
Artificial Intelligence 125 (2001) 19–91

Formalizing sensing actions—
A transition function based approach

Tran Cao Sona,∗, Chitta Baralb
a Knowledge Systems Laboratory, Computer Science Department,

Stanford University, Stanford, CA 94305, USA
b Department of Computer Science Engineering, Arizona State University, Tempe, AZ 85287, USA

Received 21 April 1998; received in revised form 1 December 1999

Abstract

In presence of incomplete information about the world we need to distinguish between the state
of the world and the state of the agent’s knowledge about the world. In such a case the agent may
need to have at its disposal sensing actions that change its state of knowledge about the world and
may need to construct more general plans consisting of sensing actions and conditional statements
to achieve its goal. In this paper we first develop a high-level action description language that allows
specification of sensing actions and their effects in its domain description and allows queries with
conditional plans. We give provably correct translations of domain description in our language to
axioms in first-order logic, and relate our formulation to several earlier formulations in the literature.
We then analyze the state space of our formulation and develop several sound approximations that
have much smaller state spaces. Finally we define regression of knowledge formulas over conditional
plans. 2001 Elsevier Science B.V. All rights reserved.

Keywords:Sensing actions; Action description languages; Conditional plans; Regression of knowledge
formulas; Incomplete information; Approximate reasoning

1. Introduction and motivation

Unlike actions that change the world, sensing or knowledge producing actions change
what the agent knows about the world. Consider the following example of a high security
door. The action of pushing the door (push_door)—when executed in a world where the
(lock of the) door is initially unlocked and not jammed—will change the world so that

* Corresponding author.
E-mail addresses:tson@ksl.stanford.edu (T.C. Son), chitta@asu.edu (C. Baral).

0004-3702/01/$ – see front matter 2001 Elsevier Science B.V. All rights reserved.
PII: S0004-3702(00)00080-1

20 T.C. Son, C. Baral / Artificial Intelligence 125 (2001) 19–91

after the action is performed the door is open. The same action if executed when the door
is locked will jam the door. Similarly, the action of flipping the lock (flip_lock) will unlock
a locked door and lock an unlocked door. On the other hand thesensing actionof checking
the lock of the door (check_if _locked) will result in the agent knowing if the door is locked
or not.

Sensing actions play an important role when an agent needs to plan in presence of
incomplete information. Consider the case when our agent initially (i.e., in the initial
situation) does not know if the door is locked or not, but knows that the door is not jammed
and is not open and its goal is to open the door. We will assume that the only actions it
can perform are the ones described earlier:check_if _locked, flip_lock andpush_door. We
now argue that the agent cannot just construct a classical plan—consisting of a sequence
of actions—that will always (i.e., regardless of what the real state of the world is) succeed
in reaching the agent’s goal.

Let us first consider the planP1 consisting ofpush_door. This plan will not work
if the door is initially locked. In fact it will jam the door, and no subsequent action
sequence will result in the door being open. Let us now consider the planP2 consisting
of flip_lock;push_door. This plan will not work if the door is initially unlocked. In fact
it will also jam the door, and no subsequent action sequence will result in the door being
open. Therefore, neitherP1, norP2, and nor any plan that starts withP1 andP2 will work
in both cases. This, together with the fact that the actioncheck_if _lockeddoes not change
the world and a sequence offlip_locks is equivalent to zero or a singleflip_lock, is enough
to conclude that there does not exist a classical plan that will work for all possible initial
situations.

The following simple conditional planP3,

IF ¬door_lockedTHEN push_door ELSE flip_lock;push_door

is not appropriate either. That is because the agent not knowing whetherdoor_lockedis true
or not cannot execute this plan. A correct conditional plan,P4, that will always achieve the
goal uses the sensing actioncheck_if _locked, and is as follows:

check_if _locked;
IF ¬door_lockedTHEN push_door ELSE flip_lock;push_door.

Thus sensing actions are very important for planning in presence of incomplete informa-
tion. In the past, sensing actions have been formalized in [24,38,40,41,49] and planning
in presence of incomplete information has been studied in [11,15,16,18,23,28,31,44,46,
50,54]. To motivate our work we now briefly review the earlier formalizations of sensing
actions.

1.1. Moore’s formalization

To the best of our knowledge sensing actions were first formalized by Moore in his
dissertation [40] and in some of his later papers; for example, [41]. Moore uses possible

T.C. Son, C. Baral / Artificial Intelligence 125 (2001) 19–91 21

world semantics to represent knowledge and treats the accessibility relation between
worlds as a fluent when reasoning about sensing and non-sensing actions.
• He describes how the knowledge of an agent may change after executing a non-

sensing actiona, by defining the accessibility relation between the worlds that may
be reached after executing the actiona.
According to him, for any two possible worldsw1 andw2 such thatw2 is the result
of the execution ofa in w1, the worlds that are compatible with what the agent knows
in w2 are exactly the worlds that are the result of executinga in some world that is
compatible with what the agent knows inw1. This can be formally written as follows:

∀w1,w2.(w2= do(a,w1)⊃
∀w3.(acc(w2,w3)≡

∃w4.acc(w1,w4)∧w3= do(a,w4))). (1.1)

The above formula (and the next formula) is a simplified version of Moore’s original
formula. Here we use the functiondo from situation calculus,1 useacc(w,w′) to
denote thatw′ is accessible from (or is compatible with)w, and assume a single agent
world.
• He also describes how the knowledge of an agent may change after executing a

sensing actionsensef , by defining accessibility relation between the worlds that may
be reached after executingsensef .
Supposesensef is an action that the agent can perform to know iff is true or not.
Then for any world represented byw1 andw2 such thatw2 is the result ofsensef
happening inw1, the world that is compatible with what the agent knows inw2 are
exactly those worlds that are the result ofsensef happening in some world that is
compatible with what the agent knows inw1, and in whichf has the same truth value
as inw2. This can be formally written as follows:

∀w1,w2.(w2= do(sensef ,w1)⊃
∀w3.((acc(w2,w3)≡

∃w4.acc(w1,w4)∧
w3= do(sensef ,w4)∧ f (w2)≡ f (w3))). (1.2)

1.2. Scherl and Levesque’s formalization

Scherl and Levesque [49] adapted Moore’s formulation to situation calculus and proved
several important results about their formulation such as: knowledge-producing actions
do not affect fluents other than the knowledge fluent; and that actions that are not
knowledge-producing only affect the knowledge fluent as appropriate. They also showed
how regression can be applied to knowledge-producing actions.

Their slight simplification of Moore’s formulation is given by the following two
formulas: (Note that in their use of the relationK, which we will follow in the rest of the

1 do(a,w) denotes the world reached after executing the actiona in the worldw.

22 T.C. Son, C. Baral / Artificial Intelligence 125 (2001) 19–91

paper, the arguments are reversed from their normal modal logic use. I.e.,K(s′, s) is read
as “the situations′ is accessible from the situations”. Also, situationis a term constructed
by repeated application ofdo to the initial situationS0.)

K(s′′,do(a, s))≡ (∃s′.K(s′, s)∧ s′′ = do(a, s′)), (1.3)

K(s′′,do(sensef , s))≡ (∃s′.K(s′, s)∧ s′′ = do(sensef , s
′)∧ f (s′)≡ f (s)). (1.4)

1.3. Our simplification

One of our goalsin this paper is to make it easy to visualize the state space we have
to deal with when searching for plans in presence of sensing actions and incomplete
information. Many formulations of planning (for example, most research on decision
theoretic planning) often assume the existence of a transition function defining a transition
between states—a collection of fluents—due to actions, and do not necessarily depend on
a logical formulation defining this function.The questions that we would like to answer
are: What is a“state” when we need to distinguish between the state of the world and the
state of the knowledge of an agent? How are state transitions due to actions—both sensing
and non-sensing—defined?

To answer the first question we introduce the notion of ac-state(or combined state)
which is a pair consisting of:

(i) the real state of the world,s; and
(ii) the state of the agent’s knowledge about the world given by the set of statesΣ , that

the agent thinks it may be in.
The transition between c-states due to actions—denoted byΦ(a, 〈s,Σ〉)—can then be

defined in terms of the original transition between states (defined using the functionRes)
in the following way:
• If a is a non-sensing action then for any c-stateσ = 〈s,Σ〉, Φ(a,σ) is defined as the

pair 〈Res(a, s), {s′ | s′ =Res(a, s′′) for somes′′ ∈Σ}〉.
• If sensef is a sensing action that senses the fluentf then for any c-stateσ = 〈s,Σ〉,
Φ(sensef , σ) is defined as the pair〈s, {s′ | s′ ∈Σ such thatf ∈ s iff f ∈ s′}〉.

Consider our example in the beginning of this section. The two possible initial c-states—
with explicit representation of negative fluents—for this example are:

σ1= 〈{locked}, {{locked},∅}〉 and σ2= 〈∅, {{locked},∅}〉.
In Fig. 1 we give a fragment of the state space diagram of this example illustrating how
transitions take place between one c-state to another because of actions.

For a logical formalization of the above we simplify Moore’s and Scherl and Levesque’s
formulation by assuming that we only need to proceed from theK relation about the initial
situation to possible future situations. The formulas (1.3) and (1.4) can then be modified as
follows:

K(do(a, s′),do(a, s))≡K(s′, s), (1.5)

K(do(sensef , s
′),do(sensef , s))≡ (K(s′, s)∧ f (s′)≡ f (s)). (1.6)

T.C. Son, C. Baral / Artificial Intelligence 125 (2001) 19–91 23

Fig. 1. Transition between c-states in the door opening example.

Using the above two formulas, successor state axioms about actions [47], and information
about the initial situation, we can then reason about what is known to be true in a future
situation. We discuss this formulation in further detail in Section 2.3.

1.4. Our goals

Our first goal in this paper is to augment the high-level languageA [20,21] to allow
specifications and reasoning about sensing actions. We will call the new languageAK .
The semantics of domain descriptions inAK will be defined using the transition functions
introduced in the previous subsection. The motivation behind doing this is the simplicity
of high-level languages and the fact that no knowledge about particular logics is necessary
to understand the concept. But we pay the price of being less general than when the
formalization is done in a standard logical language (classical logic possibly augmented
with circumscription, logic programming, default logic, etc.). But then later we give
formalizations in logic,and prove the correctness of our logical formalizationwith respect

24 T.C. Son, C. Baral / Artificial Intelligence 125 (2001) 19–91

to our original formalization. Thus our initial formalization using a high-level language—
which is simpler to follow—can play the role of a benchmark for formalizations in standard
logical languages.

Our second goal, and perhaps the most important aspect of this paper, is to develop
approximations of the languageAK . The motivation behind that is the possible state space
explosion inAK . In presence ofn fluents, we will have 2n possible states and 22n+n
possiblec-states. We develop several approximations with much smaller state space (3n)
but with varying complexity in computing transitions. We then show the soundness of these
approximations.

Finally, we relate our formulations with earlier formulations of sensing actions—in
particular with Scherl and Levesque’s [49] formulation and Lobo et al.’s [38] formulation—
and show that:

(i) when we translate domain descriptions in our language to Scherl and Levesque’s
formulation we obtain similar conclusions, and

(ii) when we make certain assumptions about our knowledge about the initial state
then domain descriptions in our language have the same semantics as that of the
semantics defined by Lobo et al. [38].

We also discuss some of the earlier work on planning with sensing actions [15,16,22,23],
compare the formulations there with that of ours, and briefly describe earlier work on
regression and adapt a simplified version of regression from [49] to define regression with
respect to conditional plans.

2. The languageAK

In this section we introduceAK—an extension of the languageA in [21]—which allows
reasoning about sensing actions. (Strictly speaking,AK is a variation ofA instead of an
extension, as unlike inA, we do not allow observations or hypothesis about non-initial
situations in our domain descriptions. Moreover, our language has two components [4,34]:
one which defines domain descriptions and another which defines queries.)

2.1. Syntax ofAK

We begin with two disjoint nonempty sets of symbols, calledfluent names(or fluents)
andaction names(or actions). A fluent literal is either a fluent name or a fluent name
preceded by¬. For a fluentf , by¬f we meanf , and byf we mean¬f .

2.1.1. Domain descriptions inAK
A v-proposition(value proposition) is an expression of the form

initially f (2.1)

wheref is a fluent literal. Intuitively, the above v-proposition means that the fluent literal
f is initially known to be true. (In A, where v-propositions describe the initial state of
the world instead of what the agent knows about the initial state of the world, the above
proposition has a slightly different meaning. There, the above proposition means that the
fluent literalf is true in the initial state of the world.)

T.C. Son, C. Baral / Artificial Intelligence 125 (2001) 19–91 25

Two v-propositionsinitially f andinitially g are said to becontradictoryif f = g.
An ef-proposition(effect proposition) is an expression of the form

a causesf if p1, . . . , pn (2.2)

wherea is an action, and each off,p1, . . . , pn (n> 0) is a fluent literal. The set of fluent
literals{p1, . . . , pn} is referred to as thepreconditionof the ef-proposition andf is referred
to as theeffectof this ef-proposition. Intuitively this proposition conveys the meaning that
f is guaranteed to be true after the execution of an actiona in any state of the world where
p1, . . . , pn are true. Ifn= 0, we will drop theif part and simply writea causesf .

Two ef-propositions with preconditionsp1, . . . , pn andq1, . . . , qm respectively are said
to becontradictoryif they describe the effect of the same actiona on complementaryf ’s,
and{p1, . . . , pn} ∩ {q1, . . . , qm} = ∅.

An ex-proposition(executability proposition) is an expression of the form

executablea if p1, . . . , pn (2.3)

wherea is an action, and each ofp1, . . . , pn (n > 0) is a fluent literal. Intuitively, this
proposition conveys the meaning that the actiona is executable in any state of the world
wherep1, . . . , pn are true. Ifn= 0, we will drop theif part and simply writeexecutablea.

A k-proposition(knowledge proposition) is an expression of the form

a determinesp (2.4)

wherea is an action andp is a fluent. Intuitively, the above proposition conveys the
meaning that ifa is executed in a situation, then in the resulting situation the truth value
of p becomes known.

A propositionis a v-proposition, ef-proposition, ex-proposition or a k-proposition.
A domain descriptionis a set of propositions, which does not contain
(i) contradictory v-propositions; or
(ii) contradictory ef-propositions.

Actions occurring in ef-propositions and k-propositions are called non-sensing actions and
sensing actions, respectively. In this paper—to avoid distraction from the main points—
we make the further assumption that the set of sensing actions and the set of non-sensing
actions are disjoint. Following is an example of a domain description in our language.

Example 1. Let us consider an agent who has todisarm a bomb which can only be
done safely—i.e., withoutexploding—if a special lock on the bomb has been switched
off (locked); otherwise it explodes. The agent can determine if the lock is locked or not by
looking at the lock. He can alsoturn the lock from thelockedposition to theunlocked
position and vice versa. He can only execute the above actions if the bomb has not
exploded. Initially, the agent knows that the bomb is not disarmed and is not exploded.
We can describe the above story by the following domain description.

26 T.C. Son, C. Baral / Artificial Intelligence 125 (2001) 19–91

initially ¬disarmed

initially ¬exploded

disarmcausesexplodedif ¬locked

disarmcausesdisarmedif locked

turn causes¬lockedif locked

turn causeslockedif ¬locked

look determineslocked

executablelook if ¬exploded

executableturn if ¬exploded

executabledisarmif ¬exploded

=D1

2.1.2. Queries inAK
As discussed in Section 1, in the presence of incomplete information and knowledge

producing actions, we need to extend the notion of a plan from a sequence of actions so
as to allow conditional statements. In the following definition we formalize the notion of a
conditional plan.

Definition 1 (Conditional plan).
(1) An empty sequence of action, denoted by[], is a conditional plan.
(2) If a is an action thena is a conditional plan.
(3) If c1, . . . , cn (n> 1) are conditional plans andϕ1, . . . , ϕn are conjunction of fluent

literals, (which are mutually exclusive but not necessarily exhaustive) then the
following is a conditional plan. (We refer to such a plan as acase plan).

Case

ϕ1→ c1

. . .

ϕn→ cn

Endcase

(4) If c1, c2 are conditional plans thenc1; c2 is a conditional plan.
(5) Nothing else is a conditional plan.

Intuitively, the case plan is a case statement where the agent evaluates the various
ϕi ’s with respect to its knowledge. If it knows thatϕi is true for somei it executes the
correspondingci . If none of theϕi ’s are true then the case plan fails and the execution of
the conditional plan which contains this case plan also fails.

There are two kind of queries that we can ask our domain descriptions. They are of the
form:

Knows ϕ after c (2.5)

Kwhether ϕ after c (2.6)

T.C. Son, C. Baral / Artificial Intelligence 125 (2001) 19–91 27

wherec is a conditional plan andϕ is a fluent formula. Intuitively, the first query is about
asking if a domain description entails that the fluent formulaϕ will be known to be true
after executing the conditional planc in the initial situation, and the second query is about
asking if a domain description entails that the fluent formulaϕ will be known to be true or
known to be false after executing the conditional planc in the initial situation.

2.2. Semantics ofAK

In AK , we have three kinds of states: a world state (often referred to as astate)
representing the state of the world, aknowledge state(or a k-state), representing the state
of the knowledge of the agent, and acombined state(or a c-state) that is a pair consisting
of a world state, and a k-state. As mentioned earlier, the semantics of domain descriptions
in AK are defined in terms of models which are pairs consisting of an initial c-state and a
transition function that maps pairs of actions and c-states into c-states.

In the following we will use small letters beginning froms (possibly with indexes) to
denote world states, uppercase Greek letters likeΣ (possibly with indexes) to denote k-
states, and lowercase Greek letters likeσ, δ (possibly with indexes) to denote c-states. The
letterc (possibly with indexes) will be used exclusively to denote conditional plans while
α (possibly with indexes) will be used to denote a sequence of actions.

A states is a set of fluents and ak-stateis a set of states. Acombined state(or c-state)
of an agent is a pair〈s,Σ〉 wheres is a state andΣ is a k-state. Intuitively, the states in a
c-state〈s,Σ〉 is the real state of the world whereasΣ is the set of possible states which an
agent believes it might be in. We say a c-stateσ = 〈s,Σ〉 is groundedif s ∈Σ . Intuitively,
grounded c-states correspond to the assumption that the world state belongs to the set of
states that the agent believes it may be in.

