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1 Background

In the United States a course in discrete mathematics is a relatively recent addition, within the
last 30 or 40 years, to the undergraduate mathematics curriculum. The course serves to instruct
students in precise logical and algorithmic thought, needed for further study of modern mathematics
or computer science. The course is also required of many secondary education majors, who will
teach mathematics in middle or high schools. The roots of discrete mathematics, however, are as
old as mathematics itself, with the notion of counting a discrete operation, usually cited as the
first mathematical development in ancient cultures [7]. By contrast, a course in finite mathematics
is frequently presented as a fast-paced news reel of facts and formulae, often memorized by the
students, with the text offering only passing mention of the motivating problems and original work
that eventually found resolution in the modern concepts of induction, recursion and algorithm.
This paper focuses on the pedagogy of historical projects that offer excerpts from primary historical
sources, place the material in context, and provide direction to the subject matter.

2 Classroom Projects

Each historical project is centered around a publication of mathematical significance, such as Blaise
Pascal’s “Treatise on the Arithmetical Triangle” [9, vol. 30] from the 1650s or Alan Turing’s 1936
paper “On Computable Numbers with an Application to the Entscheidungsproblem” [12]. The
projects are designed to introduce or provide supplementary material for topics in the curriculum,
such as induction in a discrete mathematics course, or compilers and computability for a computer
science course. Each project provides a discussion of the historical exigency of the piece, a few
biographical comments about the author, excerpts from the original work, and a sequence of ques-
tions to help the student appreciate the source. The main pedagogical idea is to teach and learn
certain course topics from the primary historical source, thus recovering motivation for studying
the material.

To lend the reader a sense of mathematical scope, our team has written about a dozen historical
projects, listed below together with the primary historical author whose work is highlighted in the
module. The projects are slated to appear in print [1], and are presently available through the web
resource [2].

1. “Are All Infinities Created Equal?” (Georg Cantor, 1845–1918, [4])

2. “Turing Machines, Induction and Recursion” (Alan Turing, 1912–1954, [12])

3. “Turing Machines and Binary Addition” (Alan Turing, 1912–1954, [12])
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4. “Binary Arithmetic: From Leibniz to von Neumann” (Gottfried Leibniz, 1646–1716, [6])

5. “Arithmetic Backwards from von Neumann to the Chinese Abacus” (Claude Shannon, 1916–
2001, [10])

6. “Treatise on the Arithmetical Triangle” (Blaise Pascal, 1623–1662, [9])

7. “Counting Triangulations of a Polygon” (Gabriel Lamé, 1795–1870, [8])

8. “Two-Way Deterministic Finite Automata” (John Shepherdson [11])

9. “Church’s Thesis” (Alonzo Church, 1903–1995, [5])

10. “Euler Circuits and the Königsberg Bridge Problem” (Leonhard Euler, 1707–1783, [3])

11. “Topological Connections from Graph Theory” (Oswald Veblen, 1880–1960, [3])

12. “Hamiltonian Circuits and Icosian Game” (William Hamilton, 1805–1865, [3])

This paper outlines the content of two of the projects “Treatise on the Arithmetical Triangle,”
and “Counting Triangulations of a Polygon,” designed to teach students induction and topics in
combinatorics. Often in high schools and introductory discrete mathematics courses at universities,
induction is taught as a formal procedure, with no regard to its historical development or discovery.
The first project begins with excerpts from Blaise Pascal’s Traité du Triangle Arithmetique (Treatise
on the Arithmetical Triangle), in which he arranges the figurate numbers, i.e., the linear numbers,
the triangular numbers, the pyramidal numbers, etc., in adjacent columns of one table, resulting in
“Pascal’s Triangle.” This simple organizing devise allows Pascal to identify many patterns in his
table, which he wishes to show continue no matter how far the table is extended. Showing unusual
rigor for his day, Pascal develops a system of reasoning, stated verbally, that is easily recognized
as the modern principle of mathematical induction. In the 12th consequence of his treatise, Pascal
wishes to prove that the ratio of two consecutive entries in a given base of the triangle has a
particular expression. To prove this, he states that the ratio is found in the beginning base, and
that if the ratio holds in some base, then it will necessarily be found in the following base. Having
students grapple with the logic of this statement and test their conjectures with concrete entries
from the triangle is a wonderful learning exercise. Moreover, the particular ratio that Pascal
identifies is key to the development of the modern formula for binomial coefficients,

(
r

s

)
. Sample

student exercises are numbered 1–10 in the excerpt from the project below.

