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We discuss and present excerpts from student projects being de-
veloped and tested by an interdisciplinary faculty team for courses
in discrete mathematics, graph theory, combinatorics, logic, and com-
puter science. The goal of our work is to provide motivation, direction,
and context for these subjects through student projects based directly
on the writings of the pioneers who first developed crucial ideas and
worked on seminal problems. Each project is built around primary
source material close to or representing the discovery of a key con-
cept. Through guided reading and activities, students explore the
mathematics of the original discovery and develop their own under-
standing of the subject. We illustrate how project design elements
support our pedagogical goals and discuss classroom implementation.
Further evaluation and project development is underway, and two web
sites provide expanded materials and information. Ongoing support
is provided by the US National Science Foundation.

1 Introduction

A discrete mathematics course often teaches about precise logical and al-
gorithmic thought and methods of proof to students studying mathemat-
ics, computer science, or teacher education. The roots of such methods of
thought, and of discrete mathematics itself, are as old as mathematics, with
the notion of counting, a discrete operation, usually cited as the first math-
ematical development in ancient cultures (Katz 1998). However, a typical
course frequently presents a fast-paced news reel of facts and formulae, often
memorized by the students, with the text offering only passing mention of
the motivating problems and original work that eventually found resolution
in the modern concepts. This paper describes a pedagogical approach to
teaching topics in discrete mathematics and computer science intended to
place the material in context and provide direction to the subject matter
via student projects centered around actual excerpts from primary historical
sources. Much has already been written about teaching with primary histor-
ical sources (Fauvel & van Maanen, 2000, ch. 9). Here we focus on a list of
specific pedagogical goals and how they can be achieved through design of
student projects based on primary sources.

Our interdisciplinary team of mathematics and computer science faculty
has completed a pilot program funded by the US National Science Founda-
tion, in which we have developed and tested over a dozen historical projects



for student work in courses in discrete mathematics, graph theory, combina-
torics, logic, and computer science. These projects have appeared in print
(Barnett et al 2009), and are presently available through the web resource
(Bezhanishvili et al 2003).

We are now in the second year of a four-year NSF expansion grant through
which additional projects based on primary sources are being developed,
tested, evaluated, revised, and published. The expansion will support class-
room testing by faculty at twenty other institutions, careful evaluation of
their effectiveness, and provide training in teaching with these projects to
graduate students. Projects created to date under the expansion grant are
available at our new web resource (Barnett et al 2008), along with descrip-
tions of projects yet to be developed. We welcome instructors who would
like to collaborate in testing or writing projects.

Here we will briefly describe the pedagogical goals which guide project
design, illustrate these principles with excerpts from two particular projects,
discuss how such historical projects can be implemented in the classroom,
and present preliminary evaluation evidence of their effectiveness.

2 Pedagogical Goals and Design Principles

A central goal of our pedagogical approach is to recover motivation for study-
ing particular core topics by teaching and learning these topics directly from
a primary historical source of scientific significance. Primary source authors
represented in the collection include Archimedes, Cantor, Euler, Hamilton,
Leibniz, Pascal, Shannon, Turing, Veblen, and von Neumann, writing on
topics such as mathematical induction, finite sums of powers, graph theory,
transfinite arithmetic, binary arithmetic, combinatorics, computability, and
decidability.

Designed to capture the spark of discovery and motivate subsequent lines
of inquiry, each historical project is built around primary source material
which serves either as an introduction to a core topic in the curriculum, or
as supplementary material to a textbook treatment of that topic. Through
guided reading of the selected primary source material and by completing a
sequence of activities based on these excerpts, students explore the science
of the original discovery and develop their own understanding of the subject.
Each project also provides a discussion of the historical exigency of the piece
and a few biographical comments about the author to place the source in



context.

The following pedagogical goals further guide our selection of primary
source material and the design of a project. The next section will illustrate
how these goals have been implemented in two particular projects.

10.

11.
12.

13.

Fifteen Pedagogical Goals Guiding the Development of
Primary Source Based Projects

. Hone students’ verbal and deductive skills through reading.

Provide practice moving from verbal descriptions of problems to precise
mathematical formulations.