Given a fluentf and a states, we say thatf holds ins (f is true ins) if f ∈ s; ¬f
holds ins (f is false ins) if f /∈ s. The truth of a propositional fluent formula with respect
to s is defined as usual. We say two statess ands′ agree on a fluentf if (f ∈ s iff f ∈ s′).
Given a c-stateσ = 〈s,Σ〉, we say that a fluentf is known to be true(respectivelyknown
to be false) in 〈s,Σ〉 if f is true (respectively false) in every states′ ∈Σ ; andf is known
in 〈s,Σ〉, if f is known to be true or known to be false in〈s,Σ〉. Given a fluent formula
ϕ, we say thatϕ is known to be true (respectively false) in a c-state〈s,Σ〉 if ϕ is true
(respectively false) in every states′ ∈Σ .

An actiona is executable in a states, if there exists an ex-propositionexecutablea if p1,

. . . , pn in D such thatp1, . . . , pn hold in s.
For an actiona and a states, if a is executable ins, we define

E+a (s)= {f | f is a fluent and there exists an ef-proposition

“a causesf if p1, . . . , pn” ∈D such thatp1, . . . , pn hold in s},
E−a (s)= {f | f is a fluent and there exists an ef-proposition

“a causes¬f if p1, . . . , pn” ∈D such thatp1, . . . , pn hold in s},
and

Res(a, s)= s ∪E+a (s) \E−a (s).

28 T.C. Son, C. Baral / Artificial Intelligence 125 (2001) 19–91

If a is not executable ins, we say thatRes(a, s) is undefined.
Intuitively, Res(a, s) is the state resulting from executinga in s. Since we do not allow

contradictory ef-propositions in our domain description, for any pair of an actiona and a
states,E+a (s) andE−a (s) are disjoint and uniquely determined. ThusResis a deterministic
function.

We are now ready to defineΦ, the transition function between c-states.

Definition 2. A functionΦ from actions and c-states into c-states is called atransition
functionof D if for all c-stateσ = 〈s,Σ〉 and actiona,

(1) if a is not executable ins thenΦ(a,σ) is undefined, denoted byΦ(a,σ)=⊥;
(2) if a is executable ins anda is a non-sensing action, then

Φ(a,σ)= 〈Res(a, s), {s′ | s′ =Res(a, s′′) for somes′′ ∈Σ such that

a is executable ins′′}〉;
and

(3) if a is executable ins and a is a sensing action whose k-propositions are
a determinesf1, . . . , a determinesfm, then

Φ(a,σ)= 〈s, {s′ | s′ ∈Σ such thats ands′agree on eachfi, (i 6m), and

a is executable ins′}〉.
SinceResis a deterministic function, it is easy to show the following:

Proposition 1. Every domain descriptionD possesses a unique transition functionΦ.

Notice that our definition of the transition functionΦ does not stipulate any special
requirement on how theResfunction is defined. Thus, any action description language [3,
26,53] with a semantics depending on a state transition function likeRescan be extended
to allow sensing actions. Therefore, several of the other features of action description
languages such as multi-valued fluents [19], ramification [26,36], causality [1,35,43],
concurrent actions [2,3,37], can be directly added to our framework. For example, to extend
our formulation to multi-valued fluents, we have to:

(i) extend our propositions to be able to denote different values of the fluents, and
(ii) extend our notion of states to be interpretations of the fluents.

The definition of transition function will remain the same, except that the notion ofs ands′
agreeing on a fluentf would now mean thats ands′ have the same value off . To keep our
focus on the main issue of formalizing sensing actions, we do not include these features in
our formulation, as they can be directly added when desired.

Definition 3.
(1) A states is called aninitial state of a domain descriptionD if for every value

proposition of the form “initially p” (respectively “initially ¬p”) in D, p is true
(respectively false) ins.

(2) A c-state〈s0,Σ0〉 is aninitial c-stateof D if s0 is an initial state andΣ0 is a set of
initial states ofD.

T.C. Son, C. Baral / Artificial Intelligence 125 (2001) 19–91 29

We say an initial c-stateσ0 = 〈s0,Σ0〉 is completeif Σ0 is the set of all initial states.
Intuitively, the completeness of initial c-states express the assumption that our agent has
complete knowledge about what it knows and does not know about the initial state. We
will refer to this as thecomplete awareness assumption. 2 Even though, we believe that
this assumption should not be used indiscriminately,since it reduces the number of initial
c-states, we will use it in most of our examples.

Definition 4. A model of a domain descriptionD is a pair (σ0,Φ) such thatσ0 is a
grounded initial c-state ofD andΦ is a transition function ofD. A model (σ0,Φ) is
calledrational if σ0 is complete.

Since the transition functionΦ as defined so far can only tell us which c-state is reached
after executingan action in a given c-state, we need to extend the function to be able
to reason—beyond action sequences—about conditional plans. We call it the extended
function ofΦ and define it as follows.

Definition 5. LetD be a domain description andΦ be its transition function. The extended
transition function ofD, denoted bŷΦ, which maps pairs of conditional plans and c-states
into c-states, is defined as follows.

(1) Φ̂([], σ)= σ .
(2) For an actiona, Φ̂(a, σ)=Φ(a,σ).
(3) For

c=Case

ϕ1→ c1

. . .

ϕn→ cn

Endcase,

Φ̂(c, σ)=
{
Φ̂(ci , σ) if ϕi is known to be true inσ ,
⊥ if none of ϕ1, . . . , ϕn is known to be true inσ .

(4) Forc= c1; c2, wherec1, c2 are conditional plans,̂Φ(c,σ)= Φ̂(c2, Φ̂(c1, σ)).
(5) Φ̂(c,⊥)=⊥ for every conditional planc.

We say that a conditional planc is executable in a c-stateσ if Φ̂(c, σ) 6=⊥. 3

We are now ready to define the entailment relation for domains ofAK .

Definition 6. Let D be a domain description,c be a conditional plan, andϕ be a fluent
formula. We say,

2 Turner [52] used a similar assumption called “complete initial situation assumption” according to which each
model of his logic programming formulation of actions would have complete information about the initial state.

3 It is easy to see that for every pair of a c-stateσ and a conditional planc, Φ̂(c, σ)=⊥ or there exists a unique
c-stateσ ′ such thatΦ̂(c, σ)= σ ′ .

30 T.C. Son, C. Baral / Artificial Intelligence 125 (2001) 19–91

(i) D |=AK Knows ϕ after c if c is executable inσ0 andϕ is known to be true in
Φ̂(c, σ0) for every model(σ0,Φ) of D;

(ii) D |=AK Kwhether ϕ after α if c is executable inσ0 andϕ is known to be true or
known to be false in̂Φ(α,σ0) for every model(σ0,Φ) of D.

Rational entailmentof queries with respect toD—denoted by|=rAK—is defined similarly
by only considering rational models ofD.

The following examples elucidates the above definitions.

Example 2. LetD2 be the domain description consisting of the following propositions.

initially f

a causes¬f
senseg determinesg

executablea

executablesenseg

=D2

Let s1= {f,g}, s2= {f }, s3= {g}, s4= ∅.
There are two possible complete initial c-states ofD2: σ1 = 〈s1, {s1, s2}〉 and σ2 =
〈s2, {s1, s2}〉. LetΦ be the transition function ofD2. We then have:

Φ̂([a], σ1)=Φ(a,σ1)= 〈s3, {s3, s4}〉,
Φ̂([a;senseg], σ1)= Φ̂([senseg], 〈s3, {s3, s4}〉)= 〈s3, {s3}〉,

Φ̂([a], σ2)= 〈s4, {s3, s4}〉,
Φ̂([a;senseg], σ2)= Φ̂([senseg], 〈s4, {s3, s4}〉)= 〈s4, {s4}〉.

Sinceg is known to be true in〈s3, {s3}〉 and known to be false in〈s4, {s4}〉, we can conclude
thatD2 |=rAK Kwhether g after [a,senseg].

However,D2 6|=rAK Kwhether g after [a], becauseg is not known to be true or known
to be false in〈s3, {s3, s4}〉. Furthermore,

D2 6|=rAK Knows g after [a,senseg], and

D2 6|=rAK Knows¬g after [a,senseg].

In the following example we consider conditional plans.

Example 3. Let us consider the domain descriptionD1 from Example 1. The states ofD1
are:

s1= ∅, s5= {disarmed},
s2= {locked}, s6= {disarmed,exploded},
s3= {exploded}, s7= {disarmed, locked},
s4= {locked,exploded}, s8= {disarmed, locked,exploded}.

T.C. Son, C. Baral / Artificial Intelligence 125 (2001) 19–91 31

The set of initial states ofD1 is Σ0 = {s1, s2} and the two complete initial c-states ofD1
areσ1 = 〈s1,Σ0〉 andσ2 = 〈s2,Σ0〉. Let Φ be the transition function ofD1. Thus, by
Definition 4,D1 has two rational models:(σ1,Φ) and(σ2,Φ). We have:

Φ̂([look], σ1)= 〈s1, {s1}〉,
Φ̂([look;disarm], σ1)= 〈s3, {s3}〉,
Φ̂([look; turn], σ1)= 〈s2, {s2}〉,
Φ̂([look; turn;disarm], σ1)= 〈s7, {s7}〉,

Φ̂([look], σ2)= 〈s2, {s2}〉,
Φ̂([look;disarm], σ2)= 〈s7, {s7}〉,
Φ̂([look; turn], σ2)= 〈s1, {s1}〉,
Φ̂([look; turn;disarm], σ2)= 〈s3, {s3}〉.

(2.7)

Based on the above computation we have the following:

D1 6|=rAK Knows disarmedafter [look;disarm] and

D1 6|=rAK Knows disarmedafter [look; turn;disarm].
In Proposition A.1 (Appendix A) we show that there exists no sequence of actionsα ofD1
such thatD1 |=rAK Knows disarmed∧¬explodedafter α.

Let us now consider the conditional plan:

look;
Case

¬locked→ turn

locked→[]
Endcase

= c1

disarm

= c

We will show thatD1 |=rAK Knows disarmed∧¬explodedafter c.

From the definition of̂Φ and the computation of̂Φ in (2.7), we have the following:

Φ̂(c, σ1) = Φ̂(c1;disarm, Φ̂(look, σ1))= Φ̂(c1;disarm,Φ(look, σ1))

= Φ̂(c1;disarm, 〈s1, {s1}〉)= Φ̂(disarm, Φ̂(c1, 〈s1, {s1}〉))
= Φ̂(disarm, Φ̂(turn, 〈s1, {s1}〉))

(because¬lockedis known to be true in〈s1, {s1}〉)
= Φ̂(disarm,Φ(turn, 〈s1, {s1}〉))
= Φ̂(disarm, 〈s2, {s2}〉))=Φ(disarm, 〈s2, {s2}〉))
= 〈s7, {s7}〉

32 T.C. Son, C. Baral / Artificial Intelligence 125 (2001) 19–91

and

Φ̂(c, σ2) = Φ̂(c1;disarm, Φ̂(look, σ2))= Φ̂(c1;disarm,Φ(look, σ2))

= Φ̂(c1;disarm, 〈s2, {s2}〉)= Φ̂(disarm, Φ̂(c1, 〈s2, {s2}〉))
= Φ̂(disarm, Φ̂([], 〈s2, {s2}〉))

(becauselockedis known to be true in〈s2, {s2}〉)
= Φ̂(disarm, 〈s2, {s2}〉))=Φ(disarm, 〈s2, {s2}〉))
= 〈s7, {s7}〉.

So, Φ̂(c, σ1) = 〈s7, {s7}〉 and Φ̂(c, σ2) = 〈s7, {s7}〉. Since disarmed∧ ¬exploded is
known to be true in the c-state〈s7, {s7}〉, by Definition 6,D1 |=rAK Knows disarmed∧
¬explodedafter c.

2.3. Translating domain descriptions to first-order theories

In this section we give a translation of domain descriptions (D) in AK to theories in
first-order logic (R(D)), and then show that the translation is sound and complete with
respect toAK when answering queries in the language ofAK . Our translation fromD into
R(D) is inspired by the translation of Kartha [25], and uses axioms and notations from [49]
and [47]. In this section we use the standard notation of having variables start with small
letters and constants start with capital letters. To be consistent we use the same notation for
domain descriptions.

Let us consider a domain descriptionD. Assume thatD contains
(1) n sensing actionsK1, . . . ,Kn with the k-propositionsKi determinesFi for (16

i 6 n), and
(2) m value-propositionsinitially Gi for (16 i 6m).

For simplicity, we also assume that each actionA in D occurs in at least one executability
condition and each sensing actionKi occurs in only one k-proposition. Then, the domain
descriptionD can be translated into a many-sorted theoryR(D) as follows.

Objects ofR(D) are of the sorts:action, fluent, and situation. To distinguish with
states—which are often denoted bys (possibly with subscripts)—in the previous sections,
we uses or S (possibly with subscripts) to denote situations. The vocabulary (signature)
of R(D) consists of the following:
• a constantS0 of type situation;
• constantsA of type “action” which correspond to different actions fromD (one

constant for each action);
• constantsF of type “fluent” which correspond to different fluents fromD (one

constant for each fluent);
• a function symboldo of the type〈action× situation→ situation〉;
• a predicate symbolHoldsof the type〈fluent,situation〉;
• a predicate symbolK of the type〈situation,situation〉;

We will need the following notations.
• For a fluentF , Holds(¬F, s) stands for¬Holds(F, s).
• For a conjunction of literals%= P1∧· · ·∧Pn, Holds(%, s) denotes

∧n
i=1 Holds(Pi, s).

T.C. Son, C. Baral / Artificial Intelligence 125 (2001) 19–91 33

• For each fluentF and actionA,

γ+F (A, s)
def≡

∨
“A causesF if %”∈D

Holds(%, s),

γ−F (A, s)
def≡

∨
“A causes¬F if %”∈D

Holds(%, s), and

Poss(A, s)
def≡

∨
“executableA if %”∈D

Holds(%, s).

The axioms ofR(D) are described below.
(1) The successor state axiom—using Reiter’s formulation in [47]—for an ordinary

fluentF and an actionA is given by:

Poss(A, s)⊃
[Holds(F,do(A, s))≡ γ+F (A, s)∨ (Holds(F, s)∧¬γ−F (A, s))]. (2.8)

(2) The successor state axiom forK (borrowed from [49]) and an actionA is given by:

Poss(A, s)⊃
[
K(s′′,do(A, s))≡

∃s′ (K(s′, s)∧Poss(A, s′)∧ (s′′ = do(A, s′)))∧((
n∧
j=1

A 6=Kj
)
∨ (2.9)

(
n∨
j=1

(A=Kj ∧Holds(Fj , s)≡Holds(Fj , s
′))
))]

,

where, recall that,K1, . . . ,Kn are the sensing actions inD that determine
F1, . . . ,Fn respectively.

(3) Fori = 1, . . . ,m, R(D) contains

Holds(Gi,S0) (2.10)

where, recall that,G1, . . . ,Gm, are the only fluent literals known to be true in the
initial state.

(4) The following axioms are for the accessibility relation in the initial situation:

K(s,S0)⊃
m∧
i=1

Holds(Gi, s) (2.11)

and

K(S0,S0). (2.12)

(5) The domain closure assumption (DCA) for fluents:∨
F∈F

f = F.

34 T.C. Son, C. Baral / Artificial Intelligence 125 (2001) 19–91

(6) The domain closure assumption (DCA) for actions:∨
A∈A

a =A.

(7) The unique name assumption (UNA) for fluents:∧
F1,F2∈F

F1,F2 distinct

F1 6= F2.

(8) The unique name assumption (UNA) for actions:∧
A1,A2∈A

A1,A2 distinct

A1 6=A2.

We now relate the entailment inD and the entailment inR(D), for queries regarding fluent
values after a sequence of actions. We use the following notation:
• Holds(ϕ, s) is a shorthand for a corresponding formula ofHolds with only fluents

as its first argument. For example,Holds(f1 ∨ f2, s) denotesHolds(f1, s) ∨
Holds(f2, s). Similarly, Holds(f1 ∧ f2, s) denotesHolds(f1, s) ∧ Holds(f2, s), and
as we mentioned beforeHolds(¬f, s) denotes¬Holds(f, s).
• Knows(ϕ,S) denotes the formula:∀s′(K(s′,S)⊃Holds(ϕ, s′)).
• For a sequence of actionsα = [a1; . . . ;ak]

do([], s) denotess,

do(α, s) denotesdo(ak,do(ak−1, . . . ,do(a1, s))),

Poss([], s)≡ true, and

Poss(α, s) denotes
k∧
i=1

Poss(ai,do([a1; . . . ;ai−1], s)).

Proposition 2. LetD be a domain description,ϕ be a fluent formula, andα be a sequence
of actions ofD. Then,

D |=AK Knows ϕ after α iff R(D) |= Knows(ϕ,do(α,S0))∧Poss(α,S0).

Proof. In Appendix B. 2
Our next step is to relateD and R(D) for queries with conditional plans. For

that we introduce a three-sorted predicateApply(c, s, s′), whose intuitive meaning is
that the conditional planc executed in situations takes us to the situations′. For
example, letc be the conditional plan in Example 3, ands be a situation where
¬lockedholds in the real world. ThenApply(c, s,do(disarm,do(turn,do(look, s)))) will
be true. Intuitively, this means that whenc is executed ins, we reach the situation
do(disarm,do(turn,do(look, s))), or if c were to be executed ins, then the action sequence
that would be executed from left to right islook; turn;disarm.

The definition of ‘Apply’ is similar to the formula ‘Rdo’ in [31]. In our formulation,
we will represent a case plan as a list of pairs of conditions and conditional plans using

T.C. Son, C. Baral / Artificial Intelligence 125 (2001) 19–91 35

three constructor functions: one that constructs a list, another that constructs a pair, and
one that constructs a case plan. Any conditional plan can be represented as a list of
actions and case plans. For example, the conditional planc in Example 3 is represented
by [look; case([([¬locked], [turn]), ([locked], [])]); disarm]. We now defineApply as a
nested abnormality theory (NAT) [33] block.