Treatise on the Arithmetical Triangle

As a point of departure, we study the figurate numbers to glean an understanding of Pascal’s
triangle. These numbers count the number of dots in certain regularly shaped geometric figures.
In particular Z(n, k) represents the nth figurate number in dimension k. For k = 2, the triangular
numbers are:

•
• • •

• • • • • •
• • • • • • • • • •

Z(1, 2) = 1 Z(2, 2) = 3 Z(3, 2) = 6 Z(4, 2) = 10.
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In general, the nth triangle is formed by placing the (n − 1)st triangle on a line segment with n
dots.

The pyramidal numbers, when k = 3, count the number of dots in certain regularly shaped
pyramids. We have

Z(1, 3) = 1, Z(2, 3) = 4, Z(3, 3) = 10, Z(4, 3) = 20.

In general, the nth pyramid is formed by placing the (n− 1)st pyramid on the nth triangle.

1. Compute Z(5, 2) and Z(5, 3). Be sure to justify your answer. Sketch the fifth triangle and
the fifth pyramid in these sequences as well.

The nth figurate number in dimension k is constructed by placing the (n− 1)st figure in dimension
k on the nth figure in dimension one less, k − 1, resulting in the recursion relation, expressed in
modern notation as:

Z(n, k) = Z(n, k − 1) + Z(n− 1, k), n ≥ 1, k ≥ 0, and (n, k) 6= (1, 0),

subject to certain conditions to initialize these numbers. Set Z(1, 0) = 1, since the first number
in dimension zero corresponds to one dot. Then set Z(0, k) = 0 for k ≥ 1 and Z(n, −1) = 0 for
n ≥ 2.

2. Explain how Z(4, 5) can be computed from this recursion relation.

Pascal’s genius was to organize the figurate numbers into one table, beginning with the zero-
dimensional numbers (k = 0) in the first column, the linear numbers (k = 1) in the second column,
the triangular numbers (k = 2) in the third column, etc.

Let’s read from Blaise Pascal’s

TREATISE ON THE ARITHMETICAL TRIANGLE

Definitions

I call arithmetical triangle a figure constructed as follows:

From any point, G, I draw two lines perpendicular to each other, GV, Gζ in each of which I
take as many equal and contiguous parts as I please, beginning with G, which I number 1,
2, 3, 4, etc., and these numbers are the exponents of the sections of the lines.

Next I connect the points of the first section in each of the two lines by another line, which
is the base of the resulting triangle.

In the same way I connect the two points of the second section by another line, making a
second triangle of which it is the base.

And in this way connecting all the points of section with the same exponent, I construct as
many triangles and bases as there are exponents.

Through each of the points of section and parallel to the sides I draw lines whose intersections
make little squares which I call cells.

Cells between two parallels drawn from left to right are called cells of the same parallel row,
as, for example, cells G, σ, π, etc., or ϕ, ψ, θ, etc.
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3. How are the cells G, σ, π, ϕ, ψ, and θ labeled in the Z(n, k) notation? Find values
of n and k that correspond to each of these letters.

Those between two lines are drawn from top to bottom are called cells of the same perpen-
dicular row [column], as, for example, cells G,ϕ,A,D, etc., or σ, ψ,B, etc.

4. How are the cells G, ϕ, A, D, σ, ψ, and B labeled in the Z(n, k) notation? Find
values of n and k that correspond to each of these letters.

Those cut diagonally by the same base are called cells of the same base, as, for example,
D,B, θ, λ, or A,ψ, π.

5. How are cells in the same base related to each other in terms of the Z(n, k)’s?
Verify your claim with the cells A, ψ, π, and the cells D, B, θ, λ.