Promote recognition of the organizing concept behind a procedure.

Promote understanding of the present-day paradigm of the subject
through the reading of an historical source which requires no knowledge
of that paradigm.

Promote reflection on present-day standards and paradigm of subject.

Draw attention to subtleties, which modern texts may take for granted,
through the reading of an historical source.

Promote students’ ability to equally participate, regardless of their
background or capability.

Offer diverse approaches to material which can serve to benefit students
with different learning styles through exposure to multiple approaches.

. Provide a point of departure for students’ work, and a direction for

their efforts.

Encourage more authentic (versus routine) student proof efforts through
exposure to original problems in which the concepts arose.

Promote a human vision of science and of mathematics.

Provide a framework for the subject in which all elements appear in
their right place.

Promote a dynamical vision of the evolution of mathematics.
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14. Promote enriched understanding of subject through greater understand-
ing of its roots, for students and instructors.

15. Engender cognitive dissonance (dépaysement) when comparing a his-
torical source with a modern textbook approach, which to resolve re-
quires an understanding of both the underlying concepts and use of
present-day notation.

3 Incorporating pedagogical design goals: two
sample projects

In this section we provide excerpts from two student projects in order to
give a flavor of their nature. For each, we display selected excerpts from
the primary historical source in the project, from our own narrative in the
project, and also from student assignment questions, and discuss how these
elements promote our pedagogical goals. To set project excerpts apart from
our writing in this paper, all project excerpts are indented relative to our
main text and bracketed by the symbol

OXOXXIXIXIXIXDO

at their beginning and end. Moreover, note that within the project excerpts,
the primary historical source material is set in sans serif font. Our specific
pedagogical goals are referred to by the numbers used to enumerate them in
Section 2.

3.1 Treatise on the Arithmetical Triangle: Blaise Pas-
cal

The project Treatise on the Arithmetical Triangle is intended for an introduc-
tory level discrete mathematics and proofs course, and presents the concept
of mathematical induction from the pioneering work written by Blaise Pascal
(Pascal 1991) in the 1650s.

After arranging the figurate numbers in a table, forming “Pascal’s trian-
gle,” Pascal observes several patterns in the table, which he would like to
claim continue indefinitely. Pascal offers a condition for the persistence of a



pattern, stated verbally in the proof of his “Twelfth Consequence,” a condi-
tion known today as mathematical induction. In fact, Pascal’s treatise is the
first place in the mathematical literature where the principle of mathematical
induction is enunciated so completely and generally (Goals 11,12,13,14,15).
Moreover, Pascal’s Twelfth Consequence results directly in the modern facto-
rial formula for combination numbers and binomial coefficients, allowing him
to proceed to algebra and probability. In this project, students learn first-
hand about the issues involved in proofs by iteration, generalizable example,
and mathematical induction.

Students begin by reading Pascal’s defining description of his triangle,
which is highly verbal, entirely labeled using letters, and rotated in compari-
son to how most people view it today. We display excerpts from a few of his
critical definitions here. Such a verbal approach, to a triangle all students
think they are already familiar with, but without modern indexing notation,
and geometrically tilted from the modern view, challenges students’ skill at
translating to modern mathematical descriptions, and places all students on
the same unfamiliar footing (Goals 1,2,7,15).

The idea of having students learn by being placed on unfamiliar footing
is expressed in French as dépaysement, a condition in which one must ap-
proach things from unaccustomed points of view, and pay great attention
to subtleties (Goals 3,4,5,6,8,15). One might translate it as ‘being thrown
off guard’, ‘being bewildered’, ‘being taken out of one’s element’. It is one
of the great strengths of learning from primary historical sources, since they
were often written in dramatically different context and time, thus providing
a very distinct, and often extremely valuable, point of view. By viewing a
topic from a point of view different from the standard modern one, a broader,
but also deeper and more flexible, understanding is gained (Goal 14).

OXDXDXDXXDXXIDXO

TREATISE ON THE ARITHMETICAL TRIANGLE
DEFINITIONS

... Through each of the points of section and parallel to the sides |
draw lines whose intersections make little squares which | call cells.
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Cells between two parallels drawn from left to right are called cells
of the same parallel row, as, for example, cells G, o, 7, etc., or ¢,
Y, 0, etc.