BApply=
{min Apply:

Apply([], s, s)
Poss(a, s)∧Apply(α,do(a, s), s′)⊃ Apply([a|α], s, s′)
¬Poss(a, s)⊃ Apply([a|α], s, ⊥)
Apply([case([])|c], s, ⊥)
Apply(c,⊥,⊥)
Knows(ϕ, s)∧Apply(c, s, s′)∧Apply(c′′, s′, s′′)⊃

Apply([case([(ϕ, c)|r ′])|c′′], s, s′′)
¬Knows(ϕ, s)∧Apply([case(r ′)|c′′], s, s′))⊃

Apply([case([(ϕ, c)|r ′])|c′′], s, s′)
}

In the above nested abnormality theoryc andc′′ are conditional plans whiler ′ is a list of
pairs of conditions and conditional plans. (Note thatcase(r ′) will denote a conditional
plan.) The above NAT defines the predicateApply using circumscription and can be
equivalently written asCirc(T ;Apply), whereT is the set of seven axioms following
“min Apply :” in BApply. That is, we consider only models ofT in which the predicate
Apply is minimized. This guarantees that every situation is the result of execution of a
conditional plan from the initial situation. For more on nested abnormal theories, please
see Appendix E.

The NATBApply can be defined in words as follows:
• Apply([], s, s) is true, for alls.
• For all a,α, s, s′, Apply([a|α], s, s′) is true if Apply(α,do(a, s), s′) ∧ Poss(a, s) is

true.
• For all a,α, s, s′, Apply([a|α], s,⊥) is true if Apply(α,do(a, s), s′) ∧ ¬Poss(a, s) is

true.
• Apply([case([])|c], s,⊥) is true for allc ands.
• Apply(c,⊥,⊥) is true for allc.
• For allϕ, s, s′, s′′, c, r ′, c′′, Apply([case([(ϕ, c)|r ′])|c′′], s, s′′) is true

if Knows(ϕ, s)∧Apply(c, s, s′)∧ Apply(c′′, s′, s′′) is true.
• For all ϕ, s, s′, c, r ′, c′′, Apply([case([(ϕ, c)|r ′])|c′′], s, s′) is true if¬Knows(ϕ, s) ∧

Apply([case(r ′)|c′′], s, s′)) is true.
• If none of the above rules is applicable thenApply(c, s, s′) is false.

We now explain how the above definition entailsApply([a1;a2;a3], s,do(a3,do(a2,

do(a1, s)))), assuming thatPoss([a1;a2;a3], s) is true. We have that

36 T.C. Son, C. Baral / Artificial Intelligence 125 (2001) 19–91

• Apply([a1;a2;a3], s,do(a1,do(a2, do(a3, s)))) is true if Poss(a1, s) and
Apply([a2;a3],do(a1, s),do(a3,do(a2,do(a1, s)))) is true (using the second rule).
• Apply([a2;a3],do(a1, s),do(a1,do(a2,do(a3, s)))) is true if Poss(a2,do(a1, s)) and

Apply([a3],do(a2,do(a1, s)),do(a3,do(a2,do(a1, s)))) is true (using the second
rule).
• Apply([a3],do(a2,do(a1, s)),do(a1,do(a2,do(a3, s)))) is true if Poss([a1;a2;a3], s)

and Apply([],do(a3,do(a2,do(a1, s))),do(a3,do(a2,do(a1, s)))) is true (using the
second rule).
• Apply([],do(a3,do(a2,do(a1, s))),do(a3,do(a2,do(a1, s)))) is true (using the first

rule).

Proposition 3. LetD be a domain description andR(D) be the corresponding first-order
theory. Letc be a conditional plan andϕ be a fluent formula. Then,

D |= Knows ϕ after c iff

R(D) ∪BApply |= Knows(ϕ, s)∧Apply(c,S0, s)∧ s 6=⊥ .

Proof. In Appendix B. 2
We would like to point out that the above proposition also holds for a slightly different

translationR1(D), where we use the following simpler successor state axiom—based on
the formulas (1.5) and (1.6) of Section 1.3—instead of the successor state axiom (2.9):

Poss(x, s)∧Poss(x, s′)⊃[
K(do(x, s′),do(x, s))≡(
K(s′, s)∧((

n∧
j=1

x 6=Kj
)
∨
(

n∨
j=1

(
x =Kj ∧Holds(Fj , s)≡Holds(Fj , s

′)
))))]

.

(2.13)

2.4. State space analysis

In this section we analyze the size of the state space, when reasoning inAK .
• It is easy to see that when we haven fluents, we will have 22

n+n c-states and 22
n+n−1

grounded c-states.
• Now suppose out of then fluents, in the initial situation we do not know the truth

value ofp (p 6 n) fluents. I.e., we know the truth value ofn− p fluents. Then in all
initial c-states〈s,Σ〉, the size ofΣ will be less than 2p. It follows from the definition
of the transition function and the fact that we do not have any knowledge loosing
actions that any c-state that can be reached by executing a sequence of actions in the

T.C. Son, C. Baral / Artificial Intelligence 125 (2001) 19–91 37

initial c-state will also have the size of itsΣ less than 2p. Taking this into account the
size of the reachable (from the initial c-states) state space will be:(

2n

1

)
+ 2×

(
2n

2

)
+ · · · + 2p ×

(
2n

2p

)
which is larger than 22

p
.

• If we consider the formulations in [41,49] the ‘states’ will be Kripke models. In
that case forn fluents, we will have at least 2n different possible worlds, and the
accessibility relation will be a subset of 2n×2n = 22n elements. Thus the total number
of different Kripke models will be 2n × 222n = 222n+n.
• Recently complexity results about planning in presence of incomplete information

have been developed in [8]. One of the results is that the polynomial plan existence
problem is6P

2-complete in presence of incomplete knowledge about the initial
situation and the restriction that sensing actions are executed a limited number
(bounded by a constant) of times, when looking for feasible (polynomial length)
plans. Without the restrictions the complexity is higher.

The tremendously large size of the state space forAK and also for the formulations
in [38,49], and the above mentioned complexity results necessitates search for (provably
sound) approximations that have a more manageable state space and a lower complexity.
This is our focus in the next section.

3. Approximating AK

In this section we define several approximations of the semantics ofAK . In our
approximations we will use 3-valued states, which we will calla-states(or approximate
states), to represent the state of knowledge of an agent. An a-state will be normally
represented by a pair〈T ,F 〉, whereT andF are disjoint sets of fluents. Intuitively,T
(respectivelyF) is the set of fluents which are true (respectively false) in the state〈T ,F 〉.
An a-state〈T ,F 〉 is said to becompleteif T ∪ F is the set of all the fluents in the domain
description. Often we will abuse notation to represent a complete a-state〈T ,F 〉, by justT .
Letσ1= 〈T1,F1〉 andσ2= 〈T2,F2〉 be two a-states. We say that an a-state〈T1,F1〉 extends
the a-state〈T2,F2〉, denoted byσ2� σ1, if T2⊆ T1 andF2⊆ F1. If σ1 extendsσ2, we also
say thatσ1 is an extension ofσ2. σ1∩σ2 will denote the pair〈T1∩T2,F1∩F2〉 andσ1 \σ2
denotes the set(T1 \ T2) ∪ (F1 \ F2). For a set of fluentsX we writeX \ 〈T ,F 〉 to denote
X \ (T ∪ F).

Given a fluentf and an a-stateσ = 〈T ,F 〉, we say thatf is true (respectivelyfalse) in
σ if f ∈ T (respectivelyf ∈ F); andf is known(respectivelyunknown) in σ if f ∈ T ∪F
(respectivelyf /∈ T ∪ F). A positive (respectively negative) fluent literalf is said to hold
in 〈T ,F 〉 if f ∈ T (respectivelyf ∈ F).

We are now ready to define several approximations forAK . The difference between the
approximations is based on how much case analysis is done to reason about actions when
the agent has incomplete knowledge about the world. We start with the 0-Approximation
where no case analysis is done.

38 T.C. Son, C. Baral / Artificial Intelligence 125 (2001) 19–91

3.1. 0-Approximation

Let D be a domain description,〈T ,F 〉 be an a-state, andf be a fluent inD. f
(respectively¬f) is said topossibly holdin 〈T ,F 〉 if f /∈ F (respectivelyf /∈ T). A set of
fluent literals{f1, . . . , fn} is said topossibly holdin 〈T ,F 〉 if for all i, fi possibly holds
in 〈T ,F 〉. An actiona is said to be 0-executablein an a-state〈T ,F 〉 if there exists an
ex-propositionexecutablea if p1, . . . , pn, such thatp1, . . . , pn hold in 〈T ,F 〉. We now
introduce several notations.
• e+a (〈T ,F 〉) = {f | f is a fluent and there exists “a causesf if p1, . . . , pn” in D such

thatp1, . . . , pn hold in 〈T ,F 〉}.
• e−a (〈T ,F 〉) = {f | f is a fluent and there exists “a causes¬f if p1, . . . , pn” in D

such thatp1, . . . , pn hold in 〈T ,F 〉}.
• F+a (〈T ,F 〉)= {f | f is a fluent and there exists “a causesf if p1, . . . , pn” in D such

thatp1, . . . , pn possibly hold in〈T ,F 〉}.
• F−a (〈T ,F 〉) = {f | f is a fluent and there exists “a causes¬f if p1, . . . , pn” in D

such thatp1, . . . , pn possibly hold in〈T ,F 〉}.
• K(a, 〈T ,F 〉)= {f | f is a fluent and “a determinesf ” in D}.

Intuitively, e+a (〈T ,F 〉) (respectivelye−a (〈T ,F 〉)) is the set of fluents thatmust be true
(respectivelyfalse) after executinga in 〈T ,F 〉; F+a (〈T ,F 〉) (respectivelyF−a (〈T ,F 〉)) is
the set of fluents thatmay be true(respectivelyfalse) after executinga in 〈T ,F 〉; and
K(a, 〈T ,F 〉) is the set of fluents which become known after executing the actiona in
〈T ,F 〉.

We define the result function ofD in the 0-Approximation, denoted byRes0, as follows.

Res0(a, 〈T ,F 〉)=
〈
T ∪ e+a (〈T ,F 〉) \ F−a (〈T ,F 〉),F ∪ e−a (〈T ,F 〉) \F+a (〈T ,F 〉)

〉
.

We illustrate these definitions in the next example.

Example 4. For the domain descriptionD1 from Example 1, the initial a-state isσ0 =
〈∅, {disarmed,exploded}〉.

Since neitherlockednor¬lockedholds inσ0, we have that

e+disarm(σ0)= ∅, e−disarm(σ0)= ∅,
e+turn(σ0)= ∅, e−turn(σ0)= ∅.

Sincelockedand¬lockedpossibly hold inσ0, we have that

F+disarm(σ0)= {exploded,disarmed}, F−disarm(σ0)= ∅,
F+turn(σ0)= {locked}, F−turn(σ0)= {locked}

and

K(look, σ0)= {locked}.
Since there is no ef-proposition whose action islook, we have thate+look(σ0)= e−look(σ0)=
F+look(σ0)= F−look(σ0)= ∅. Hence,

T.C. Son, C. Baral / Artificial Intelligence 125 (2001) 19–91 39

Res0(disarm, σ0)= 〈∅,∅〉,
Res0(turn, σ0)= 〈∅, {disarmed,exploded}〉,
Res0(look, σ0)= 〈∅, {disarmed,exploded}〉.

In the above example, even thoughdisarmedand explodedwere false in σ0, after
executingdisarm they become unknown. On the face of it this is counter to the intuition
behind the frame problem, where the values of fluents remain unchanged from one situation
to another, unless the action in between changes them. In this case the actiondisarmhas
two effect propositions, neither of which is applicable as their preconditions (¬lockedand
lockedrespectively) do not hold. So a naive application of the frame axiom would lead us to
conclude thatdisarmedandexplodedremainfalse in the situation after executingdisarm
in σ0. But such a conclusion isnot sound, as it is possible that in the real worldlocked
wastrueand thus after executingdisarm, disarmedbecametrue. Based on this possibility,
we can not just havedisarmedto be true in the resultant situation either, as this would be
unsound if¬lockedwas true in the real world instead. Thus taking into account the two
possibilities, we can reason that the agent will not know whetherdisarmedis true or false
after executingdisarm. Thus, the resultant a-state should havedisarmedas unknown.Our
not so straightforward definition of Res0, encodes this skeptical reasoning.We now use
Res0 to define the transition functionΦ0. Again, executing an action might result in an
undefined a-state, denoted by⊥.

Definition 7. Given a domain descriptionD, the 0-transition functionΦ0 of D is defined
as follows:
• If a is not 0-executable inσ , thenΦ0(a, σ)= {⊥};
• If a is 0-executable inσ anda is a non-sensing action thenΦ0(a, σ)= {Res0(a, σ)};

and
• If a is 0-executable inσ anda is a sensing action thenΦ0(a, σ)= {σ ′ | σ � σ ′ and
K(a,σ) \ σ = σ ′ \ σ }.

In the above definition, the transition due to a sensing action results in a set of a-states,
each corresponding to a particular set of sensing results. The condition that all elements
of σ ′ \ σ are fromK(a,σ) makes sure that only fluents that are sensed are the ones for
which we have a k-proposition and the condition that all elements ofK(a,σ) are inσ ′ \ σ
makes sure that all fluents mentioned in the k-propositions for that action have atrue or
falsevalue inσ ′. If we were to allow actions to be able to both sense and change the world,
thenΦ0(a, σ) for such an action can be succinctly defined as:Φ0(a, σ)= {σ ′ | σ ′ extends
Res0(a, σ) andσ ′ \Res0(a, σ)=K(a,σ) \Res0(a, σ)}.

Let Φ0 be a 0-transition function ofD. The 0-extended transition function̂Φ0 which
maps pairs of conditional plans and a-states into set of a-states is defined next.

Definition 8.
(1) Φ̂0([], σ)= {σ }.
(2) Φ̂0(a, σ)=Φ0(a, σ).
(3) For a case plan

40 T.C. Son, C. Baral / Artificial Intelligence 125 (2001) 19–91

c=Case

ϕ1→ p1

...

ϕn→ pn

Endcase

Φ̂0(c, σ)=
 Φ̂0(pj , σ) if ϕj holds inσ,

{⊥} if none ofϕ1, . . . , ϕn holds inσ.

(4) For two conditional plansc1 andc2, Φ̂0([c1; c2], σ)=⋃σ ′∈Φ̂0(c1,σ)
Φ̂0(c2, σ

′).
(5) Φ̂0(c,⊥)= {⊥}.

A conditional planc is 0-executablein an a-stateσ if ⊥ /∈ Φ̂0(c, σ). An a-stateσ0 is
called aninitial a-stateof D if for any fluent literalf , f holds inσ0 iff “ initially f ” is in
D. It is easy to see that for each domain description, the initial a-state is unique.

Definition 9. Given a domain descriptionD, a 0-model is a pair(σ0,Φ0) whereσ0 is the
initial a-state ofD andΦ0 is a 0-transition function ofD.

Similarly to Proposition 1, we can prove that the 0-transition functionΦ0 ofD is unique.
In the next definition, we define our first approximate entailment relation, the 0-entailment
(|=0), based on the 0-model.

Definition 10. LetD be a domain description,ϕ be a fluent formula, andc be a conditional
plan inD. We say
• D |=0 Knows ϕ after c if c is 0-executable inσ0 and ϕ holds in every a-state

belonging toΦ̂0(c, σ0) for every 0-model(σ0,Φ0) of D; and
• D |=0 Kwhether ϕ after c if c is 0-executableσ0 andϕ is known in every a-state

belonging toΦ̂0(c, σ0) for every 0-model(σ0,Φ0) of D.

Example 5. For the domain descriptionD1 we have that

Φ0(disarm, σ0) = {〈∅,∅〉},
Φ0(turn, σ0) = {〈∅, {disarmed,exploded}〉},
Φ0(look, σ0) = {〈{locked}, {disarmed,exploded}〉,

〈∅, {locked,disarmed,exploded}〉}.

Thus D1 |=0 Kwhether locked after look but D1 6|=0 Knows locked after look and
D1 6|=0 Knows¬lockedafter look.

T.C. Son, C. Baral / Artificial Intelligence 125 (2001) 19–91 41

In the next example we show that the conditional plan for disarming the bomb in
Example 3 can also be analyzed using the 0-Approximation.

Example 6. Let us reconsider the domainD1 and the conditional plan of Example 3.

look;
Case

¬locked→ turn

locked→[]
Endcase

= c1

disarm

= c

We have that the initial a-state ofD is σ0= 〈∅, {disarmed,exploded}〉.
To prove thatD1 |=0 Knows disarmed∧ ¬explodedafter c, we computêΦ0(c, σ0) as

follows.
First, sinceK(look, σ0) = {locked} we have thatΦ0(look, σ0) = {σ1, σ2} whereσ1 =
〈{locked}, {disarmed,exploded}〉 andσ2= 〈∅, {disarmed,exploded, locked}〉.

Hence,

Φ̂0(c, σ0) =
⋃

σ ′∈Φ0(look,σ0)

Φ̂0(c1;disarm, σ ′)

= Φ̂0(c1;disarm, σ1)∪ Φ̂0(c1;disarm, σ2).

Since locked holds in σ1 and¬locked holds in σ2, we have that̂Φ0(c1;disarm, σ1) =
Φ̂0(disarm, σ1) andΦ̂0(c1;disarm, σ2)=⋃σ ′∈Φ̂0(turn,σ2)

Φ̂0(disarm, σ ′).
Furthermore,̂Φ0(disarm, σ1) = {〈{disarmed, locked}, {exploded}〉} andΦ̂0(turn, σ2) =

Φ0(turn, σ2)= {〈{locked}, {disarmed,exploded}〉} = {σ1}.
Thus,Φ̂0(c1;disarm, σ2)= Φ̂0(disarm, σ1)= {〈{disarmed, locked}, {exploded}〉}.
In summary, we have that̂Φ0(c, σ0)= {〈{disarmed, locked}, {exploded}〉} which implies

thatD1 |=0 Knows disarmed∧¬explodedafter c.

Although 0-Approximation can correctly analyze the above example, it has weaknesses
and it cannot entail many queries entailed by theAK semantics. The following example
illustrates this.

Example 7. Let us consider the domainD3 with the following causal rules;

a causesf if g

a causesf if ¬g
executablea

=D3

The initial a-state ofD3 is σ0= 〈∅,∅〉. Intuitively, we would expect thatKnows f after a
is entailed byD3 and this entailment holds for|=rAK . However,Φ̂0(a, σ0)=Φ0(a, σ0)=
{〈∅,∅〉} becausee+a (σ0) = e−a (σ0) = F−a (σ0) = ∅ andF+a (σ0) = {f }. This means that
D3 6|=0 Knowsf after a.