. . . . Now the numbers assigned to each cell are found by the following method:

The number of the first cell, which is at the right angle, is arbitrary; but that number having
been assigned, all the rest are determined, and for this reason it is called the generator of
the triangle. Each of the others is specified by a single rule as follows:

The number of each cell is equal to the sum of the numbers of the perpendicular and parallel
cells immediately preceding. Thus cell F, that is, the number of cell F, equals the sum of
cell C and cell E, and similarly with the rest.

6. Write F = C+E in the Z(n, k) notation. Also express “The number of each cell is
equal to the sum of the numbers of the perpendicular and parallel cells immediately
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preceding” in terms of the Z(n, k)’s. This will be called the construction principle

for Pascal’s triangle. How does the construction principle compare to the recursive
definition of the Z(n, k)’s ?

Whence several consequences are drawn. The most important follow, wherein I consider
triangles generated by unity, but what is said of them will hold for all others.

First Consequence

In every arithmetical triangle all the cells of the first parallel row and of the first perpendicular
row [column] are the same as the generating cell. . . .

Second Consequence

In every arithmetical triangle each cell is equal to the sum of all the cells of the preceding
parallel row from its own perpendicular row to the first, inclusive.

Let any cell, ω, be taken. I say that it is equal to R+ θ+ψ+ϕ, which are the cells of the
next higher parallel row from the perpendicular row of ω to the first perpendicular row.

This is evident if we simply consider a cell as the sum of its component cells.

For ω equals R+ C
︸ ︷︷ ︸

θ +B
︸ ︷︷ ︸

ψ +A
︸ ︷︷ ︸
ϕ,

for A and ϕ are equal to each other by the preceding consequence.

Therefore ω = R+ θ + ψ + ϕ.

7. Express the statement of the second consequence in Z(n, k) notation. Rewrite
Pascal’s computation of ω entirely in terms of the Z(n, k)’s, indicating why ω =
R+C, C = θ+B, B = ψ+A. Express all of these equations using the Z(n, k)’s.
Write a proof of Pascal’s second consequence for an arbitrary cell Z(n, k), based
on his computation of ω. Comment on whether you feel that Pascal has proven
the second consequence based on an argument for one entry in the triangle.

The Twelfth Consequence and Mathematical Induction

Certainly the numbers in any row of Pascal’s triangle follow a predictable pattern, since the differ-
ence between any two consecutive entries in a given row, i.e., Z(n, k + 1)−Z(n, k), is simply the
entry in the cell above the larger of these numbers, i.e.,

Z(n, k + 1) − Z(n, k) = Z(n− 1, k + 1).

Do you know why this equation holds? Thus, the first differences of the entries in any row are
the entries in the above row of the triangle. Also, the entries in any column of Pascal’s triangle
follow a very similar pattern for their first differences. Are there any patterns across a diagonal
base? Experiment a bit by forming the first differences along a diagonal. Do you see any patterns?
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Form the quotient of consecutive entries along a diagonal. Do you see any patterns here? The next
consequence is the most important and famous in the whole treatise. Pascal derives a formula for
the ratio of consecutive numbers in a base of the triangle. From this he will obtain an elegant and
efficient formula for all the numbers in the triangle.

Twelfth Consequence

In every arithmetical triangle, of two contiguous cells in the same base the upper is to the
lower as the number of cells from the upper to the top of the base is to the number of cells
from the lower to the bottom of the base, inclusive.

Let any two contiguous cells of the same base, E, C, be taken. I say that

E : C :: 2 : 3
the the because there are two because there are three
lower upper cells from E to the cells from C to the top,

bottom, namely E, H, namely C, R, µ.

8. Express the twelfth consequence concerning the ratio of two consecutive entries in
the same base using Z(n, k) notation. Be mindful that k denotes the dimension
of a figurate number, and is not a column number. Hint: Study the values of
Z(n, k)/Z(n+ 1, k − 1) along a base.

Although this proposition has an infinity of cases, I shall demonstrate it very briefly by
supposing two lemmas:

The first, which is self-evident, that this proportion is found in the second base, for it is
perfectly obvious that ϕ : σ :: 1 : 1;

The second, that if this proportion is found in any base, it will necessarily be found in the
following base.

Whence it is apparent that it is necessarily in all the bases. For it is in the second base
by the first lemma; therefore by the second lemma it is in the third base, therefore in the
fourth, and to infinity.