Those between two lines drawn from top to bottom are called cells of
the same perpendicular row, as, for example, cells G, p, A, D, etc.,
or 0,1, B, etc.

Those cut diagonally by the same base are called cells of the same
base, as, for example, D, B, 0, \, or A, ¢, m. ...

Cells of the same base equidistant from its extremities are called
reciprocals, as, for example, ¥, R and B, 0, ...

Now the numbers assigned to each cell are found by the following
method:



The number of the first cell, which is at the right angle, is arbitrary;
... Each of the others is specified by a single rule as follows:

The number of each cell is equal to the sum of the numbers of the
perpendicular and parallel cells immediately preceding. Thus cell F)
that is, the number of cell F, equals the sum of cell C' and cell F,
and similarly with the rest.

OXDXDXIXXIXIXDO

Formalizing Pascal’s entire description using modern indexing notation
is the first big challenge to students, through exercises like the following
(Goals 1,2,4,5). Sophisticated ideas like double-indexing arise immediately
and naturally (Goal 6), and students will also learn from this project, in
relevant context, about summation and product notations, and recurrence
relations (Goals 4,5,8).

OXOXDXIXDXIXIXDO

1. Pascal’s Triangle and its numbers

(a) Let us use the notation 7} ; to denote what Pascal calls
the number assigned to the cell in parallel row i (which
we today call just row i) and perpendicular row j (which
we today call column j). We call the i and j by the
name indices (plural of index) in our notation. Using
this notation, explain exactly what Pascal’s rule is for
determining all the numbers in all the cells. Be sure to
give full details. This should include explaining for ex-
actly which values of the indices he defines the numbers.

OXIXDXXDXIXIXDO

After Pascal proves some simple properties of the triangle essentially itera-
tively, mathematical induction first arises naturally but implicitly in demon-
strating its symmetry. In addition, Pascal proves his claim by “generalizable
example,” largely because he has no indexing notation to deal conveniently
with arbitrary elements. Having students make all this precise in full gen-
erality with modern notation enables them to begin to think in terms of
induction before it is formally introduced, and to powerfully appreciate the
efficacy of indexing notation (Goals 3,4,5,10).
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FirTH CONSEQUENCE

In every arithmetical triangle each cell is equal to its recip-
rocal.

For in the second base, ¢o, it is evident that the two
reciprocal cells, ¢, o, are equal to each other and to G.

In the third base, A, ), 7, it is also obvious that the recip-
rocals, w, A, are equal to each other and to G.

In the fourth base it is obvious that the extremes, D, ),
are again equal to each other and to G.

And those between, B, 6, are obviously equal since B =
A+ and 0 =7 + 1. But m+ 1 = A+ ¢ by what has
just been shown. Therefore, etc.

Similarly it can be shown for all the other bases that recip-
rocals are equal, because the extremes are always equal to
(G and the rest can always be considered as the sum of cells
in the preceding base which are themselves reciprocals.

3. Symmetry in the triangle: first contact with mathematical
induction

Write the Fifth Consequence using our index notation. Use
index notation and the ideas in Pascal’s proof to prove the
Consequence in full generality, not just for the example he
gives. Explain the conceptual ideas behind the general proof.

OXDXXIXDXIXIXDO

Only after students grapple with and explain Pascal’s Fifth Consquence in
their own way are they expected to read about the principle of mathematical
induction. The crowning consequence in Pascal’s treatise is the Twelfth, in
which Pascal derives a formula for the ratio of consecutive numbers along a
base in the triangle. From this he will obtain an elegant and efficient “closed”
formula for all the numbers in the triangle, a powerful tool for much future
mathematical work. And it is right here that Pascal enunciates the general



proof principle we call induction. Again we ask students to translate Pascal’s
proof by generalizable example into a modern and completely general proof.
This is far from trivial, and even involves an understanding of a property of
proportions that is largely lost today. (This single rich source excerpt and
its tasks for students encompasses all fifteen of our pedagogical goals.)