42 T.C. Son, C. Baral / Artificial Intelligence 125 (2001) 19–91

In the above example, by doing case analysis we can intuitively conclude thatf should
be true after executinga in the initial situation. I.e., we analyze that in the initial situation
g could be either true or false, and in both cases we can conclude thatf will be true
after executinga. The reasoning mechanism in the 0-Approximation lacks any such case
analysis. In the next section we introduce the notion of 1-Approximation that does some
case analysis and is able to make the intuitive conclusion in the above example.

3.2. 1-Approximation

The 1-Approximation improves on 0-Approximation by defining a new result function
which given an incomplete a-stateσ and an actiona, considers all complete extensions of
σ , and appliesa to these extensions and then considers what is true and what is false in all
the resulting states. Such a transition function does intuitive reasoning with respect to the
Example 7. We now formally define the new result function. For an a-stateσ , let Comp(σ)
be the set of all the complete a-states that extendσ . The result function,Res1, which maps
a pair of an actiona and an a-stateσ into an a-stateRes1(a, σ) is defined as follows.

Res1(a, σ)=
⋂

σ ′∈Comp(σ)

Res0(a, σ
′).

The notion of executability changes slightly. Now, an actiona is said to be 1-executable
in an a-stateσ if it is 0-executable in all a-states inComp(σ). The 1-transition function is
defined next.

Definition 11. Given a domain descriptionD, the 1-transition functionΦ1 ofD is defined
as follows:
• If a is not 1-executable inσ thenΦ1(a, σ)= {⊥}.
• If a is 1-executable inσ anda is a non-sensing action thenΦ1(a, σ)= {Res1(a, σ)}.
• If a is 1-executable inσ anda is a sensing action thenΦ1(a, σ)= {σ ′ | σ � σ ′ and
K(a,σ) \ σ = σ ′ \ σ }.

A 1-model of D is then defined as a pair(σ0,Φ1) where σ0 is the initial a-state
of D andΦ1 is the 1-transition function ofD. The notion of 1-extended function and
1-entailment is then defined as in Definitions 8 and 10 using 1-transition function and 1-
model, respectively.

In the next example we show that the 1-Approximation allows us to reason by cases.

Example 8. Let us consider again the domainD3 from Example 7. The initial a-state ofD3

is σ0 = 〈∅,∅〉. The set of complete extensions ofσ0, Comp(σ0), is the set of all complete
a-states ofD3. More precisely,Comp(σ0)= {σ1, σ2, σ3, σ4} whereσ1 = 〈{f,g},∅〉, σ2 =
〈{f }, {g}〉, σ3= 〈∅, {f,g}〉, andσ4= 〈{g}, {f }〉.

Since Res0(a, σ1) = 〈{f,g},∅〉, Res0(a, σ2) = 〈{f }, {g}〉, Res0(a, σ3) = 〈{f }, {g}〉,
and Res0(a, σ4) = 〈{f,g},∅〉 we have thatRes1(a, σ0) = 〈{f },∅〉. Thus, for any 1-
model (σ0,Φ1) of D3, Φ1(a, σ0) = {〈{f },∅〉}. Hence, we can conclude thatD3 |=1
Knows f after a.

T.C. Son, C. Baral / Artificial Intelligence 125 (2001) 19–91 43

We now state the relation between the 0-Approximation and the 1-Approximation of
domain descriptions ofAK .

Proposition 4 (Soundness of|=0 with respect to|=1). LetD be a domain description,ϕ
be a fluent formula ofD, andc be a conditional plan. Then,

if D |=0 Knows ϕ after c thenD |=1 Knows ϕ after c.

Proof. (Sketch4). Similar to Proposition 1 we can prove that for every domain description
D, 5 the 0-model and 1-model ofD are uniquely determined. Furthermore, the initial a-
state in the 0-Approximation is also the initial a-state in the 1-Approximation. Let us denote
the 0-model and 1-model ofD by (σ0,Φ0) and(σ0,Φ1) respectively. Letσ andδ be two
a-states ofD such thatσ � δ. Then, for every actiona of D, we can prove that

(i) for eachσ ′ ∈Φ0(a, σ) there exists aδ′ ∈Φ1(a, δ) such thatσ ′ � δ′;
(ii) for eachδ′ ∈Φ1(a, δ) there exists aσ ′ ∈Φ0(a, σ) such thatσ ′ � δ′.

Using (i) and (ii) we can then prove that for any conditional planc such that⊥/∈ Φ̂0(c, σ),
(iii) ⊥/∈ Φ̂1(c, δ);
(iv) for eachσ ′ ∈ Φ̂0(c, σ) there exists aδ′ ∈ Φ̂1(c, δ) such thatσ ′ � δ′; and
(v) for eachδ′ ∈ Φ̂1(c, δ) there exists aσ ′ ∈ Φ̂0(c, σ) such thatσ ′ � δ′.

(iii) proves that ifc is 0-executable inσ0 thenc is 1-executable inσ0. This, together with
(iv) and (v), and the fact thatσ0 � σ0, proves the proposition.2

The next example shows that the 1-Approximation is also not able to make some intuitive
conclusions6 that can be made using theAK semantics.

Example 9. Consider the domain description:

a causesp if r
a causesq if ¬r
b causesf if p
b causesf if q
executablea
executableb

=D4

The initial a-state is〈∅,∅〉, wherep,q, r, andf are unknown. Although intuitively and
also according to the rational semantics ofAK , after executinga followed by b in the
initial a-state,f should be true, our 1-Approximation is not able to capture this. This is
because the 1-Approximation reasons by cases only up to 1 level. Since after reasoning by
cases for 1 level, it summarizes its reasoning to a pair〈T ,F 〉, it is not able to capture the
fact that after executinga in the initial a-statep ∨ q is true.

To overcome the limitation of 1-Approximation as illustrated by the above example, we
can define 2-Approximation which will reason by cases up to 2 levels. But it will break

4 The full proof can be found in [51].
5 Recall that we do not allow contradictory v-propositions or contradictory ef-propositions inD.
6 We thank the anonymous AAAI-97 reviewer who pointed this out.

44 T.C. Son, C. Baral / Artificial Intelligence 125 (2001) 19–91

down when reasoning by cases up to 3 levels is necessary, and so on. In the next section,
we defineω-Approximation which allows reasoning by cases for multiple levels without
setting a limit on the number of levels.

3.3. ω-Approximation

Our intention inω-Approximation is to reason by cases to as many levels as possible.
But this number is limited by the structure of the plan. We can only reason by cases
through sequences of non-sensing actions. For that reason, given a sequence of actions
α = a1; . . . ;an, we now define the longest prefix ofα consisting of only non-sensing
actions or a single sensing action, denoted bypre(α), as follows:
• if a1 is a sensing action thenpre(α)= a1; or
• if α does not contain a sensing action thenpre(α)= α; or
• if aj is the first sensing action inα, 1< j 6 n, thenpre(α)= a1, . . . , aj−1.
The sequence of actions obtained fromα after removing its prefixpre(α) is called the

remainderof α and is denoted byrem(α).
Given a sequence of non-sensing actionsα = a1, . . . , an, we now defineResω(α,σ) by

considering all complete extensions ofσ , applyingα to each of them and then determining
their intersection. This corresponds to doing case by case reasoning forn levels. More
formally,

Resω(α,σ)=
⋂

σ ′∈Comp(σ)

Res0(an,Res0(an−1, . . . ,Res0(a1, σ
′))).

An actiona isω-executablein σ if a is 0-executable in all complete extensions ofσ . And, a
sequence of non-sensing actionsα isω-executable inσ if α is 0-executablein all complete
extensions ofσ .

Theω-Approximation ofD is defined by a functionΦω, calledω-transition function,
which maps a pair of a sequence of actionsα and an a-stateσ into a set of a-states, denoted
byΦω(α,σ), as follows.

Φω(α,σ)=

{⊥} if pre(α) is notω-executable inσ ;
{Resω(α,σ)} if α does not contain a sensing action and

isω-executable inσ ;
{σ ′ | σ ′ extendsσ, andσ ′ \ σ =K(a,σ) \ σ }

if α = a, a is a sensing action,
anda is ω-executable inσ ; and⋃

σ ′∈Φω(pre(α),σ) Φω(rem(α), σ ′), otherwise.

A sequence of actionsα is ω-executable inσ if ⊥/∈Φω(α,σ).
An ω-model for a domain descriptionD is then defined as the pair(σ0,Φω), whereσ0

is the initial a-state ofD andΦω is anω-transition function ofD.
To extend the functionΦω over pairs of conditional plans and a-states we need the

following observation.

Observation 3.1. Every conditional planc can be represented as a sequence of conditional
plansc1; . . . ; cn where

T.C. Son, C. Baral / Artificial Intelligence 125 (2001) 19–91 45

(a) ci is either a sequence of actions or a case plan; and
(b) for everyi < n, if ci is a sequence of actions thenci+1 is a case plan.

From now on, we will often write a conditional planc as a sequencec = c1; . . . ; cn
whereci ’s satisfy the conditions (a) and (b) of Observation 3.1.

The extended transition function ofΦω, denoted bŷΦω, is defined next.
For a conditional planc and an a-stateσ , we define
(1) for c= c1, wherec1 is a sequence of actions,̂Φω(c,σ)=Φω(c1, σ);
(2) for

c = Case

ϕ1→ c1

. . .

ϕl→ cl

Endcase,

Φ̂ω(c, σ)=
{
Φ̂ω(ci, σ) if ϕi holds in σ ,
{⊥} if none of ϕ1, . . . , ϕl holds in σ ;

(3) for c= c1; c2; . . . ; cn, n > 1,
(a) if c1 is a sequence of actions,

Φ̂ω(c, σ)=
⋃

σ ′∈Φ̂ω(c1,σ)
Φ̂ω(c2; . . . ; cn, σ ′),

(b) if

c1=Case

ϕ1→ p1

. . .

ϕm→ pm

Endcase,

Φ̂ω(c, σ)=

⋃
σ ′∈Φ̂ω(pi,σ) Φ̂ω(c2; . . . ; cn, σ ′)

if ϕi holds inσ,

{⊥} if none ofϕ1, . . . , ϕm holds inσ ;
(4) Φ̂ω(c,⊥)= {⊥} for every conditional planc.
The notion ofω-entailment is then defined as in Definition 10 using theω-model.
The next example shows that this generalization indeed overcomes the problem of 1-

Approximation in Example 9, through reasoning by cases for multiple levels.

Example 10. Let us consider the domain descriptionD4 from Example 9. Letσ be a
complete extension ofσ0. Sinceσ is complete, eitherr or¬r holds inσ . Thus, eitherp or
q holds inRes0(a, σ). This implies thate+b (Res0(a, σ))= {f }. SinceD4 does not contain
an ef-proposition, whose effect is¬f , we have thatF−b (Res0(a, σ))= ∅. Hence,f holds
in Res0(b,Res0(a, σ)) for every complete a-stateσ . Thusf holds in Resω([a;b], σ0).

46 T.C. Son, C. Baral / Artificial Intelligence 125 (2001) 19–91

By definition ofΦω, we have thatf holds inΦω([a;b], σ0) whereσ0 is the initial a-
state ofD4. Sincea;b is a sequence of actions,̂Φω([a;b], σ0) = Φω([a;b], σ0). Thus,
D4 |=ω Knows f after [a;b].

We prove the soundness of|=1 with respect to|=ω in the next proposition.

Proposition 5 (Soundness of|=1 with respect to|=ω). LetD be a domain description,ϕ
be a fluent formula, andc be a conditional plan. Then,

if D |=1 Knows ϕ after c thenD |=ω Knows ϕ after c.

Proof. The proof is similar to the proof of Proposition 4. The proof can be found
in [51]. 2
3.4. Soundness of 0-, 1- andω-Approximations with respect toAK -semantics

In the previous subsections we discussed three different approximations ofAK . Our
next goal is to show that these approximations are sound with respect toAK . Since we
have already shown in Propositions 4 and 5 that|=0 is sound with respect to|=1 and|=1
is sound with respect to|=ω, we will now show that theω-Approximation is sound with
respect toAK .

Proposition 6 (Soundness of|=ω with respect to|=AK). LetD be a domain description,
ϕ be a fluent formula, andc be a conditional plan. Then,

if D |=ω Knows ϕ after c thenD |=AK Knows ϕ after c.

Proof. In Appendix C. 2
Even thoughω-Approximation can reason more than the 1-Approximation, it still cannot

match theAK semantics. The following example illustrates this.

Example 11. LetD5 be the following domain description.

a causes¬p if r
b determinesr
c causesp if r
initially p

executablea
executableb
executablec

=D5

We have thatσ0= 〈{p},∅〉 is the initial a-state ofD5.
Let α = [a;b; c].
There are two complete extensions ofσ0: σ1 = 〈{p}, {r}〉 and σ2 = 〈{p, r},∅〉. This

implies thatResω(a,σ0) = Res0(a, σ1) ∩ Res0(a, σ2) = 〈{p}, {r}〉 ∩ 〈{r}, {p}〉 = 〈∅,∅〉.

T.C. Son, C. Baral / Artificial Intelligence 125 (2001) 19–91 47

Furthermore,Φω(b, 〈∅,∅〉) = {〈{r},∅〉, 〈∅, {r}〉}, andΦω(c, 〈{r},∅〉) = {〈{p, r},∅〉} and
Φω(c, 〈∅, {r}〉)= {〈∅, {r}〉}.

Since

Φ̂ω(α,σ0)=Φω(α,σ0) =
⋃

σ∈Φω(a,σ0)

Φω([b; c], σ)=Φω([b; c], 〈∅,∅〉)

=
⋃

σ∈Φω(b,〈∅,∅〉)
Φω(c, σ)=Φω(c, 〈{r},∅〉)∪Φω(c, 〈∅, {r}〉)

= {〈{p, r},∅〉, 〈∅, {r}〉},

we have thatD5 6|=ω Knowsp after [a;b; c] andD5 6|=ω Knows¬p after [a;b; c].
Now, we will show thatD5 |=rAK Knowsp after [a;b; c]. Let s1= {p}, s2= {p, r}, and

s3= {r}.D5 has two initial c-states:〈s1, {s1, s2}〉 and〈s2, {s1, s2}〉. We have that

Φ̂([a;b; c], 〈s1, {s1, s2}〉) = Φ̂([b; c], 〈s1, {s1, s3}〉)= Φ̂(c, 〈s1, {s1}〉)= 〈s1, {s1}〉

and

Φ̂([a;b; c], 〈s2, {s1, s2}〉) = Φ̂([b; c], 〈s3, {s1, s3}〉)= Φ̂(c, 〈s3, {s3}〉)= 〈s2, {s2}〉.

It is easy to check thatp is known to be true inΦ̂([a;b; c], 〈s1, {s1, s2}〉) and
Φ̂([a;b; c], 〈s2, {s1, s2}〉). ThusD5 |=rAK Knowsp after [a;b; c].

3.5. Complexity of progression

In this subsection we will compare the complexity of progression in the various
approximations. Suppose the number of fluents we have isn, andd is the size of the domain
description. Given an a-state〈T ,F 〉, such that the size ofT ∪ F is m, the complexity of
computingRes, Res0, Res1, andResω in the different approximations are as follows:
• 0-Approximation: The complexity of computingRes0(a, σ) is m × number of ef-

propositions in the domain description. This is of the order ofm× d .
• 1-Approximation: Here we need to computeRes1. This is of the order of 2n−m×m×
d .
• ω-Approximation: Here we also need to computeResω. This is also of the order of

2n−m ×m× d .
It is easy to see that if a sensing actiona determinesp fluents andσ is a-state where

none of these fluents are known, thenΦ0(a, σ), Φ1(a, σ), Φω(a,σ) will have 2p a-states.
From the above analysis, it is clear that progression can be done much faster in the 0-

Approximation than in the other two. On the other hand there is no significant difference
in doing progression between 1-Approximation andω-Approximation. (A more formal
result was recently given in [8], where it was shown that while computing the next state
Res0(a, σ) is a polynomial time procedure, computingRes1(a, σ) is coNP-complete.)

48 T.C. Son, C. Baral / Artificial Intelligence 125 (2001) 19–91

4. Related research

In this section we first discuss the expressiveness and limitations of our formulations
in this paper as compared to other formulations in the literature and then do detailed
comparisons with works that are closest to ours.

4.1. Expressiveness and limitations ofAK

Since our main goal in this paper has been to formalize sensing actions, to avoid
distractions we have on purpose limited the expressiveness of the rest of the language. For
example, we do not allow multi-valued fluents [19], static causal laws [1,35,43], concurrent
actions [2,3,37], narratives [5,42], etc. In Section 2.2 we briefly discuss how most of these
restrictions can be lifted. Besides these, we also make some additional assumptions that
limit the expressiveness of our language. We now briefly discuss these assumptions and
why we make them.
• We follow the approach in [21] in not having a full first-order language. This allows

us to avoid the additional induction axioms described in [47,48]. Although, we do not
have full first-order language we do allow variables, and propositions with variables
such as:

move(X,Y) causesat(Y)

Here, the proposition is viewed as a ‘schema’ representing a set of propositions where
X andY are bound. Also, we assume our domain to be finite. I.e, we assume that we
have a finite set of actions, and fluents.
• We assume that there is a single agent who is planning and acting and our interest is in

formalizing his knowledge about the world vis-à-vis the real state of the world. Unlike
in [49] we make the assumptions of the modal logic S5 and hard code it into our
semantics. This allows us to use the simpler c-states instead of using Kripke models.
Moreover, as we show in Section 2.4, this leads to a smaller state space. A similar
approach is followed in most of the chapters in [14].
• We assume the sensing actions (i.e., the operation of the sensors) to be perfect.