It is only necessary therefore to demonstrate the second lemma as follows: If this proportion
is found in any base, as, for example, in the fourth, Dλ, that is, if D : B :: 1 : 3, and
B : θ :: 2 : 2, and θ : λ :: 3 : 1, etc., I say the same proportion will be found in the following
base, Hµ, and that, for example, E : C :: 2 : 3.

For D : B :: 1 : 3, by hypothesis.

Therefore D +B
︸ ︷︷ ︸

: B :: 1 + 3
︸ ︷︷ ︸

: 3

E : B :: 4 : 3

Similarly B : θ :: 2 : 2, by hypothesis

Therefore B + θ
︸ ︷︷ ︸

: B :: 2 + 2
︸ ︷︷ ︸

: 2

C : B :: 4 : 2
But B : E :: 3 : 4

Therefore, by compounding the ratios, C : E :: 3 : 2. q.e.d.

The proof is the same for all other bases, since it requires only that the proportion be found
in the preceding base,and that each cell be equal to the cell before it together with the cell
above it, which is everywhere the case.
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9. Prove Pascal’s claim that “if this proportion is found in any base, [then] it will
necessarily be found in the following base.” Since this is an “if-then” statement,
begin by supposing that the proportion holds in the Lth base (L ≥ 2). How are the
two entries of Z(n, k) related for cells in the Lth base? Then find a step-by-step
verification that the same ratio holds in the (L+ 1)st base. Use the hypothesis of
the if statement, the construction principle for Pascal’s triangle, and his example
above to prove the conclusion.

10. The gist of Pascal’s argument is that the ratio holds in the first base where a ratio
can be computed, i.e., the second base, and that if the ratio holds in some base,
then it necessarily holds in the next base. How can you conclude from this that
the ratio holds in all bases of the triangle, even in those not pictured in Pascal’s
diagram of the first ten bases of the triangle?

Counting Triangulations of a Polygon

As an exploration in combinatorics, this second project develops a closed formula for the number
of triangulations of a convex polygon based on Gabriel Lamé’s solution of the recursion relation for
these numbers established earlier by Euler and others. Unlike the treatment in modern textbooks
involving generating functions, Lamé’s solution exploits the geometry of a convex n-gon to arrive
at two points of view, one based on triangulations containing a fixed triangle, and one based on
triangulations containing a fixed diagonal. The resulting two algebraic equations contain similar
terms, and when one is substituted for the other, a formula emerges that easily reduces to the
modern equation for the Catalan numbers. When used as a student module, the project allows the
student to gain insight into the discovery process, and provides a context for the development of
these numbers. What follows are a few excerpts from Lamé’s paper [8] as well as a few questions
from the student module.

Excerpt from a letter of Monsieur Lamé to Monsieur Liouville on the question: Given
a convex polygon, in how many ways can one partition it into triangles by means of diagonals?

“The formula that you communicated to me yesterday is easily deduced from the comparison of two
methods leading to the same goal.

“Indeed, with the help of two different methods, one can evaluate the number of decompositions of
a polygon into triangles: by consideration of the sides, or of the vertices.

I.

“Let ABCDEF . . . be a convex polygon of n + 1 sides, and denote by the symbol Pk the total
number of decompositions of a polygon of k sides into triangles. An arbitrary side AB of ABCDEF . . .
serves as the base of a triangle, in each of the Pn+1 decompositions of the polygon, and the triangle
will have its vertex at C, or D, or F . . . ; to the triangle CBA there will correspond Pn different
decompositions; to DBA another group of decompositions, represented by the product P3Pn−1; to
EBA the group P4Pn−2; to FBA, P5Pn−3; and so forth, until the triangle ZAB, which will belong to
a final group Pn. Now, all these groups are completely distinct: their sum therefore gives Pn+1. Thus
one has

(1) Pn+1 =

Pn + P3Pn−1 + P4Pn−2 + P5Pn−3 + · · · + Pn−3P5 + Pn−2P4 + Pn−1P3 + Pn.
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2.1. Explain why the triangulations belonging to the groups

Pn, P3Pn−1, P4Pn−2, . . . , Pn−1P3, Pn

are distinct.