OXIDXDXIXXIXIXDO

TWELFTH CONSEQUENCE

In every arithmetical triangle, of two contiguous cells in
the same base the upper is to the lower as the number
of cells from the upper to the top of the base is to the
number of cells from the lower to the bottom of the base,
inclusive.

Let any two contiguous cells of the same base, F, C, be
taken. | say that

I : C : 2 : 3
the the because there because there
lower upper are two cells are three cells
from E to the from C to the
bottom, namely top, namely
E, H, C, R, u.

Although this proposition has an infinity of cases, | shall
demonstrate it very briefly by supposing two lemmas:

The first, which is self-evident, that this proportion is
found in the second base, for it is perfectly obvious that
p:roul:l;

The second, that if this proportion is found in any base,
it will necessarily be found in the following base.

Whence it is apparent that it is necessarily in all the bases.
For it is in the second base by the first lemma; therefore
by the second lemma it is in the third base, therefore in
the fourth, and to infinity.
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It is only necessary therefore to demonstrate the second
lemma as follows: If this proportion is found in any base,
as, for example, in the fourth, DA, thatis, if D : B :: 1 : 3,
and B:0::2:2,and 6 : )\ ::3:1, etc, | say the same
proportion will be found in the following base, Hyu, and
that, for example, £ : C' :: 2 : 3.

For D : B ::1: 3, by hypothesis.

Therefore D+B : B 1+3
—— ~——
E . B 4
Similarly B : 0 :: 2 : 2, by hypothesis
Therefore B+6 : B = 242 2
—— ~—
C . B 4 2
But B S R 3 4
Therefore, by compounding the ratios, C' : E :: 3 :
2. Q.E.D.

The proof is the same for all other bases, since it re-
quires only that the proportion be found in the preceding
base,and that each cell be equal to the cell before it to-
gether with the cell above it, which is everywhere the case.

6. Pascal’s Twelfth Consequence: the key to our modern fac-
torial formula

(a) Rewrite Pascal’s Twelfth Consequence as a generalized
modern formula, entirely in our 7;; terminology. Also
verify its correctness in a couple of examples taken from
his table in the initial definitions section.

(b) Adapt Pascal’s proof by example of his Twelfth Conse-
quence into modern generalized form to prove the for-
mula you obtained above. Use the principle of mathe-
matical induction to create your proof.

OXOXDXIXIXIXIXDO

From his Twelfth Consequence Pascal can develop a “formula” for the
numbers in the triangle, which can then be used in future work on combina-
torics, probability, and algebra. We have students follow Pascal’s generaliz-
able example to do so (Goals 1,2,5,8,9,14,15) in modern form.
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PROBLEM

Given the perpendicular and parallel exponents of a cell,
to find its number without making use of the arithmetical
triangle. . ..

7. Pascal’s formula for the numbers in the Arithmetical Trian-
gle

(a) Write down the general formula Pascal claims in solving
his “Problem.” Your formula should read 7;; = “some
formula in terms of ¢ and j.” Also write your formula
entirely in terms of factorials.

(b) Look at the reason Pascal indicates for his formula for a
cell, and use it to make a general proof for your formula
above for an arbitrary 7; ;. You may try to make your
proof just like Pascal is indicating, or you may prove it
by mathematical induction.

OXDXDXDXXDXXDXO

The project can continue on perfectly naturally to integrate combinatorics,
the binomial theorem, Fermat’s Theorem (proof by induction on the base
using Pascal’s formula for the binomial coefficients and uniqueness of prime
factorization), and end with the RSA cryptosystem. This goes far beyond the
historical source, but shows how the source serves as foundation for important
modern topics (Goals 9,14).

3.2 The solution of a problem relating to the geometry
of position: Leonhard Euler

The project Treatise on the Arithmetical Triangle just discussed illustrates
how rich individual small excerpts from a primary source can be in terms of
promoting the pedagogical goals of our approach to using history in discrete
mathematics courses. Next we illustrate how specific pedagogical goals can
be emphasized in a project by using the project narrative and student tasks to
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carefully frame a sequence of excerpts from a primary source. The project we
consider, Farly Writings on Graph Theory: Euler Circuits and The Kionigs-
berg Bridge Problem, is suitable for a beginning-level discrete mathematics
course, or for a ‘transition to proof’ course.