Bacchus, Halpern, and Levesque [7] extend the situation calculus approach in [49]
to allow for noisy sensors. In the future, we plan to extend our approach to this case.
Also, in the Operations Research literature POMDPs (partially observable Markov
decision processes) are used in formulating noisy observations. We plan to formulate
sensing actions using POMDPs and compare it with our current formulation.
• We follow the high-level language doctrine in [34] and the approach in databases

and use a limited query language. This allows us to have a simpler formulation. Our
query language can be easily extended to allow for knowledge and temporal operators
as in [23], but it is not straightforward and nor we favor the generality of allowing
quantifiers (as in [47,48]).
• In most of the paper our interest is in progression and verification of conditional

plans. In other words, given the description (possibly partial) of an initial state, a
conditional plan and a goal, we would like to verify if the given plan executed in
the initial state will take us to the goal. Because of this limited interest, we can use

T.C. Son, C. Baral / Artificial Intelligence 125 (2001) 19–91 49

the simpler formulation in (1.5) and (1.6) instead of (1.3) and (1.4). When using the
simpler formulation we can not add an observation of the form∃S.Knows(f,S) to
find out whatS is. This is a limitation only when we use the logical formulation, and
not at the semantic level.

4.2. Relationship with Scherl and Levesque’s formulation

In Section 2.3 we gave a translation of domain descriptions inD to a first-order
theory that used Scherl and Levesque’s [49] successor-state axiom (which is based on
Moore’s [41] formulation) and showed the equivalence with respect to queries in the
language ofAK . Since Scherl and Levesque directly formalize in first-order logic, their
formulation is more general than ours;

(i) in terms of allowing more general descriptions about the domain such as being able
to choose which modal logic to use, and observations about non-initial situations;
and

(ii) in terms of allowing more general queries.
On the other hand our goal in this paper has been to have a simpler formulation, perhaps

at the cost of generality. For example, the ‘state’ of the agent’s knowledge in Scherl and
Levesque’s formulation (and also in Moore’s formulation) would be a Kripke model. Since
planning in a state space where a ‘state’ is a Kripke model is more difficult, we have a
simpler notion of a ‘state’ which we call a c-state. (For instance, if we haven fluents
then the number of different Kripke models are 222n+n, while the number of different c-
states are 22

n+n.) As mentioned earlier, our c-state has two components, the real state of
the world and the set of possible states that the agent thinks it may be in. Our c-state is
actually equivalent to a Kripke model when we consider the logic S5. Thus with a goal to
make things simpler we sacrifice generality and make an a-priori decision on which logic
of knowledge to use.

Also, since we develop a high-level languageAK , with an independent semantics—that
does not depend on standard logics, it can serve the role of a benchmark for languages
with sensing actions, at least for the restricted class of queries inAK . Moreover, this high-
level language makes it easier for us to prove the soundness of approximations that have a
much less and more manageable state space. By having sound and complete translations of
domain descriptions inAK to theories in first-order logic that use Scherl and Levesque’s
axioms, our sound approximations are also in a way sound approximations of Scherl and
Levesque’s formalism.

Finally, we would like to mention that loop-free robot programs of [31] are special cases
of our conditional plans. In particular, the statementsseq(a, r) andbranch(a, r1, r2) of [31]
can be recursively translated to conditional plansa; r and

a

Case

f → r1

¬f → r2

Endcase

50 T.C. Son, C. Baral / Artificial Intelligence 125 (2001) 19–91

respectively. In this paper we do not allow loops in our conditional plans. But the ideas
in [31,38] can be used to extend our conditional plans to allow loops.

4.3. Relationship with Lobo et al.’s semantics

Lobo et al. in [38] have a goal similar to ours, in terms of developing a high-level
language that allows sensing actions and giving translations of it to theories in a standard
logical language. We now list some of the major differences between both approaches:
• They represent the state of an agent’s knowledge by a set of states (which they refer to

as a situation), and the transition functionΦ in their model is defined such that for a
sensing actiona and a situationΣ ,Φ(a,Σ) is a subset ofΣ that consists of all states
which agree on the fluent values determined by the sensing actiona. A drawback of
this approach is that domain descriptions have a lot of models. But more importantly,
it is possible that when a domain description has two sensing actionsa andb that
determine the same fluentf , there are modelsΦ, such thatΦ(a,Σ) 6= Φ(b,Σ) for
someΣ ’s. In other words, whilef may be true in all states inΦ(a,Σ), it may be
false in all states inΦ(b,Σ). We find such models unintuitive.
• The semantics ofAK is more general than the semantics of Lobo et al. in the sense

that in their formulation the assumption about models being rational is hard wired into
the semantics.
• On the other hand the high-level language used by Lobo et al. is more general

than the one we are using. They allow conditional sensing through preconditions
in k-propositions. We do not allow preconditions in k-propositions but we allow
executability conditions.
• Lobo et al. give translations of their domain descriptions to theories in epistemic

logic programs [17]. We have translations to disjunctive logic programs [9,51], which
are simpler than epistemic logic programs. We also give translations to first-order
theories.
• Finally, we consider sound approximations of our language. In the later part of this

section we show our semantics to be equivalent (sometimes) to theirs. Thus our
approximations are also sound approximations of their formulation.

We now give a quick overview of the formulation in [38], restricted to the common syntax
of AK and their language. We then show that our rational semantics is equivalent to the
semantics in [38] for this restricted case. The semantics of [38] is defined through transition
functions that map pairs of actions and situations into situations where a situation is a
set of states. A situation is consistent if it is not empty. Given a domain descriptionD,
the situation consisting of all the initial states ofD, denoted byΣ0, is called theinitial
situationof D. A fluent f is said to betrue in a situationΣ if f ∈ s for every s ∈ Σ .
A fluent formulaϕ is said to betrue in a situationΣ if ϕ is true in every states belonging
toΣ . We will need the following definition.

Definition 12. LetΣ be a consistent situation andf a fluent. A consistent situationΣ ′ is
“f -compatible” with Σ iff

(1) Σ ′ = {σ ∈Σ | f /∈ σ }; or
(2) Σ ′ = {σ ∈Σ | f ∈ σ }

T.C. Son, C. Baral / Artificial Intelligence 125 (2001) 19–91 51

For a domain descriptionD, a functionΦ from pairs of actions and situations into
situations is called an interpretation ofD.

Definition 13. An interpretationΦ of a domain descriptionD is amodelof D if and only
if

(1) for any consistent situationΣ
(a) for any non-sensing actiona,

Φ(a,Σ)=
⋃
s∈Σ
{Res(a, s)};

(b) for each sensing actiona, let

a determinesf1

. . .

a determinesfn

be the k-propositions in whicha occurs. Then,
• Φ(a,Σ) must be a consistent situation; and
• Φ(a,Σ) =Σ1 ∩Σ2 ∩ · · · ∩Σn whereΣi is afi -compatible situation with
Σ for i = 1, . . . , n

(2) for any actiona,Φ(a,∅)= ∅.

Lobo et al. extend the functionΦ to a plan evaluation functionΓΦ(c,Σ) which allows
conditional plans. The definition ofΓΦ(c,Σ) given in [38] is very similar to the definition
of Φ̂ and we omit it here for brevity. In the following example, we show the difference
between our models and the models of Lobo et al.

Example 12. Let us consider the domain descriptionD1 from Example 1. The states of
D1 are:

s1= ∅, s5= {disarmed},
s2= {locked}, s6= {disarmed,exploded},
s3= {exploded}, s7= {disarmed, locked},
s4= {locked,exploded}, s8= {disarmed, locked,exploded}.

The initial situation ofD1 isΣ0= {s1, s2}. There are twolocked-compatible situations with
Σ0: Σ1= {s1} andΣ2= {s2}. Thus, ifΦ is a model ofD1, then eitherΦ(look,Σ0)= {s1}
orΦ(look,Σ0)= {s2}, i.e., in the approach of Lobo et al. there are (at least) two different
models which differ from each other by the transition functions. On the other hand, in our
approach we have two rational models which differ only by the initial c-states.

The entailment relation with respect to Lobo et al.’s semantics is defined next.

Definition 14. D |=LTM Knows ϕ after c iff for every modelΦ of D, ϕ is true in
ΓΦ(c,Σ).

52 T.C. Son, C. Baral / Artificial Intelligence 125 (2001) 19–91

The following proposition relates Lobo et al.’s semantics with ours.

Proposition 7 (Equivalence between|=rAK and|=LTM). LetD be a domain description,ϕ
be a fluent formula inD, andc be a conditional plan inD. Then,

D |=rAK Knows ϕ after c iff D |=LTM Knows ϕ after c.

Proof. In [9,51]. 2
4.4. Past research on planning with sensing

In the past several planners have been developed that can plan (to some extent) in
presence of incompleteness, and some of these planners use sensing actions. In this section
we briefly describe a few of these planners, the semantics they use and compare it with our
semantics.

4.4.1. Golden and Weld’s work
Golden, Weld and their colleagues in [11,22,23] have developed planning languages

and planners that can plan in presence of incompleteness, use sensing actions, and plan for
‘knowledge’ goals. Two of these languages are UWL [11] and SADL [23]. We now list
some of their main contributions and compare their formulation with that of ours.
• As evident from the title ‘Representing sensing actions—the middle ground revisited’

of [23], their goal is to develop a middle ground in formulating sensing actions.
After reading Golden’s thesis [22] and communicating with him it seems that their
formulation is close to our 0-Approximation, and like 0-Approximation it does not
do the case-by-case reasoning necessary to make the desired conclusion inD3 of
Example 7. But, while they do not have a soundness result, they have implemented
and incorporated their planner into Softbot agents.
• One of their main contributions is their notion of LCW (local closed world) and

reasoning with (making inferences and updates) LCW. We do not have a similar
notion in this paper.
• They introduce a minimal but extremely useful set of knowledge-temporal goal. In

UWL, they have the annotations ‘satisfy’, ‘hands-off’ and ‘findout’ and in SADL,
they have ‘satisfy’, ‘hands-off’ and ‘initially’. Intuitively, the annotationsatisfy(p)
means to reach a state wherep is true and the agent knows thatp is true; the
annotationhands-off(p) means that during the execution of the plan, the truth value
of p does not change; and the annotationinitially(p) is used to specify the goal of
sensing the truth value ofp at the time the goal is given, the idea being that after
the agent has finished executing his plan, he will know the truth value ofp when he
started. They also formulate regression with respect to goals formulated using such
annotations.
We have one small reservation about their annotation ‘initially’. In [22], Golden says
that

initially (p) is not achievable by an action that changes the fluentp since such an
action only obscures the initial valuep. However, changingp after determining
its initial value is fine.

T.C. Son, C. Baral / Artificial Intelligence 125 (2001) 19–91 53

We think the above condition is restrictive because sometimes we can determine the
initial value ofp, even though we change its value. Consider the case where we do
not know the value ofp, and we have an actiona and an actionsenseg whose effects
can be described as follows:

a causesg if p

a causes¬g if ¬p
a causesp if ¬p
a causes¬p if p

senseg determinesg

Now, even though the actiona changes the value ofp, we can find the initial value of
p by executing the plana;senseg .
We believe these annotations are an important contribution, and additional research
is necessary in developing a general knowledge-temporal language for representing
more expressive queries over trajectories of c-states. For example, we may want to
maintainknows-whether(p), i.e., during the execution of the plan, we do not want to
be in a state where we do not know the value ofp. This is different fromhands-off(p),
where we are not allowed to change the value ofp, but we don’t have to know the
value ofp all through the trajectory.
• An important difference between their approach and ours is that their focus is on

combining planning with execution, while our focus is more close to the classical
planning paradigm where we would like to generate a complete plan (possibly with
conditional statements and sensing actions) before starting execution. This difference
in our focus shows up in the difference in our characterization of sensing actions.

4.4.2. Goldman and Boddy’s work
In their KR-94 paper [15], Goldman and Boddy use a single model of the world

representing the planners state of the knowledge. They then first consider actions with
executability conditions (but no conditional effects) and with explicit effects that may make
fluents unknown. They define progression (the knowledge state reached after executing an
action), and regression with respect to such actions.

Next they extend their action definition to include conditional actions which have a set
of mutually exclusive and exhaustive possible outcomes (i.e., exactly one of the outcomes
will be the result of the action). They suggest that such conditional actions can be used to
describe observation operators by requiring that if such an action is supposed to observe
the fluentf , thenunknown(f) must be in the executability condition of that action.

They argue about the difficulty of adding conditional effects to their model, which does
not have representations of both the state of the world and the planner’s state of knowledge.

The following points compare and contrast their approach to that of ours:
• Since they use a single model to represent both the world and the planners knowledge

about the world, their formulation is perhaps similar to our approximations, where we
also have a single model. But, their formulation has not been shown to be sound with
respect a full formulation.

54 T.C. Son, C. Baral / Artificial Intelligence 125 (2001) 19–91

• Their formulation of sensing actions (or observation operators as they call it) can
wrongly consider the tossing of a coin action to be a sensing action if the state of the
coin (whether ‘heads’ or ‘tails’) is unknown before the coin was tossed. Because of
this we do not believe that their formulation (restricted to a common subset with our
language) will be sound with respect to our formulation.
• They allow actions—even in the absence of conditional effects—to explicitly make

fluents unknown. We do not have such actions, but because of conditional effects, our
actions can also make fluents unknown.

In a later paper [16], they extend classical planning to allow conditional plans, context-
dependent actions, and non-deterministic outcomes and argue the necessity of separately
modeling the planner’s information state and the world state. They use propositional
dynamic logic to express conditional plans, and reason about information-gathering
(sensing) and the agent’s information state. We like their idea of using propositional
dynamic logic and results about it and appreciate their goal to explore a middle ground
between having a full formulation of sensing actions, and not allowing incompleteness at
all. That coincides with our motivation for exploring approximation. But, after carefully
reading the paper several times, we believe that more details about their formulation are
necessary to fairly and more comprehensively compare their approach to ours.

4.5. Regression

Our focus in this paper so far has been on progression and plan verification. Considering
the recent success of model-based planning using propositional satisfiability [27,29,30]
our formulation is geared towards such an approach. Nevertheless, we would like to briefly
comment on the notion of regression and its role in conditional planning with sensing
actions.

Regression with respect to simple actions has been studied in [45,48]. Scherl and
Levsque [49] study regression with respect to sensing actions. The intuition behind
regression of a formulaϕ with respect to an actiona, is to find a formulaψ such that
ψ holds in a situations if and only if ϕ will hold in the situationdo(a, s). Regression can
be used to verify the correctness of a plan by regressing the goal to the initial situation
and verifying if the regressed formula holds in the initial situation. Regression can be also
used in the least commitment approach to planning [6,55]. We now present the regression
rules for regressing knowledge formulas with respect to conditional plans. The first four
rules are adapted from [49] and further simplified. The simplification is due to the use
of S5 modal logic where only one level of knowledge is sufficient. The regression over
conditional plans is our original contribution.

(1) For a fluentf and an actiona with the ef-propositionsa causesf if %1, . . . , a causes
f if %n, a causes¬f if %′1, . . . , a causes¬f if %′m

Regression(f, a)=
n∨
i=1

%i ∨
(
f ∧¬

m∧
j=1

%′j

)
.

(2) For a fluent formulaϕ and a non-sensing actiona,

Regression(Knows(ϕ), a)= Knows(Regression(ϕ, a)).

T.C. Son, C. Baral / Artificial Intelligence 125 (2001) 19–91 55

(3) For a fluentf and a sensing actiona which senses the fluentsf1, . . . , fn, let
I (a, f1, . . . , fn) be the set of conjunctions of literals representing the interpretations
of the set{f1, . . . , fn}. 7 Let ϕ be a fluent formula. Then,

Regression(Knows(ϕ), a)=
∧

γ∈I (a,f1,...,fn)

γ→Knows(γ→ϕ).

(4) Regression over c-formulas8

• Regression(ϕ1∧ ϕ2, a)=Regression(ϕ1, a)∧Regression(ϕ2, a);
• Regression(ϕ1∨ ϕ2, a)=Regression(ϕ1, a)∨Regression(ϕ2, a);
• Regression(¬ϕ,a)=¬Regression(ϕ, a).

(5) Regression over conditional plans and c-formulas. (In the equations below,ϕ’s are
c-formulas, andϕi ’s are fluents formulas.)
• Regression(ϕ, [])= ϕ;
• Regression(ϕ,α;a)= Regression(Regression(ϕ, a),α) whereα is a sequence of

actions;
• Regression(ϕ,Caseϕ1→p1, . . . , ϕn→pn Endcase)=∨n

i=1(Knows(ϕi)∧
Regression(ϕ,pi));
• Regression(ϕ, c1; c2; . . . ; cn)=Regression(Regression(ϕ, cn), c1; . . . ; cn−1)whe-

re ci ’s are conditional plans satisfying the conditions of Observation 3.1.
The next proposition proves the soundness and completeness of the regression formula.

Proposition 8. Given a domain descriptionD, letϕ be a c-formula, andσ1, . . . , σn be the
set of grounded initial c-states ofD, andc be a conditional plan that is executable in all
the grounded initial c-states ofD. Then,

∀i,16 i 6 n, σi |=Regression(ϕ, c) iff ∀j,16 j 6 n, Φ̂(c, σj) |= ϕ.

Proof. In Appendix D. 2

5. Conclusion and future work

In this paper we presented a high-level action description language that takes into
account sensing actions and distinguishes between the state of the world and the state
of the knowledge of an agent about the world. We gave sound and complete translation
of domain descriptions in our language to theories in first-order logic and have similar
translations [9,51] to disjunctive logic programming. We compared our formulation with
others and analyze the state space of our formulation and that of the others. We then gave
sound approximations of our formulation with a much smaller state space. We believe the
approximations in this paper will be very important in developing practical planners.

7 For example, ifa sensesf andg thenI (a,f,g)= {¬f ∧¬g,¬f ∧ g,f ∧¬g,f ∧ g}.
8 A knowledge formula (k-formula) is a formula of the formKnows(ϕ), whereϕ is a fluent formula, and we

sayKnows(ϕ) holds in a c-stateσ = 〈s,Σ〉, if ϕ holds in all states ofΣ . A combined formula (c-formula) is a
formula constructed using fluent formulas, k-formulas and the propositional connectives, and when a c-formula
holds in a c-state is defined in a straightforward way.

56 T.C. Son, C. Baral / Artificial Intelligence 125 (2001) 19–91

Some of our future plans are:
• We would like to analyze existing planners9 that construct conditional plans and

use sensing actions and develop more efficient planners based on the approximations
described in this paper. We have made a head start in this direction by implementing
a simple generate and test planner in Prolog.
• We would like to further explore the notions of 1-Approximation andω-Approxima-

tion.
• We would like to follow satisfiability planning [27,29,30] and SMODELS based plan-

ning [10,12,13] by adapting our classical logic and logic programming formulations
to plan with sensing actions.
• We would like to adapt our formulation of sensing to other action description

languages—particularly the action description language for narratives [4,5]—to
develop notions of diagnosis and diagnostic and repair planning with respect to
a narrative. Intuitively, the latter means to develop a plan—possibly with sensing
actions—that leads to a unique diagnosis of a system.

