼ N .

Thus the equivalence of aggregates forms the necessary and sufficient condition for
the equality of their cardinal numbers.

Exercise 42 Explain in your own words what Cantor means in the above.

Exercise 43 Let S be the set of all perfect squares

{ 0, 1, 4, 9, 16, 25, . . . }.

From Cantor’s statement above, do S and N have the same cardinality? Justify your answer.

Exercise 44 Do N and Z have the same cardinality? Justify your answer.

Exercise 45 Do N and N×N have the same cardinality? Justify your answer. (Hint: Draw
a picture of N× N. Can you label each element of N× N by a unique natural number?)

Exercise 46 Does Q have the same cardinality as N? Justify your answer. (Hint: Establish
a one-to-one correspondence between Q and a subset of Z×(N−{0}) and modify your solution
to Exercise 45.)

3.8 Ordering of cardinal numbers

Some sets have larger size than others. Since cardinal numbers measure the size of sets, it is
natural to speak about one cardinal number being less than the other. This is exactly what
Cantor does in the next excerpt.

If for two aggregates M and N with the cardinal numbers a = M and b = N , both
the conditions:

(a) There is no part of M which is equivalent to N ,

(b) There is a part N1 of N , such that N1 ∼M ,
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are fulfilled, it is obvious that these conditions still hold if in them M and N are
replaced by two equivalent aggregates M ′ and N ′. Thus they express a definite
relation of the cardinal numbers a and b to one another.

Further, the equivalence of M and N , and thus the equality of a and b, is excluded;
for if we had M ∼ N , we would have, because N1 ∼ M , the equivalence N1 ∼ N ,
and then, because M ∼ N , there would exist a part M1 of M such that M1 ∼ M ,
and therefore we should have M1 ∼ N ; and this contradicts the condition (a).

Thirdly, the relation of a to b is such that it makes impossible the same relation of
b to a; for if in (a) and (b) the parts played by M and N are interchanged, two
conditions arise which are contradictory to the former ones.

We express the relation of a to b characterized by (a) and (b) by saying: a is “less”
than b or b is “greater” than a; in signs

a < b or b > a.

Exercise 47 Describe in your own words what it means for two cardinals a = M and b = N
to be in the relation a < b.

Cantor states the following:

We can easily prove that,

if a < b and b < c, then we always have a < c.

Exercise 48 Prove the above claim of Cantor.

Exercise 49

1. Let a and b be two cardinal numbers. Modify Cantor’s definition of a < b to define
a ≤ b.

2. Prove that a ≤ a.

3. Prove that if a ≤ b and b ≤ c, then a ≤ c.

4. Do you think that a ≤ b and b ≤ a imply a = b? Explain your reasoning. (Hint: This
is not as trivial as it might look.)

3.9 Finite and infinite sets

Now that we have a good understanding of cardinal numbers and how they compare to each
other, we can speak formally about finite and infinite sets. Intuitively a set is finite if it
consists of finitely many elements and it is infinite otherwise. Formally, a set A is finite or
has finite cardinality if there is n ∈ N such that A is equivalent to the set {0, . . . , n−1} ⊂ N.
On the other hand, A is infinite or has infinite cardinality if A is not equivalent to any finite
subset of N.

This is how Dedekind defines finite and infinite sets. Note that Dedekind calls equivalent
sets similar.
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A system S is said to be infinite when it is similar to a proper part of itself...in the
contrary case S is said to be a finite system.

Exercise 50

1. Explain Dedekind’s definition in your own words.

2. According to Dedekind’s definition, are N, Z, and Q infinite sets? Explain.

3. Do you think that Dedekind’s definition is equivalent to the one given above? Give
your reasoning. (Hint: This is not entirely trivial.)

3.10 Countable sets

In the rest of the project we will concentrate on infinite sets and infinite cardinal numbers.
Our first goal is to identify a special infinite cardinal number that Cantor calls aleph-zero.

The first example of a transfinite aggregate is given by the totality of finite cardinal
numbers ν; we call its cardinal number “Aleph-zero,” and denote it by ℵ0;

Note that ℵ0 is the first letter of the Hebrew alphabet. In modern terminology, a set whose
cardinal number is ℵ0 is called countably infinite.

Exercise 51 What symbol is used today to denote the “totality of finite cardinal numbers
ν”? Explain.

Cantor claims that ℵ0 is greater than any finite cardinal number:

The number ℵ0 is greater than any finite number µ:

ℵ0 > µ.

Exercise 52 Prove the above claim of Cantor.

Sets which are either finite or countably infinite are called countable sets. There are
many examples of countable sets. For instance, finite sets, N, Z, and Q are all examples of
countable sets. The next natural question is whether there exist uncountable sets, and if so,
how to construct them.

3.11 Uncountable sets and higher levels of infinity

First we show that ℵ0 is the smallest among infinite cardinal numbers. This is exactly what
Cantor does in the next excerpt.

...ℵ0 is the least transfinite cardinal number. If a is any transfinite cardinal number
different from ℵ0, then

ℵ0 < a.
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Exercise 53 Prove the above claim of Cantor. (Hint: Let a = A. Can you define a one-to-
one function from N to A? For this you will need to choose some elements from A.)

Exercise 54 Let [0, 1] denote the set of all real numbers between 0 and 1. Show that

ℵ0 < [0, 1]. We outline what is now known as Cantor’s diagonalization method as one way
to prove this. Represent real numbers in [0, 1] as infinite decimals (which do not end in
infinitely repeating 9’s). Assume that N ∼ [0, 1]. Then to each infinite decimal one can
assign a unique natural number, so the infinite decimals can be enumerated as follows:

.a11a12 . . . a1n . . .

.a21a22 . . . a2n . . .
...

.an1an2 . . . ann . . .
...

Can you construct an infinite decimal .b1b2 . . . bn . . . such that ann 6= bn for each positive n?
What can you conclude from this?

Exercise 55

1. Is [0, 1] strictly greater than ℵ0? Justify your answer.

2. Is R strictly greater than ℵ0? Justify your answer.

Now that we know that not every infinite set is countable, it is natural to ask whether
we can create larger and larger infinite sets. The answer to this question is again yes. The
proof of this important fact is based on the generalized version of Cantor’s diagonalization
method.

Exercise 56 Let A be a set and P (A) be the powerset of A. Prove the following claim of
Cantor:

P (A) > A.

Hint: Employ Cantor’s generalized diagonalization method. Assume that A ∼ P (A). Then
there is a one-one correspondence f : A→ P (A). Consider the set B = {a ∈ A : a /∈ f(a)}.
Can you deduce that B ⊆ A is not in the range of f? Does this imply a contradiction?

Exercise 57 Using the previous exercise, describe an infinite increasing sequence of infinite
cardinal numbers.

Notes to the Instructor

This project is based on the authors’ experience in teaching discrete mathematics from
primary historical sources. It was designed to serve the needs of college freshmen and sopho-
mores who are meeting mathematical proofs for the first time. Although for some exercises
a basic familiarity with first-year calculus is useful, no specific prerequisites are assumed.
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The project has a large variety of exercises. Instructors can pick and choose which
exercises to assign, depending on what parts of the project they will cover. In our experience,
students have little to no difficulty understanding the material presented in the first half of
the project. However, the material pertaining to functions in general, and to images and
inverse images in particular, requires instructor guidance. It is advisable to have a detailed
class discussion on some of the excerpts of Cantor and Dedekind about set equivalence and
the cardinality of a set, as well as about countable and uncountable sets.
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