In the paper (Euler 1758-59) on which this project is based, Leonhard
Euler (1707-1783) provides a mathematical formulation of the Koénigsberg
Bridge Problem. Considered today to be the starting point of modern graph
theory, this foundational paper offers a unique window on a dynamical vision
of the evolution of mathematics (Goal 13). The first Euler excerpt which
students read in the project conveys this vision in his own words.

OXDXDXDXIXIXIXDXO

SOLUTIO PROBLEMATIS AD GEOMETRIAM SITUS PERTINENTIS

) 5 2
-4 = / ‘.~-. TEATER
) (T=G i 5 \r‘—r S
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1 In addition to that branch of geometry which is concerned
with magnitudes, and which has always received the greatest
attention, there is another branch, previously almost unknown,
which Leibniz first mentioned, calling it the geometry of posi-
tion. This branch is concerned only with the determination of
position and its properties; it does not involve measurements,
nor calculations made with them. It has not yet been satis-
factorily determined what kind of problems are relevant to this
geometry of position, or what methods should be used in solving
them. Hence, when a problem was recently mentioned, which

13



seemed geometrical but was so constructed that it did not re-
quire the measurement of distances, nor did calculation help at
all, I had no doubt that it was concerned with the geometry
of position — especially as its solution involved only position,
and no calculation was of any use. | have therefore decided to
give here the method which | have found for solving this kind
of problem, as an example of the geometry of position.

OXOXDXIXIXIXIXDO

The project places further emphasis on this evolutionary vision of math-
ematics in two ways. First, the project’s introduction places Euler’s paper
in a historical context with a first-hand account! from Gottfried W. Leibniz
(1646 - 1716) concerning why he felt the need for a ‘geometry of position,’
followed by a later account? of the state of this new field in 1833 from C.
F. Gauss (1777 - 1855). Secondly, the project explicitly introduces the more
abstract terminology and notation of modern graph theory in parallel with
Euler’s analysis, as illustrated in the following project excerpt.

OXDXDXDXXXXDXO

2 The problem, which | am told is widely known, is as follows: in
Konigsberg in Prussia, there is an island A, called the Kneiphof;
the river which surrounds it is divided into two branches, as can
be seen in Fig. [1.2], and these branches are crossed by seven
bridges, a, b, ¢, d, e, f and g Concerning these bridges,
it was asked whether anyone could arrange a route in such a
way that he would cross each bridge once and only once. |
was told that some people asserted that this was impossible,

IThis appeared in an 1670 letter from Leibniz to Christian Huygens (1629 - 1695),
quoted in (Biggs & Wilson 1976, p. 30) as follows: 'l am not content with algebra, in
that it yields neither the shortest proofs nor the most beautiful constructions of geometry.
Consequently, in view of this, | consider that we need yet another kind of analysis, geometric
or linear, which deals directly with position, as algebra deals with magnitude.’

2 As quoted in (Biggs & Wilson 1976, p. 30), Gauss reported 'Of the geometry of position,
which Leibniz initiated and to which only two geometers, Euler and Vandermonde, have given
a feeble glance, we know and possess, after a century and a half, very little more than nothing.’
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while others were in doubt: but nobody would actually assert
that it could be done. From this, | have formulated the general
problem: whatever be the arrangement and division of the river
into branches, and however many bridges there be, can one find
out whether or not it is possible to cross each bridge exactly
once?

FIG. 1.2

Notice that Euler begins his analysis of the ‘bridge crossing’ prob-
lem by first replacing the map of the city by a simpler diagram
showing only the main feature. In modern graph theory, we sim-
plify this diagram even further to include only points (represent-
ing land masses) and line segments (representing bridges). These
points and line segments are referred to as vertices (singular: ver-
tex) and edges respectively. The collection of vertices and edges
together with the relationships between them is called a graph.
More precisely, a graph consists of a set of vertices and a set of
edges, where each edge may be viewed as an ordered pair of two
(usually distinct) vertices. In the case where an edge connects a
vertex to itself, we refer to that edge as a loop.