Acknowledgement

We would like to thank the anonymous reviewer for his/her valuable comments that help
us to improve the paper in many ways. This work was carried out while the first author was
a doctoral student at the University of Texas at El Paso.

Appendix A

Proposition A.1. For every sequence of actionsα ofD1,

D1 6|=rAK Knows disarmed∧¬explodedafter α.

Proof. Let s1 = ∅ ands2 = {locked}. The two initial c-states ofD1 areσ1 = 〈s1, {s1, s2}〉
and σ2 = 〈s2, {s1, s2}〉. Let α be an arbitrary sequence of actions ofD1 and β be its
longest prefix which does not contain the actiondisarm. Since no action inβ changes
the value of the fluentexploded, we can conclude thatβ is executable inσ1 andσ2. Let
Φ̂(β,σ1) = 〈s1β,Σ1β〉 and Φ̂(β,σ2) = 〈s2β,Σ2β〉. We first prove by induction over the
length ofβ , denoted by|β|, the following:

{s1, s2} = {s1β, s2β}, s1β ∈Σ1β and s2β ∈Σ2β. (A.1)

Base case: |β| = 0, i.e.,β = []. By definition of Φ̂, we have that̂Φ(β,σ1) = σ1 and
Φ̂(β,σ2)= σ2. Thus (A.1) holds.

Inductive step: Assume that we have proved (A.1) for|β|< n. We need to prove (A.1)
for |β| = n. Letβ = β ′;a. Sincea 6= disarm, a is eitherturn or look. If a = turn, we have

9 From the following quote in [23]: “In UWL (and in SADL) individual literals have truth values expressed in
three valued logic: T, F, U (unknown)”. it seems that they are using an approximation. We would like to analyze
this planner to figure out what kind of approximation they are using and if it is sound with respect to one of the
formulations discussed in this paper.

T.C. Son, C. Baral / Artificial Intelligence 125 (2001) 19–91 57

that {s1β, s2β} = {Res(a, s1β ′),Res(a, s2β ′)} = {Res(a, s1),Res(a, s2)} = {s1, s2}. And, if
a = look, we have that{s1β, s2β} = {s1β ′, s2β ′ } = {s1, s2}. Furthermore, by definition of
Φ, from s1β ′ ∈ Σ1β ′ we can conclude thatRes(a, s1β ′) = s1β ∈ Σ1β . Similarly, we have
s2β ∈Σ2β . The inductive hypothesis is proven.

We now use (A.1) to prove the proposition. Recall thatD1 has two models(σ1,Φ) and
(σ2,Φ).

From the construction ofβ , there are three cases:
(1) β = α,
(2) β;disarm= α, and
(3) β;disarmis a proper prefix ofα.
Case1: β = α. Sincedisarmedis not true ins1 ands2, disarmedis not known to be true

in Φ̂(β,σ1) andΦ̂(β,σ2). Thus, by definition 6,D1 6|=rAK Knows disarmedafter α;
Case2: β;disarm= α. It follows from (A.1) that Res(disarm, s1) = s3 belongs to

Σ1α or Σ2α where Φ̂(β;disarm, σ1) = 〈s1α,Σ1α〉 and Φ̂(β;disarm, σ2) = 〈s2α,Σ2α〉.
Since ¬explodeddoes not holds ins3, we conclude that¬exploded is not known
to be true inΦ̂(β;disarm, σ1) or Φ̂(β;disarm, σ2). Again, by Definition 6,D1 6|=rAK
Knows¬explodedafter α.

Case3: β;disarm is a proper prefix ofα. Sinces1 ∈ {s1β, s2β}, either s1β = s1 or
s2β = s1. SinceRes(disarm, s1)= s3 and none of the actions ofD1 is executable ins3 we
can conclude that̂Φ(α,σ1)=⊥ or Φ̂(α,σ2)=⊥. This means thatα is not executable in all
c-initial states ofD1. By Definition 6,D1 6|=rAK Knows disarmed∧¬explodedafter α

The above three cases show thatD1 6|=rAK Knows disarmed∧¬explodedafter α. This
proves the proposition.2

Appendix B. Soundness and completeness of the translationD to R(D)

We now prove the Propositions 2 and 3. Recall that we assume thatD is a domain
description withm v-propositionsinitially G1, . . . , initially Gm andn sensing actions
K1, . . . ,Kn with the k-propositionsK1 determinesF1, . . . , Kn determinesFn. And, we
also assume that for each actionA, D contains at least one executability condition whose
action isA and each sensing action occurs only in one k-proposition.

In the following, we writeσ.1 andσ.2 to denote the first and second component of
a c-stateσ , respectively. In other words, ifσ = 〈s,Σ〉, thenσ.1 andσ.2 denotes and
Σ respectively. For a states and an action sequenceα = [a1; . . . ;ak], where[] denotes
the empty sequence of actions, ifα is executable ins then Res(α, s) denotes the state
Res(ak,Res(ak−1, . . . ,Res(a1, s))); otherwise,Res(α, s) =⊥ (or undefined). Asituation
interpretationin D is defined by a sequence of actionsα followed by a states, such that
α is executable ins, and is denoted by[α]s. For an interpretationI of the theoryR(D),
we writeI [[p]] to denote the set of tuples belonging to the extent of the predicatep in I .
I [[f]](Ex) denotes the object which functionf mapsEx into in I . Whenf is a 0-ary function
symbol, we simplifyI [[f]]() to I [[f]].

Definition B.1. Let D be a domain description andM = (σ0,Φ) be a model ofD. The
M-interpretationof R(D), denoted byMR , is defined as follows.

58 T.C. Son, C. Baral / Artificial Intelligence 125 (2001) 19–91

The universes ofMR :
(U.1) The universe of actions, denoted by|MR|action, is the set of actionsA of D, i.e.,

|MR|action=A.
(U.2) The universe of fluents, denoted by|MR|fluent, is the set of fluentsF of D, i.e.,

|MR|fluent= F .
(U.3) The universe of situations, denoted by|MR|situation, is defined by the set of

situation interpretations, i.e.,|MR|situation= {[α]s | s ⊆ F , α is an action sequence
executable ins} ∪ {⊥} where⊥ denotes the “impossible” situation.

The interpretations ofMR:
(I.1) Fluent constants and action constants are interpreted as themselves.
(I.2) Each situationS is interpreted as a situation interpretation. In particular,MR[[S0]]

= []σ0.1.
(I.3) The interpretation of the predicateHolds is defined by〈F, [α]S〉 ∈MR[[Holds]] iff

Res(α,S) is defined andF holds inRes(α,S).
(I.4) The interpretation of the predicateK is defined inductively as follows:

• 〈[]S′, []S〉 ∈MR[[K]] if S = σ0.1 andS′ ∈ σ0.2; and
• 〈[α;A]S′, [α;A]S〉 ∈MR[[K]] if the following conditions are satisfied

– 〈[α]S′, [α]S〉 ∈MR[[K]];
– A is executable inRes(α,S) andRes(α,S′); and
– eitherA is a non-sensing action orA is a sensing action that senses the fluent
F andRes(α,S) andRes(α,S′) agree onF .

• 〈[α′]S′, [α]S〉 /∈MR[[K]] otherwise.
(I.5) The interpretation of the functiondo is defined byMR[[do]](A, [α]S)= [α;A]S if

A is executable inRes(α,S); otherwiseMR[[do]](A, [α]S)=⊥.

The interpretationMR is then extended to the predicates introduced in Section 2.3 such
asγ+F , γ−F , Poss, etc. For example, for a situation interpretation[α]S,
• 〈ϕ, [α]S〉 ∈MR[[Holds]] iff ϕ holds inRes(α,S); or
• 〈A, [α]S〉 ∈MR[[γ+F]] iff there exists an ef-proposition “A causesF if ρ” ∈D such

that〈ρ, [α]S〉 ∈MR[[Holds]]; or
• 〈A, [α]S〉 ∈ MR[[Poss]] iff there exists an ex-proposition “executableA if ρ” ∈ D

such that〈ρ, [α]S〉 ∈MR[[Holds]];
• etc.
We next prove some lemmas about the relationship between a modelM ofD and theM-

interpretationMR which will be used in proving the Propositions 2 and 3. For convenience,
for a formulaϕ in the language ofR(D), if ϕ is true inMR we writeMR |= ϕ.

Lemma B.1. For each modelM = (σ0,Φ) of a domain descriptionD, a fluentF , an
actionA, and a situation interpretation[α]S

(i) 〈A, [α]S〉 ∈MR[[γ+F]] iff F ∈E+A (Res(α,S)); and
(ii) 〈A, [α]S〉 ∈MR[[γ−F]] iff F ∈E−A (Res(α,S)).

Proof. [α]S is a situation interpretation implies thatα is executable inS. Therefore,
Res(α,S) is defined. We have that

T.C. Son, C. Baral / Artificial Intelligence 125 (2001) 19–91 59

〈A, [α]S〉 ∈MR[[γ+F]]
iff there exists an ef-proposition “A causesF if %” ∈D

such that〈%, [α]S〉 ∈MR[[Holds]] (Definition ofγ+F)
iff there exists an ef-proposition “A causesF if %” ∈D

such that% holds in Res(α,S) (by item (I.3) of Definition B.1)
iff F ∈E+A(Res(α,S)).

Thus (i) is proved.
Similarly, we can prove (ii). 2

Lemma B.2. For each modelM = (σ0,Φ) of a domain descriptionD, an actionA, and
a situation interpretation[α]S,

(i) 〈A, [α]S〉 ∈MR[[Poss]] iff A is executable in Res(α,S); and
(ii) if 〈A, [α]S〉 ∈MR[[Poss]] thenMR[[do]](A, [α]S)= [α;A]S.

Proof. Again, since[α]S is a situation interpretation, we have thatα is executable inS.
ThusRes(α,S) is defined. From the definition ofPoss, we have that

〈A, [α]S〉 ∈MR[[Poss]]
iff there exists an ex-proposition “executableA if ρ” ∈D

such that〈ρ, [α]S〉 ∈MR[[Holds]]
iff there exists an ex-proposition “executableA if ρ” ∈D

such thatρ holds in Res(α,S) (by item (I.3) of Definition B.1)

iff A is executable inRes(α,S). (1)

The second item follows immediately from (1) and item (I.5) of Definition B.1.2
Lemma B.3. For each modelM = (σ0,Φ) of a domain descriptionD, MR satisfies
axiom(2.8).

Proof. Consider an actionA, a situationS, and a positive fluent literalF . LetMR[[S]] =
[α]S. The axiom (2.8) is true inMR if 〈A, [α]S〉 /∈MR[[Poss]]. Thus we need to prove that
it is also true inMR when〈A, [α]S〉 ∈MR[[Poss]].

From〈A, [α]S〉 ∈MR[[Poss]] and Lemma B.2, we have thatA is executable inRes(α,S).
Hence, by (I.5) of Definition B.1,

MR[[do]](A, [α]S)= [α;A]S. (1)

We have that

MR |=Holds(F,do(A,S))
iff 〈F,MR[[do]](A, [α]S)〉 ∈MR[[Holds]]
iff 〈F, [α;A]S〉 ∈MR[[Holds]] becauseMR[[do]](A, [α]S)= [α;A]S, by (1)
iff F holds in Res([α;A], S) (by item (I.3) of Definition B.1)
iff F ∈Res(A,Res(α,S))
iff F ∈E+A(Res(α,S))

60 T.C. Son, C. Baral / Artificial Intelligence 125 (2001) 19–91

orF ∈Res(α,S)∧ F /∈E−A(Res(α,S)) (by definition ofRes)
iff 〈A, [α]S〉 ∈MR[[γ+F]] (by Lemma B.1)

or (〈F, [α]S〉 ∈MR[[Holds]] ∧ 〈A, [α]S〉 /∈MR[[γ−F]]) (by Lemma B.1 and (I.3)
of Definition B.1)

iff MR |= γ+F (A,S)∨ (Holds(F,S)∧¬γ−F (A,S)) (2)

Similarly, we can prove (2) for negative fluent literal. ThusMR satisfies (2.8). 2
Lemma B.4. For each modelM = (σ0,Φ) of a domain descriptionD, MR satisfies the
axioms(2.10)–(2.12).

Proof. Consider a situationS1 such thatMR |=K(S1,S0).
This means that〈MR[[S1]],MR[[S0]]〉 ∈MR[[K]]. Hence, by item (I.4) of Definition B.1

and from the fact thatMR[[S0]] = []σ0.1, we can conclude thatMR[[S1]] = []S for some
S ∈ σ0.2. SinceM is a model ofD, S is an initial state ofD. Therefore,Gi holds inS
for everyi = 1, . . . ,m. Because[] is executable inS, by item (I.3) of Definition B.1, we
conclude that〈∧m

i=1Gi, []S〉 ∈MR[[Holds]], i.e.,MR |=∧m
i=1 Holds(Gi,S1). Since this

holds for everyS1 such thatMR |=K(S1,S0), we can conclude that

MR satisfies (2.11). (1)

SinceM is a model ofD, we have thatσ0.1∈ σ0.2. Thus, by item (I.4) of Definition B.1,
we have thatMR |=K(S0,S0). Hence,

MR satisfies (2.12). (2)

Sinceσ0.1 is also an initial state ofD, from (1) and (2), we can conclude that

MR satisfies (2.10). (3)

The lemma follows from (1)–(3).2
Lemma B.5. For each modelM = (σ0,Φ) of a domain descriptionD, MR satisfies
axiom(2.9).

Proof. Consider an actionA and a situationS. LetMR[[S]] = [α]S. Similar to Lemma B.3,
it suffices to prove thatMR satisfies axiom (2.9) when〈A, [α]S〉 ∈ MR[[Poss]]. By
Lemma B.2, this implies that

Res(α,S) is defined,A is executable inRes(α,S), and
MR[[do]](A, [α]S)= [α;A]S. (1)

There are two cases:
Case1:MR |=K(S2,do(A,S)) for some situationS2. LetMR[[S2]] = [α2]S2. We will

prove that the following formula is also true inMR :

∃s1.

[
(K(s1,S)∧Poss(A, s1)∧ S2= do(A, s1))∧((

n∧
i=1

A 6=Ki
)
∨

n∨
i=1

(A=Ki ∧Holds(Fi, s1))≡Holds(Fi,S)

)]
. (B.2)

T.C. Son, C. Baral / Artificial Intelligence 125 (2001) 19–91 61

MR |= K(S2,do(A,S)) implies that〈[α2]S2,MR[[do]](A, [α]S)〉 ∈MR[[K]], and hence,
〈[α2]S2, [α;A]S〉 ∈MR[[K]]. By item (I.4) of Definition B.1 we have thatα2= α;A, and

〈[α]S2, [α]S〉 ∈MR[[K]]; (2)
A is executable inRes(α,S2) and Res(α,S); (3)

A is a non-sensing action or ifA is sensing action, sayKi,
then Res(α,S2) and Res(α,S) agree onFi; (4)

Let S1 be a situation such thatMR[[S1]] = [α]S2. It follows from (3) and Lemma B.2
that〈A, [α]S2〉 ∈MR[[Poss]]. Furthermore, from (3) and (4), we can conclude that

MR |=
((

n∧
i=1

A 6=Ki
)
∨

n∨
i=1

(A=Ki ∧Holds(Fi,S2))≡ Holds(Fi,S)

)
.

Together with (2), we have thatS1 satisfies (B.2).
Case2: Assume that the formula (B.2) is true for someS1 with MR[[S1]] = [α1]S1. We

want to show that

MR |=K(S2,do(A,S)) (B.6)

whereS2= do(A,S1). Similar to the above case, fromMR |=K(S1,S) and〈A, [α1]S1〉 ∈
MR[[Poss]], we can conclude thatα1= α, andA is executable inRes(α,S1). Thus,

MR[[do]](A, [α]S1)= [α;A]S1. (5)

It follows from (B.2) thatMR |= ((∧n
i=1A 6= Ki) ∨

∨n
i=1(A = Ki ∧ Holds(Fi,S1) ≡

Holds(Fi,S)). This implies that

eitherA is a non-sensing action orA is a sensing action,
sayKi, and Res(α,S1) and Res(α,S) agree onFi. (6)

It follows from (1) and (5)–(6) and (I.4) of Definition B.1 that〈[α;A]S1, [α;A]S〉 ∈
MR[[K]]. This, together with (1) and (5), implies that〈MR[[do]](A, [α]S1),MR[[do]](A,
[α]S)〉 ∈MR[[K]] which proves that (B.6) is true inMR .

It follows from the above two cases thatMR satisfies (2.9). 2
Lemma B.6. For each modelM = (σ0,Φ) of a domain descriptionD, the M-interpreta-
tion ofR(D),MR , is a model ofR(D).

Proof. It follows from Lemmas B.3–B.5 thatMR satisfies the axioms (2.8)–(2.12). It is
easy to see that the closure assumptions and unique name assumptions for fluents and
actions are satisfied byMR too. Thus,MR is a model ofR(D). 2
Lemma B.7. For each situation interpretation[α]S, the following statements are
equivalent:

(i) 〈[α]S, [α]σ0.1〉 ∈MR[[K]]; and
(ii) α is executable inS andσ0.1, and Res(γ, S) ∈ Φ̂(γ, σ0).2 for every prefixγ of α.

Proof. Induction over|α|.

62 T.C. Son, C. Baral / Artificial Intelligence 125 (2001) 19–91

Base case: |α| = 0, i.e.,α = []. By item (I.4) of Definition B.1,〈[]S, []σ0.1〉 ∈MR[[K]]
iff S ∈ σ0.2= Φ̂(α,σ0).2. Together with the fact that[] is executable inS andσ0.1, we
conclude the base case.