2.2. Does every triangulation of a convex polygon with n + 1 sides occur in one of the groups
represented by

Pn, P3Pn−1, P4Pn−2, . . . , Pn−1P3, Pn ?

Why or why not?

II.

“Let abcde . . . be a polygon of n sides. To each of the n− 3 diagonals, which end at one of the vertices
a, there will correspond a group of decompositions, for which this diagonal will serve as the side of two
adjacent triangles: to the first diagonal ac corresponds the group P3Pn−1; to the second ad corresponds
P4Pn−2; to the third ae, P5Pn−3, and so forth until the last ax, which will occur in the group P3Pn−1.
These groups are not totally different, because it is easy to see that some of the partial decompositions,
belonging to one of them, is also found in the preceding ones. Moreover they do not include the partial
decompositions of Pn in which none of the diagonals ending in a occurs.

Lamé’s use of diagonals leads to an enumeration of triangulations which is neither one-to-one nor
inclusive of all triangulations. His genius, however, was to slightly alter this strategy to first include
all triangulations, and then to count how many times a generic triangulation occurs. Combined
with the results of §I, this results in a streamlined computation for Pn.

“But if one does the same for each of the other vertices of the polygon, and combines all the sums
of the groups of these vertices, by their total sum

n(P3Pn−1 + P4Pn−2 + · · · + Pn−2P4 + Pn−1P3)

one will be certain to include all the partial decompositions of Pn; each of these is itself repeated therein
a certain number of times. . . .

Lamé continues and claims that each triangulation is counted 2n− 6 times in

n(P3Pn−1 + P4Pn−2 + · · · + Pn−2P4 + Pn−1P3),

from which he concludes Pn+1 = 4n−6

n
Pn. A student exercise is to use the above equation to find a

formula for Pn+1 in terms of binomial coefficients.
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3 Implementation

For use in the classroom, allow several weeks per project with one or two projects per course. Each
project should count for a significant portion of the course grade (about 20%) and may take the
place of an in-class examination. Begin early in the course with a discussion of the relevance of the
historical piece, its relation to the course curriculum, and how modern textbook techniques owe
their development to problems often posed centuries earlier. While a project is assigned, several
class activities are possible. Students could be encouraged to work on the project in class, either
individually or in small groups, as the instructor monitors their progress and explores meaning in
language from time past. A comparison with modern techniques could begin as soon as the students
have read the related historical passages. For example, after reading Pascal’s verbal description of
what today is recognized as induction, the instructor could lead a discussion comparing this to the
axiomatic formulation of induction found in the textbook. Finally, the historical source can be used
to provide discovery exercises for related course material. In his 1703 publication “An Explanation
of Binary Arithmetic” [6], Gottfried Leibniz introduces the binary system of numeration, states
its advantages in terms of efficiency of calculation, and claims that this system allows for the
discovery of other properties of numbers, such as patterns in the base two expansion of the perfect
squares. An engaging in-class exercise is to examine patterns in a table of perfect squares (base
two) and conjecture corresponding divisibility properties of the integers. The pattern of zeroes in
the binary equivalent of n2 leads to the conjecture that 8|(n2 − 1), n odd, where the vertical bar
denotes “divides.” Construct the table! Time spent working on the project is time for explanation,
exploration, and discovery, for both the instructor and the student. Instructors are encouraged to
adapt each project to their particular course. Add or rephrase some questions, or delete others to
reflect what is actually being covered. Be familiar with all details of a project before assignment.
The source file for each project together with its bibliographic references can be downloaded and
edited from the web resource [2].

4 Conclusion

In an initial pilot study of students learning discrete mathematics from primary historical sources,
there were 229 cases where students earned course grades above the mean in subsequent courses,
compared with 123 cases where students earned course grades below the mean in follow-on courses.
The probability that this would occur under the assumption that the historical projects had no
positive effect is less than .000001 using a simple binomial sign test. Of course there may be other
factors at play, e.g., differing entering preparation for different groups of students in different courses
and semesters. Furthermore, after completion of a course using historical projects, students write
the following about the benefits of history: “See how the concepts developed and understand the
process.” “Learn the roots of what you’ve come to believe in.” “Appropriate question building.”
“Helps with English-math conversion.” “It leads me to my own discoveries.”
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