1. Sketch the diagram of a graph with 5 vertices and 8 edges
to represent the following bridge problem.

15
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OXOXDXIXIXIXIXDO

Through this interweaving of primary source excerpts, project narrative
and project questions, students are thus prompted to connect Euler’s writ-
ing with the modern theory which (eventually) evolved out of it from the
start of the project. Additional definitions are introduced and analyzed as
they arise in connection with Euler’s analysis of the bridge crossing problem.
This strategy is also one way to promote the pedagogical goal of building
students’ understanding of the subject in its current form without requiring
prior knowledge of its present-day paradigm to read the historical sources
(Goal 4). In the Arithmetical Triangle project, this is done by referring stu-
dents to a current textbook at appropriate points; other projects promote
this goal through the use of concluding sections which connect the mathe-
matical concepts developed in the primary source to its current terminology
and notation.’

The strategy employed in the Fuler Circuits project of developing the
modern theory in parallel with its original formulation also enhances stu-
dents’ ability to more equally participate, regardless of their background or
capability (Goal 7). This goal is further advanced by the primary source se-
lections themselves. For example, Euler develops two procedures in his paper
for determining whether a given bridge crossing problem admits of a solu-
tion, the first of which is quite distinct from the usual process presented in
a current textbook for determining whether a given graph contains an Euler

3See, for example, Origins of Boolean Algebra in the Logic of Classes: George Boole,
John Venn and C. S. Peirce, author Janet Heine Barnett, available on the web resource
(Barnett et al 2008).
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path.? Thus, even students who have studied graph theory in another course
are exposed to an algorithm which is not only different from the one they are
likely to have encountered previously, but also considerably more concrete.
The concrete nature of Euler’s preliminary algorithm has further advantages,
including that of benefiting students with different learning styles through
exposure to multiple approaches (Goal 8).

Euler’s derivation of his first algorithm for determining if a bridge crossing
problem is solvable (i.e., if a graph contains an Euler path) occupies several
pages in his paper, following which he gives two examples of its use. He then
states the following two observations which he will use to develop his second
(simpler) procedure.

16 In this way it will be easy, even in the most complicated cases,
to determine whether or not a journey can be made crossing
each bridge once and once only. | shall, however, describe a
much simpler method for determining this which is not difficult
to derive from the present method, after | have first made a
few preliminary observations. First, | observe that the numbers
of bridges written next to the letters A, B, C, etc. together add
up to twice the total number of bridges. The reason for this is
that, in the calculation where every bridge leading to a given
area is counted, each bridge is counted twice, once for each of
the two areas which it joins.

17 It follows that the total of the numbers of bridges leading to
each area must be an even number, since half of it is equal
to the number of bridges. This is impossible if only one of
these numbers is odd, or if three are odd, or five, and so on.
Hence if some of the numbers of bridges attached to the letters
A, B, C, etc. are odd, then there must be an even number
of these. Thus, in the Konigsberg problem, there were odd
numbers attached to the letters A, B, C and D, as can be seen
from Paragraph 14, and in the last example (in Paragraph 15),

4 As we will see below, the second procedure which Euler develops and justifies is the
more streamlined procedure of checking the parity of the vertex degrees which is standard
in current textbook treatments.
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only two numbers were odd, namely those attached to D and
E.

OXOXXIXIXIXIXDO

As students work through Euler’s various arguments, project questions such
as the following also prompt them to pay attention to his style of argumenta-
tion, and to reflect upon how it differs from that used in a modern textbook,
again emphasizing an evolutionary vision of mathematics while engendering
cognitive dissonance through the comparison of a historical source with a
modern textbook approach (Goals 13, 15).

OXOXDXIXIXIXIXDO

6. The result described in Paragraph 16 is sometimes referred
to as ‘The Handshake Theorem,” based on the equivalent
problem of counting the number of handshakes that oc-
cur during a social gathering at which every person present
shakes hands with every other person present exactly once.
A modern statement of the Handshake Theorem would be:
The sum of the degree of all vertices in a finite graph equals
twice the number of edges in the graph. Locate this theorem
in a modern textbook, and comment on how the proof given
there compares to Euler’s discussion in paragraph 16.