Inductive step: Assume that we have proved the lemma for|α|< k. We need to show it
for |α| = k. Letα = [β;A]. Then,|β|< k. We consider two cases:

(i) ⇒ (ii) From item (I.4) of Definition B.1 and (i) forα = [β;A], we have that

〈[β]S, [β]σ0.1〉 ∈MR[[K]]; (1)

A is executable inRes(β,S) and Res(β,σ0.1); and (2)

if A sensesFj then Res(β,S) and Res(β,σ0.1) agree onFj . (3)

By inductive hypothesis, from (1), we conclude that

β is executable inS andσ0.1, and Res(γ, S) ∈ Φ̂(γ, σ0).2 for every prefixγ of β.

(4)
From (2) and the fact thatβ is executable inS andσ0.1, we have that

[β;A] is executable inS andσ0.1. (5)

From (3) and the fact thatRes(β,S) ∈ Φ̂(β,σ0).2, we conclude that

Res([β;A], S)∈ Φ̂([β;A], σ0).2. (6)

The inductive step for this direction follows from (4)–(6).
(ii) ⇒ (i) α is executable inS andσ0.1 implies thatβ is executable inS andσ0.1.

Furthermore, every prefix ofβ is a prefix ofα. Hence, by inductive hypothesis, we have
that

〈[β]S, [β]σ0.1〉 ∈MR[[K]]. (7)

α is executable inS andσ0.1 also implies that

A is executable inRes(β,S) and Res(β,σ0.1). (8)

Res(β,S) ∈ Φ̂(β,σ0).2 andRes([β;A], S)∈ Φ̂([β;A], σ0).2 implies that

if A is a sensing action, sayKi,
then Res(β,S) and Res(β,σ0.1)must agree onFi. (9)

It follows from (7)–(9) and item (I.4) of Definition B.1 that〈[β;A]s, [β;A]σ0.1〉 ∈
MR[[K]]. This concludes the inductive step for this direction.

The inductive step is proved. Hence, by mathematical induction, we conclude the
lemma. 2
Lemma B.8. For every stateS and action sequenceα, α is executable inS iff 〈α, []S〉 ∈
MR[[Poss]].

Proof. By induction over|α|.
Base case: α = []. The lemma is trivial because[] is executable in every stateS and
〈[], []S〉 ∈MR[[Poss]] for every stateS.

T.C. Son, C. Baral / Artificial Intelligence 125 (2001) 19–91 63

Inductive step: Assume that we have proved the lemma for|α|< k. We need to show it
for |α| = k. Letα = [β;A]. We have that|β|< k and

β;A is executable inS
iff β is executable inS andA is executable inRes(β,S)
iff 〈β, []S〉 ∈MR[[Poss]] (by inductive hypothesis)

and〈A,MR[[do]](β, []S)〉 ∈MR[[Poss]] (by Lemma B.2)
iff 〈[β;A], []S〉 ∈MR[[Poss]]. 2

Lemma B.9. LetD be a domain description andM = (σ0,Φ) be a model ofD. Then,
there exists a modelMR of R(D) such that for any fluent formulaϕ and sequence
of actionsα of D, α is executable inσ0 and ϕ is known to be true inΦ̂(α,σ0) iff
MR |= Knows(ϕ,do(α,S0))∧Poss(α,S0).

Proof. Let MR be the M-interpretation ofR(D). By Lemma B.6 we have thatMR is a
model ofR(D). We will prove thatMR satisfies the conclusion of the lemma.

We have that

α is executable inσ0
iff α is executable inσ0.1
iff 〈α, []σ0.1〉 ∈MR[[Poss]] (by Lemma B.8)
iff MR |= Poss(α,S0). (1)

ϕ is known to be true in̂Φ(α,σ0)

iff for every S ∈ Φ̂(α,σ0).2, ϕ holds inS (by definition)
iff for every S ∈ σ0.2 such that
α is executable inS and Res(γ, S) ∈ Φ̂(γ, σ0).2
for every prefixγ of α,ϕ holds in Res(α,S)

iff for every [α]S such that〈[α]S, [α]σ0.1〉 ∈MR[[K]] (by Lemma B.7)
and〈ϕ, [α]S〉 ∈MR[[Holds]] (by item (I.3) of Definition B.1)

iff MR |= Knows(ϕ,do(α,S0)) (by definition ofKnows) (2)

The lemma follows from (1) and (2).2
We now prove the counterpart of Lemma B.9. LetD be a domain description andMR

be a model ofR(D). SinceR(D) contains the DCA and UNA axioms for actions and
fluents we can assume that the domains of actions and fluents areA andF respectively,
i.e.,|MR|action=A and|MR|fluent= F . In what follows, whenever we say a situationS we
mean a ground situation term. We define

Definition B.2. Let D be a domain description andMR be a model ofR(D). For each
ground situation terms in MR , let s∗ = {F | Holds(F, s) is true inMR, F is a positive
fluent literal}. 10 TheMR-initial c-state ofD, denoted byσ ∗0 , is defined as follows.

(M.1) σ ∗0 .1= S∗0;
(M.2) σ ∗0 .2= {s∗ |K(s,S0) is true inMR}.

10Recall thatHolds(¬F, s) stands for¬Holds(F, s).

64 T.C. Son, C. Baral / Artificial Intelligence 125 (2001) 19–91

We callM = (σ ∗0 ,Φ), whereσ ∗0 is theMR-initial c-state andΦ is the transition function
of D (defined in Definition 2), theMR-based model ofD.

Lemma B.10. For a domain descriptionD and a modelMR of R(D), theMR-based
model ofD. is a model ofD.

Proof. Consider an arbitrary v-proposition “initially Gi ” of D. There are two cases:
• Gi is a positive literal. SinceMR is a model ofR(D), from (2.10) we have that

Holds(Gi,S0) is true inMR . By (M.1) of Definition B.2, we have that

Gi ∈ σ ∗0 .1, i.e.,Gi holds inσ ∗0 .1. (1)

• Gi is a negative literal, sayGi = ¬G. Again, sinceMR is a model ofR(D),
from (2.10) we have thatHolds(¬G,S0) is true inMR , or Holds(G,S0) is false in
MR . Thus, by (M.1) of Definition B.2, we have that

G /∈ σ ∗0 .1, i.e.,Gi holds inσ ∗0 .1. (2)

It follows from (1) and (2) that

σ ∗0 .1 is an initial state ofD. (3)

ConsiderS ∈ σ ∗0 .2. By (M.2) of Definition B.2, we conclude that there existsS such that
S = S∗ andK(S,S0) is true inMR . Hence, by axiom (2.11),

∧m
i=1 Holds(Gi,S) is true in

MR. Similar to (1) and (2) we can prove that

S is an initial state ofD. (4)

From (3) and (4) we have thatσ ∗0 is an initial c-state. Furthermore, axiom (2.12)
and (M.2) of Definition B.2 indicate thatσ ∗0 .1∈ σ ∗0 .2, i.e.,σ ∗0 is a grounded initial c-state.
SinceΦ is the transition function ofD andσ ∗0 is an initial ground c-state,M = (σ ∗0 ,Φ) is
a model ofD. 2

The next corollary follows immediately from Definition B.2.

Corollary B.1. For each modelMR ofR(D), a fluent formulaϕ, and a situationS,

Holds(ϕ,S) holds inMR iff ϕ holds inS∗.

Lemma B.11. For each modelMR ofR(D), a fluentF , a situationS, and an actionA
(i) γ+F (A,S) is true inMR iff F ∈E+A(S∗); and
(ii) γ−F (A,S) is true inMR iff F ∈E−A(S∗).

Proof. We have that

γ+F (A,S) is true inMR

iff
∨

“A causesF if %”∈DHolds(%,S) is true inMR (Definition ofγ+F (A,S))
iff there exists an ef-proposition “A causesF if %” ∈D

such that% holds inS∗ (by Corollary B.1)
iff F ∈E+A(S∗).

T.C. Son, C. Baral / Artificial Intelligence 125 (2001) 19–91 65

Thus (i) is proved.
Similarly, we can prove (ii). 2

Lemma B.12. For each modelMR ofR(D), a situationS, and an actionA,
(i) Poss(A,S) is true inMR iff A is executable inS∗; and
(ii) if Poss(A,S) is true inMR then(S′)∗ =Res(A,S∗) whereS′ = do(A,S).

Proof.

Poss(A,S) is true inMR

iff there exists an ex-proposition “executableA if ρ” ∈D
such thatHolds(ρ,S) is true inMR

iff there exists an ex-proposition “executableA if ρ” ∈D
such thatρ holds inS∗

iff A is executable inS∗. (1)

We have that ifPoss(A,S) is true inMR then, for a fluentF ,

F ∈ (S′)∗
iff Holds(F,do(A,S)) is true inMR

iff γ+F (A,S)∨ (Holds(F,S)∧¬γ−F (A,S)) is true inMR (by axiom (2.8))
iff F ∈E+A(S∗) or (F ∈ S∗ andF /∈E−A(S∗)) (by Lemma B.11)

F ∈Res(A,S∗). (2)

The lemma follows from (1) and (2).2
Lemma B.13. For each modelMR ofR(D), a situationS, and a sequence of actionsα:

(i) Poss(α,S) is true inMR iff α is executable inS∗; and
(ii) if Poss(α,S) is true inMR then[do(α,S)]∗ =Res(α,S∗).

Proof. By induction over|α|.
Base case: |α| = 0. (i) is trivial becausePoss([],S) is true (by definition) and[] is

executable in every state. (ii) follows immediately from (M.1) of Definition B.2. The case
|α| = 1 is proven by Lemma B.12.

Inductive step: Assume that we have proved the lemma for|α|< k. We need to show it
for |α| = k. Letα = [β;A]. We have that|β|< k. We have that

Poss(α,S) is true inMR

iff Poss(β,S) is true inMR andPoss(A,do(β,S)) is true inMR (by definition)
iff Poss(β,S) is true inMR and

there exists an ex-proposition “executableA if ρ” ∈D
such thatHolds(ρ,do(β,S)) is true inMR

iff β is executable inS∗ (by inductive hypothesis, item (i))
and there exists an ex-proposition “executableA if ρ” ∈D
such thatρ holds in Res(β,S∗) (by inductive hypothesis, item (ii))

[β;A] is executable inS∗. (1)

66 T.C. Son, C. Baral / Artificial Intelligence 125 (2001) 19–91

Let S′ = do(β,S). By Lemma B.12, we have that[do(A,S′)]∗ = Res(A, (S′)∗). By
inductive hypothesis, we have that(S′)∗ =Res(β,S∗). Hence,

[do([β;A],S)]∗ = [do(A,do(β,S))]∗ = Res(A, (S′)∗)
= Res(A,Res(β,S∗))=Res([β;A],S∗). (2)

The inductive step follows from (1) and (2).2
Lemma B.14. LetD be a domain description andMR be a model ofR(D). Then, there
exists a model(σ0,Φ) ofD such that for any fluent formulaϕ and sequence of actionsα
ofD, MR |= Knows(ϕ,do(α,S0)) ∧ Poss(α,S0) iff α is executable inσ0 andϕ is known
to be true inΦ̂(α,σ0).

Proof. We will prove that theMR-based model ofD, M = (σ ∗0 ,Φ), satisfies the
conclusion of the lemma. By Lemma B.10,M is a model ofD. By Lemma B.13, we
have that

Poss(α,S0) is true inMR

iff α is executable in(S0)
∗ = σ ∗0 .1

iff α is executable inσ ∗0 . (1)

We now prove by induction over the length ofα that M satisfies the lemma and the
following properties.

(i) K(s,do(α,S0)) is true inMR iff s∗ ∈ Φ̂(α,σ ∗0).2.
Base case: |α| = 0. The conclusion of the lemma is trivial because of the definition of

M. (i) is equivalent to

K(s,S0) is true inMR iff s∗ ∈ σ ∗0 .2
which follows immediately from item (M.2) of Definition B.2 and the fact thatK(S0,S0)

is true inMR . This proves the base case.
Inductive step: Assume that we have proved the lemma for|α|< l. We need to prove it

for |α| = l. Letα = [β;A].
It follows from the construction ofR(D) that

K(s,do([β;A],S0)) is true inMR

iff ∃s1.[(K(s1,do(β,S0))∧ Poss(A, s1)∧ s= do(A, s1)

and(
∧n
j=1(A 6=Kj)∧∨n
j=1(A=Kj ∧
(Holds(Fj , s1)≡Holds(Fj ,do(β,S0)))))]

is true inMR (by (2.9))

iff s∗1 ∈ Φ̂(β,σ ∗0).2 (by inductive hypothesis)

ands∗ =Res(A, s∗1) (by s= do(A, s1) and(M.1) of Definition B.2)

and ifAl =Kj thenFj ∈ s∗1 iff Fj ∈ Φ̂(β,σ ∗0).1
iff s∗ ∈ Φ̂(β,σ ∗0).2 (2)

T.C. Son, C. Baral / Artificial Intelligence 125 (2001) 19–91 67

Consider a fluent formulaϕ, we have that

MR |= Knows(ϕ,do(α,S0))∧Poss(α,S0)

iff Poss(α,S0) is true inMR and
∀s.[K(s,do(α,S0))⊃Holds(F, s)] is true inMR

iff α is executable inσ ∗0
and∀s∗ ∈ Φ̂(α,σ ∗0).2, ϕ holds ins∗ (by (1) and (i))

iff α is executable inσ ∗0 andϕ is known to be true in̂Φ(α,σ ∗0). (3)

(2) and (3) prove the inductive step for (i) and the lemma’s conclusion. The lemma is
proved. 2

We now prove Proposition 2.

Proposition 2. LetD be a domain description,ϕ be a fluent formula, andα be a sequence
of actions ofD. Then,

D |=AK Knows ϕ after α iff R(D) |= Knows(ϕ,do(α,S0))∧Poss(α,S0).

Proof. (a) Assume thatD |=AK Knows ϕ after α. We will prove that R(D) |=
Knows(ϕ,do(α,S0))∧Poss(α,S0). Assume the contrary,R(D) 6|= Knows(ϕ,do(α,S0))∧
Poss(α,S0). By definition, there exists a modelMR of R(D) such thatMR 6|= Knows(ϕ,
do(α,S0)) orMR 6|= Poss(α,S0). Then, by Lemma B.14, there exists a modelM ofD such
thatM 6|= Knows ϕ after α. This implies thatD 6|=AK Knowsϕ after α which contradicts
with the assumption thatD |=AK Knows ϕ after α. Hence, our assumption is incorrect,
i.e., we have proved thatR(D) |= Knows(ϕ,do(α,S0)) ∧ Poss(α,S0). Therefore, we can
conclude that

if D |=AK Knows ϕ after α thenR(D) |= Knows(ϕ,do(α,S0))∧Poss(α,S0). (1)

(b) Assume thatR(D) |= Knows(ϕ,do(α,S0)) ∧ Poss(α,S0). We will prove that
D |=AK Knows ϕ after α. Assume the contrary,D 6|=AK Knows ϕ after α. This means
that there exists a modelM of D such thatM 6|= Knows ϕ after α. Then, by Lemma B.9,
there exists a modelMR of R(D) such thatMR 6|= Knows(ϕ,do(α,S0)) ∧ Poss(α,S0).
This implies thatR(D) 6|= Knows(ϕ,do(α,S0)) ∧ Poss(α,S0) which contradicts our
assumption. Hence, we have thatD |=AK Knows ϕ after α. So,

if R(D) |= Knows(ϕ,do(α,S0))∧Poss(α,S0) thenD |=AK Knows ϕ after α. (2)

From (1) and (2), we can conclude that

D |=AK Knows ϕ after α iff R(D) |= Knows(F,do(α,S0))∧Poss(α,S0). 2
We will now extend the Lemmas B.9 and B.14 to conditional plans. We need the

following notation and lemmas.
Let c be a conditional plan, we define the number of case plans ofc, denoted bycount(c),

inductively as follows.

68 T.C. Son, C. Baral / Artificial Intelligence 125 (2001) 19–91

(1) If c= [], thencount(c)= 0.
(2) If c= a, a is an action, thencount(c)= 0.
(3) If c1 andc2 are conditional plans, thencase(c1; c2)= count(c1)+ count(c2).
(4) If c is a case plan of the form

Case
ϕ1→ c1

. . .

ϕn→ cn

Endcase

thencount(c)= 1+∑n
i=1 count(ci).

It follows directly from the definition ofBApply the following lemma.

Lemma B.15. Let s, s′ be situations andc be a conditional plan. The following formulas
are entailed byBApply:

(i) Apply([], s, s′)⊃ s= s′;
(ii) Apply([case([])|c], s, s′)⊃ s′ =⊥; and
(iii) Apply(c,⊥, s′)⊃ s′ =⊥.

Proof. Assume that (i) is not entailed byBApply. Then, there exists a modelM of BApply

such thatApply([], s, s′) is true inM but s 6= s′. It is easy to see thatM \Apply([], s, s′) is
also model ofBApply. This violates the minimality ofM. Thus, (i) is true in every model of
BApply. Similarly, we can prove (ii) and (iii). 2
Lemma B.16. Let s, s′, s′′ be situations,a be an action,ϕ be a fluent formula,α be a
sequence of actions, andc, c′, c′′ be conditional plans. The following formulas are entailed
byBApply:

(i) Apply([a|α], s, s′)∧ s 6=⊥⊃
((Poss(a, s)⊃ Apply(α,do(a, s), s′))∧ (¬Poss(a, s)⊃ s′ =⊥));

(ii) Apply([case([(ϕ, c)|r ′])|c′′], s, s′)∧ s 6=⊥⊃
((knows(ϕ, s)⊃ ∃s′′.Apply(c, s, s′′)∧ Apply(c′′, s′′, s′))∧
(¬knows(ϕ, s)⊃ Apply([case(r ′)|c′′], s, s′))); and

(iii) Apply(c, s, s′)∧Apply(c, s, s′′)⊃ s′ = s′′.

Proof. Assume that (i) is not entailed byBApply. It means that there exists a modelM
of BApply, an actiona, a sequence of actionsα, and two situationss and s′ such that
Apply([a|α], s, s′) ∧ s 6=⊥ is true inM and (Poss(a, s) ⊃ Apply([a|α],do(a, s), s′)) ∧
(¬Poss(a, s) ⊃ s′ =⊥) is not true inM. By definition of BApply, the modelM ′ =
M \ {Apply([a|α], s, s′)} is a model ofBApply. This contradicts the assumption thatM
is a minimal model ofBApply. Hence, our assumption that (i) is not true inM is incorrect,
i.e., we have proved that (i) is a valid sentence ofBApply.