7. The result described in Paragraph 17 can be re-stated as fol-
lows: Ewvery finite graph contains an even number of vertices
with odd degree. Locate this theorem in a modern textbook,
and comment on how the proof given there compares to
Euler’s discussion in paragraph 17.

OXDXDXDXXXXDXO

The theme of reflection on present-day proof standards (Goal 5) apparent
in these questions is also raised in the introduction of the project, where
the computer-assisted resolution of the Four Color Problem by Appel and
Haken is discussed. The project’s emphasis on this theme culminates with
a set of final exercises in which students are asked to ‘fill in the gaps’ of a

18



modern proof of Euler’s final theorem. Students first read Euler’s own proof
of this theorem, which appears in the paragraphs leading up to its statement.
The following project excerpt gives his statement of the theorem, along with
portions of the associated project narrative and exercises that continue the
theme of reflection on present-day standards, while also drawing students’
attention to subtleties (e.g., connectedness) which modern texts often take
for granted (Goal 6).

20 So whatever arrangement may be proposed, one can easily
determine whether or not a journey can be made, crossing each
bridge once, by the following rules:

If there are more than two areas to which an odd num-
ber of bridges lead, then such a journey is impossible.

If, however, the number of bridges is odd for exactly
two areas, then the journey is possible if it starts in either
of these areas.

If, finally, there are no areas to which an odd number
of bridges leads, then the required journey can be accom-
plished starting from any area.

With these rules, the given problem can always be solved.

A complete modern statement of Euler’s main result requires one
final definition: a graph is said to be connected if for every pair of
vertices u, v in the graph, there is a walk from u to v. Notice that
a graph which is not connected will consist of several components,
or subgraphs, each of which is connected. With this definition in
hand, the main results of Euler’s paper can be stated as follows:

Theorem: A finite graph G contains an Euler circuit
if and only if G is connected and contains no vertices
of odd degree.

19



Corollary: A finite graph G contains an Euler path
if and only if G is connected and contains at most two
vertices of odd degree.

8. Illustrate why the modern statement specifies that G is con-
nected by giving an example of a disconnected graph which
has vertices of even degree only and contains no Euler cir-
cuit. Explain how you know that your example contains no
Euler circuit.

9. Comment on Euler’s proof of this theorem and corollary as
they appear in paragraphs 16 - 19. How convincing do you
find his proof? Where and how does he make use of the
assumption that the graph is connected in his proof?

OXDXDXIXXIXIXDO

The various excerpts we have examined from this project demonstrate an-
other emphasized pedagogical goal: that of providing practice moving from
verbal descriptions to precise mathematical formulations (Goal 2). In fact,
Euler’s entire paper provides students with a model for this, as he moves
from a detailed map of Konigsberg (Euler’s Fig. 1.1), to a simpler diagram
showing only the main features of the problem (Euler’s Fig. 1.2), to a re-
formulation of the problem in terms of sequences of letters (vertices), to his
first algorithm for determining if a solution exists, to the final theorem with
which he concludes his paper. Again, project questions interspersed between
the source excerpts in which Euler makes these moves provide students with
opportunities to reflect upon these reformulations, and apply them in specific
cases.

Finally, we note that a deliberate effort was made while designing this
project to include questions focused on developing students’ verbal and de-
ductive skills through reading (Goal 1), by prompting them to interact with
Euler’s text in the way which a mature mathematical reader naturally ap-
proaches a new text. For example, returning to an earlier part of Euler’s
paper in which he is developing a procedure for determining how many times
a vertex must appear in the representation of a route for a given bridge prob-
lem, the following project question prompts students to more deeply reflect
on the passage they have just read by applying Euler’s rule to a particular
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example; they are then able to immediately compare their conclusion con-
cerning that example to Euler’s own conclusion in the subsequent paragraph
of his paper.

3. In paragraph 8, Euler deduces a rule for determining how
many times a vertex must appear in the representation of the
route for a given bridge problem for the case where an odd
number of bridges leads to the land mass represented by that
vertex. Before reading further, use this rule to determine
how many times each of the vertices A , B, C and D would
appear in the representation of a route for the Konigsberg
Bridge Problem. Given Euler’s earlier conclusion (paragraph
5) that a solution to this problem requires a sequence of 8
vertices, is such a sequence possible? Explain.

OXIDXDXIXDXIXIXDO

By incorporating such a diversity of question types — some aimed at
developing students’ skills in reading and proof writing, others aimed at
comprehension of Euler’s analysis and its relation to modern graph theory,
and still others aimed at promoting reflection on present-day proof standards
— this and other projects in the collection naturally lend themselves to the
use of multiple approaches to their implementation which can be of particular
benefit to students with different learning styles (Goal 8). For instance, the
first part of this particular project (in which students are required to read and
understand Euler’s analysis of the problem) is well suited for small group and
whole class discussion, while the final exercises (in which students complete
a modern proof of Euler’s main theorem) are ideally suited for individual
practice in proof writing, but could also be completed in small groups. In the
next section, we consider other issues related to classroom implementation
of the projects.
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4 Implementation

Time spent working on the project is time for explanation, exploration, and
discovery, for both the instructor and the student. Instructors are encouraged
to adapt a project to their particular course by adding or rephrasing some
questions, or deleting others to reflect what is actually being covered.” Each
project also has guiding notes for the instructor on its use in teaching.

Our own experience with implementation suggests that it is important to
be familiar with all details of a project before implementing it with students.
We have also found it important to begin early in the course with a discussion
of the relevance of the historical piece, its relation to the course curriculum,
and how modern textbook techniques owe their development to problems
often posed centuries earlier. A comparison with modern techniques could
begin as soon as the students have read the related historical passages, or be
postponed until after the project is completed.

For use in the classroom, instructors should allow one to several weeks per
project, depending on the project(s) selected. Some projects also work well
when implemented in several parts spread over the course of the academic
term. For certain course topics, the project can simply replace other course
activities for a time, with the main course topics learned directly through the
project. Each assigned project should count for a significant portion of the
course grade (about 20%) and may take the place of an in-class examination,
or be assigned in pieces as homework.

While a project is being implemented, several class activities are possi-
ble. Students could be encouraged to work on the project in class, either
individually or in small groups, as the instructor monitors and assists their
progress and explores meaning in language from time past. Many instructors
also assign select project questions for students to complete based on their
own reading, prior to a discussion in class. Whole class discussions or brief
lectures may also be appropriate at certain junctures.

Some type of student writing or presentation is recommended in conjunc-
tion with an historical project. Again, instructors have considerable flexibil-
ity in terms of how this is done. One option is to assign and collect written
responses to project questions in installments, either before or after class

5The source files for projects developed under the pilot grant can be downloaded and
edited from the web resource (Bezhanishvili et al 2003). Source files for new projects being
developed under the expansion grant can be obtained by contacting their authors; contact
information is located on the web resource (Barnett et al 2008).
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work. Other instructors elect to assign a final detailed paper based on the
project, perhaps asking students to compare how the topic is treated in the
primary source to how it is treated in a current textbook. Another possibility
is to require that each student complete an historical project related to the
course curriculum on an independent basis, either individually or in groups,
and report on their topic to the class in an oral presentation.

5 Conclusion

Evaluation data from the initial pilot study based on student performance
in later course work suggests our approach to using history to teach math-
ematics is effective in promoting students’ understanding of the present-day
paradigm of the subject. Of course, there are other factors at play that could
explain these data, including differing entering preparation for varying groups
of students in different courses and semesters, and individual instructor ex-
perience and pedagogical style. Efforts to compensate for these confounding
variables are part of the more extensive evaluation now underway with our
expansion grant.

Following completion of a course using historical projects, students’ own
perceptions of the benefits of learning from primary sources echo our peda-
gogical goals. We close with a selection of their comments, allowing students
to have the final word. “See how the concepts developed and understand the
process.” “It ties in better, links can be made.” “Appropriate question build-
ing.” “Helps with English-math conversion.” “Gives meaning to problems.”
“You get an understanding of why you are doing something.” “You under-
stand it without the middle man.” “It leads me to my own discoveries.” “We
learn from the best.”
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