Similarly, we can prove item (ii). The proof of item (iii) is based on induction over
count(c) and is omitted here.2

T.C. Son, C. Baral / Artificial Intelligence 125 (2001) 19–91 69

Lemma B.17. Letc1, . . . , cn ben arbitrary conditional plans,(n> 1). Then, the following
formula is entailed byBApply:

Apply([c1; . . . ; cn], s1, sn+1)≡
∃(s2, . . . , sn).[Apply(c1, s1, s2)∧ · · · ∧Apply(cn, sn, sn+1)].

Proof. We prove the lemma by induction overn.
Base case: n = 1. Then, we have that the right hand side is∃s2.Apply(c1, s1, s2) and

the left hand side isApply(c1, s1, s2). It follows from item (iii) of Lemma B.16 that
Apply(c1, s1, s2)≡ ∃(s2).Apply(c1, s1, s2). This proves the base case.

Inductive step: Assume that we have proved the lemma forn. We need to prove it for
n+1. Sincecn andcn+1 are conditional plans, by definition, we have thatc= cn; cn+1 is a
conditional plan. Hence, by inductive hypothesis forn plansc1, . . . , cn−1, c, we have that

Apply([c1; . . . ; cn−1; c], s1, sn+2)≡
∃(s2, . . . , sn).[Apply(c1, s1, s2)∧ · · · ∧Apply(c, sn, sn+2)]. (1)

By inductive hypothesis for 2 planscn andcn+1, we have that

Apply(c, sn, sn+2)≡ ∃(sn+1).[Apply(cn, sn, sn+1)∧Apply(cn+1, sn+1, sn+2)]. (2)

The inductive step follows from (1) and (2). I.e., the lemma is proved.2
Lemma B.18. Let c be a case plan of the form

Case
ϕ1→ p1
...

ϕl→ pl

Endcase

ands 6=⊥. Then, the following formula is entailed byBApply:

Knows(ϕj , s)∧ Apply(c, s, s′)≡ Knows(ϕj , s)∧ Apply(pj , s, s
′).

Proof. LetM be a model ofBApply. Obviously, ifKnows(ϕj , s) is false inM for 16 j 6 l,
the formula is true inM. So, we need to prove it for the case there exists somej , 16 j 6 l,
Knows(ϕj , s) is true inM. We consider two cases:

(a) Left to Right: Assume thatKnows(ϕj , s) ∧ Apply(c, s, s′) is true in M. Then,
sinceϕj ’s are mutual exclusive, we can conclude that¬Knows(ϕi, s) is true inM, for
i 6= j, 16 i 6 l. Hence, by item (ii) of Lemma B.16 (forc′′ = [], ϕ = ϕj , c= pj) we have
that

∃s′′.Apply(pj , s, s
′′)∧ Apply([], s′′, s′) is true inM. (1)

From item (i) of Lemma B.15, we have thats′′ = s′. Hence, (1) is equivalent to,

Apply(pj , s, s
′) is true inM. (2)

70 T.C. Son, C. Baral / Artificial Intelligence 125 (2001) 19–91

It follows from the assumption thatKnows(ϕj , s) is true inM and (2) thatKnows(ϕj , s)∧
Apply(pj , s, s′) is true inM, which proves (a).

(b) Right to Left: Assume thatKnows(ϕj , s) ∧ Apply(pj , s, s′) holds inM. Similar
argument as above concludes that¬Knows(ϕi, s) is true inM, for i 6= j, 1 6 i 6 l.
Hence, by definition ofApply (case 6, forc′′ = [], r ′ is the sequence[(ϕ1,p1), . . . ,

(ϕj−1,pj−1), (ϕj+1,pj+1), . . . , (ϕl,pl)]), we have that

Knows(ϕj , s)∧Apply(pj , s, s
′)∧Apply([], s′, s′′)⊃

Apply([case([(ϕj ,pj)|r ′], s, s′′) holds inM.

Furthermore, from (i) of Lemma B.15, we have thats′′ = s′. Hence, we conclude that
Apply(c, s, s′)∧Knows(ϕj , s) holds inM. This proves (b).

The lemma follows from (a) and (b).2
Lemma B.19. Assume thatc = c1, . . . , cn is a conditional plan wherec1, . . . , cn is a
sequence of conditional plans satisfying the conditions of Observation3.1. Let c1 be a
case plan of the form

Case
ϕ1→ p1
...

ϕl→ pl

Endcase

and s be a situation term. LetM be a model ofBApply such thatM |= Knows(ϕj , s)
for somej , 16 j 6 l. Then,M ∪ BApply |= Apply(c, s, s′) ≡ Apply(c′, s, s′) wherec′ =
pj ; c2; . . . ; cn.

Proof. By Lemma B.17, there existss1, . . . , sn−1 such that

Apply(c, s, s′)≡ Apply(c1, s, s1)∧ · · · ∧Apply(cn, sn−1, s
′)

is true inM ∪BApply. (1)

SinceM |= Knows(ϕj , s), by Lemma B.18 and from (1), we have that

Knows(ϕj , s)∧ Apply(c1, s, s1)≡ Knows(ϕj , s)∧Apply(pj , s, s1)

is true inM ∪BApply. (2)

It follows from (1) and (2) that

M ∪BApply |= Knows(ϕj , s)∧Apply(c, s, s′)≡
Knows(ϕj , s)∧ Apply(pj , s, s1)∧Apply(c2, s1, s3)∧ · · · ∧Apply(cn, sn−1, s

′),

which implies that

M ∪BApply |= Apply(c, s, s′)≡ Apply(c′, s, s′). (by Lemma B.17) (3)

The lemma follows from (3). 2

T.C. Son, C. Baral / Artificial Intelligence 125 (2001) 19–91 71

Lemma B.20. Assume thatc = c1, . . . , cn is a conditional plan wherec1, . . . , cn is a
sequence of conditional plans satisfying the conditions of Observation3.1. Let c1 be a
sequence of actions andc2 be a case plan of the form

Case
ϕ1→ p1
...

ϕl→ pl

Endcase

ands be a situation term. LetM be a model ofBApply such thatM |= Knows(ϕj ,do(c1, s))
for somej , 16 j 6 l. Then,M ∪ BApply |= Apply(c, s, s′) ≡ Apply(c′, s, s′) wherec′ =
c1;pj ; . . . ; cn.

Proof. SinceM |= Knows(ϕj ,do(c1, s)), we conclude thatPoss(c1, s) is true inM. By
Lemma B.17, there existss1, . . . , sn−1 such thatApply(c, s, s′)≡ Apply(c1, s, s1) ∧ · · · ∧
Apply(cn, sn−1, s′) holds inM ∪BApply. (1)

Sincec1 is a sequence of actions, we have thats1 = do(c1, s). Therefore, fromM |=
Knows(ϕj ,do(c1, s)), s1= do(c1, s), and by Lemma B.18, we have that

M ∪BApply |= Apply(c2, s1, s2)≡ Apply(pj , s1, s2). (2)

It follows from (1) and (2) that

M ∪BApply |= Apply(c, s, s′)≡ Apply(c1, s, s1)∧Apply(pj , s1, s2)∧
Apply(c3, s2, s3)∧ · · · ∧Apply(cn, sn−1, s

′),
which implies that

M ∪BApply |= Apply(c, s, s′)≡ Apply(c′, s, s′). (by Lemma B.17) (3)

The lemma follows from (3). 2
Lemma B.21. LetD be a domain description andM = (σ0,Φ) be a model ofD. Then,
there exists a modelMR ofR(D) such that for any fluent formulaϕ and conditional planc,
• c is executable inσ0 and ϕ is known to be true in̂Φ(c,σ0) iff MR ∪ BApply |=

Knows(ϕ, s)∧Apply(c,S0, s)∧ s 6=⊥;
• Φ̂(c, σ0)=⊥ iff MR ∪BApply |= Apply(c,S0, ⊥).

Proof. From Observation 3.1, we can assume thatc = c1; . . . ; cn whereci is a sequence
of actions or a case plan and for everyi, 16 i 6 n− 1, if ci is a sequence of actions then
ci+1 is a case plan.

LetMR be theM-interpretation ofD. By Lemma B.2,MR is model ofR(D). We will
prove by induction overcount(c) thatMR satisfies the lemma.

Base case: count(c)= 0. Using items (i) and (iii) of Lemma B.16, we can prove that

MR ∪BApply |= Apply(c,S0, s)⊃
(Poss(c,S0)⊃ s= do(c,S0))∧ (¬Poss(c,S0)⊃ s=⊥). (1)

72 T.C. Son, C. Baral / Artificial Intelligence 125 (2001) 19–91

By Lemma B.9, we have thatc is executable inσ0 andϕ is known to be true in̂Φ(c,σ0)

iff

MR |= Knows(ϕ,do(c,S0))∧Poss(c,S0). (2)

It follows from (1) and (2) thatc is executable inσ0 andϕ is known to be true in̂Φ(c,σ0)

iff

MR ∪BApply |= Knows(ϕ, s)∧Apply(c,S0, s)∧ s 6=⊥ . (3)

(3) proves the first item of the lemma. To complete the base case, we need to prove the
second item. Sincec is a sequence of actions, we have that

Φ̂(c, σ0)=⊥
iff c is not executable inσ0

iff MR |= ¬Poss(c,S0) (Lemma B.9)

iff MR ∪BApply |= Apply(c,S0,⊥) (by (1)).

So, the second item of the lemma is proved. The base case is proved.
Inductive step: Assume that we have proved the lemma forcount(c) 6 k. We need to

prove the lemma forcount(c)= k + 1.
Case1: c is executable inσ0 andϕ is known to be true in̂Φ(c,σ0). We will show that

Knows(ϕ, s)∧Apply(c,S0, s)∧ s 6=⊥ is true inMR ∪BApply.
We consider two cases:
Case1.1:c1 is a case plan. Assume thatc1 is the following case plan

Case
ϕ1→ p1
...

ϕl→ pl

Endcase

Sincec is executable inσ0 andϕ is known to be true in̂Φ(c,σ0)we have that⊥ 6= Φ̂(c, σ0).
It implies that

there existsj, 16 j 6 l, such thatϕj is known to be true inσ0. (4)

Let c′ = pj ; c2; . . . ; cn. Then, by definition of̂Φ and from (4) we have that̂Φ(c,σ0)=
Φ̂(c′, σ0). Hence,ϕ is known to be true in̂Φ(c′, σ0). Sincecount(c′)6 count(c)− 1, we
have thatcount(c′)6 k. Thus, by inductive hypothesis, we can conclude that

Knows(ϕ, s)∧Apply(c′,S0, s)∧ s 6=⊥ is true inMR ∪BApply. (5)

It follows from Lemma B.19 that

MR ∪BApply |= Apply(c,S0, s)≡ Apply(c′,S0, s). (6)

From (5) and (6) we have thatMR ∪BApply |= Knows(ϕ, s)∧ Apply(c,S0, s)∧ s 6=⊥.
Case1.2: c1 is a sequence of actions. Then,c2 is a case plan. Let us assume thatc2 is

the case plan.

T.C. Son, C. Baral / Artificial Intelligence 125 (2001) 19–91 73

Case
ϕ1→ p1
...

ϕl→ pl

Endcase

Sincec is executable inσ0 andϕ is known to be true in̂Φ(c,σ0) we have that⊥ 6=
Φ̂(c, σ0). This implies that

there existsj, 16 j 6 l, such thatϕj is known to be true in̂Φ(c1, σ0). (7)

Let c′ = c1;pj ; c3; . . . ; cn. From (7) and the definition of̂Φ, we have that̂Φ(c,σ0) =
Φ̂(c′, σ0). This implies that

ϕ is known to be true in̂Φ(c′, σ0). (8)

Since count(c′)6 count(c)− 1, we have thatcount(c′)6 k. Thus, by inductive hypothesis
and (8), we conclude that

MR ∪BApply |= Knows(ϕ, s)∧Apply(c′,S0, s)∧ s 6=⊥ . (9)

From Lemma B.20, we have that

MR ∪BApply |= Apply(c,S0, s)≡ Apply(c′,S0, s). (10)

(9) and (10) prove thatMR ∪BApply |= Knows(ϕ, s)∧ Apply(c,S0, s)∧ s 6=⊥.
The above two cases prove that ifc is executable inσ0 andϕ is known to be true in

Φ̂(c, σ0) thenMR ∪BApply |= Knows(ϕ, s)∧Apply(c,S0, s)∧ s 6=⊥.
Case2:MR ∪BApply |= Knows(ϕ, s)∧ Apply(c,S0, s)∧ s 6=⊥. We will prove thatc is

executable inσ0 andϕ is known to be true in̂Φ(c,σ0). We consider two cases:
Case2.1:c1 is a case plan. Assume thatc1 is the following case plan

Case
ϕ1→ p1
...

ϕl→ pl

Endcase

SinceMR∪BApply |= Apply(c,S0, s)∧s 6=⊥, by items (ii) of Lemma B.16, we conclude
that

there existsj, 16 j 6 l, such thatMR |= Knows(ϕj ,S0). (11)

Let c′ = pj ; c2; . . . ; cn. By Lemma B.19 we have thatMR ∪ BApply |= Apply(c,S0, s) ≡
Apply(c′,S0, s). This implies that

MR ∪BApply |= Knows(ϕ, s)∧Apply(c′,S0, s)∧ s 6=⊥ . (12)

Furthermore, from the definition ofMR and (11), we have thatϕj is known to be true in
σ0. This implies that

Φ̂(c, σ0)= Φ̂(c′, σ0). (13)

74 T.C. Son, C. Baral / Artificial Intelligence 125 (2001) 19–91

Sincecount(c′)6 count(c)− 1, we have thatcount(c′)6 k. Thus, by inductive hypothesis
and (12), we can conclude thatc is executable inσ0 andϕ is known to be true in̂Φ(c′, σ0),
and from (13), we have thatc is executable inσ0 andϕ is known to be true in̂Φ(c,σ0).

Case2.2: c1 is a sequence of actions. Then,c2 is a case plan. Let us assume thatc2 is
the case plan.

Case
ϕ1→ p1
...

ϕl→ pl

Endcase

Similar to case 2.1, we conclude that there existsj , 16 j 6 l, such that

MR ∪BApply |= Knows(ϕj , s
′)∧ Apply(c1,S0, s

′)∧ s′ 6=⊥ . (14)

Let c′ = c1;pj ; c3; . . . ; cn. From (14) and Lemma B.20, we have that

MR ∪BApply |= Apply(c,S0, s)≡ Apply(c′,S0, s). (15)

By inductive hypothesis, we have thatc′ is executable inσ0 andϕj is known to be true
in Φ̂(c1, σ0). Hence,

Φ̂(c, σ0)= Φ̂(c′, σ0). (16)

Sincecount(c′)6 count(c)−1, we have thatcount(c′)6 k. Thus, by inductive hypothesis,
we can conclude thatϕ is known to be true in̂Φ(c′, σ0). This, together with (16), proves
thatc is executable inσ0 andϕ is known to be true in̂Φ(c,σ0).

The two cases 2.1 and 2.2 prove that ifMR ∪BApply |= Knows(ϕ, s)∧Apply(c,S0, s)∧
s 6=⊥ thenc is executable inσ0 andϕ is known to be true in̂Φ(c,σ0).

The two cases 1 and 2 prove thatc is executable inσ0 andϕ is known to be true in
Φ̂(c, σ0) iff

MR ∪BApply |= Knows(ϕ, s)∧Apply(c,S0, s)∧ s 6=⊥ . (17)

The proof of the inductive step for the last item of the lemma,Φ̂(c, σ0) =⊥ iff
Apply(c,S0,⊥) is true inMR ∪ BApply has also four cases similar to the cases (1.1)–(1.2)
and (2.1)–(2.2).We will show next the first case. The other cases are similar and are omitted
here.

Assume that̂Φ(c,σ0)=⊥ wherec= c1, . . . , cn andc1 is the following case plan

Case
ϕ1→ p1
...

ϕl→ pl

Endcase

We will show thatApply(c,S0,⊥) is true inMR ∪BApply. We consider two cases:

T.C. Son, C. Baral / Artificial Intelligence 125 (2001) 19–91 75

(a) There exists noj such thatϕj is known to be true inσ0. By Lemma B.9, we have that
¬Knows(ϕj ,S0) is true inMR for 16 j 6 l. Applies the last definition ofApply l times,
we have that

Apply(c,S0,S′)⊃ Apply([case([])|c′],S0,S′) is true inBApplywherec′ = c2, . . . , cn. By
the third item in the definition, we can then conclude thatApply(c,S0,S′)⊃ Apply(c,S0,

⊥) is true inMR ∪BApply, i.e., the inductive step is proved.
(b) There exists somej such thatϕj is known to be true inσ0. Again, by Lemma B.9, we

have thatKnows(ϕj ,S0) is true inMR andKnows(ϕi,S0) is false inMR for 16 i 6= j 6 l.
Then, by Lemma B.19, we have that

MR ∪BApply |= Apply(c,S0, s)≡ Apply(c′,S0, s),

wherec′ = pj ; c2; . . . ; cn. This, together with the fact that̂Φ(c,σ0)= Φ̂(c′, σ0)=⊥ and
the inductive hypothesis implies thatApply(c,S0,⊥) is true inMR ∪BApply.

The above two cases prove the inductive step for the second item of the lemma.

(18)
The lemma follows from (17) and (18).2

Lemma B.22. LetD be a domain description andMR be a model ofR(D). Then, there
exists a modelM = (σ0,Φ) of D such that for any fluent formulaϕ and any conditional
plan c,
• MR ∪ BApply |= Knows(ϕ, s) ∧ Apply(c,S0, s)) ∧ s 6=⊥ iff c is executable inσ0 and
ϕ is known to be true in̂Φ(c,σ0);
• Φ̂(c, σ0)=⊥ iff MR ∪BApply |= Apply(c,S0,⊥).

Proof. From Observation 3.1, we can assume thatc = c1; . . . ; cn whereci is a sequence
of actions or a case plan and for everyi, 16 i 6 n− 1, if ci is a sequence of actions then
ci+1 is a case plan.

LetM = (σ0,Φ) be theMR-based model ofD. By Lemma B.10,M is a model ofD.
We will prove by induction over the number of case plan inc, count(c), thatM satisfies
the lemma.

Base case: count(c)= 0. Using item (i) of the Lemma B.16, we can prove that

MR ∪BApply |= Apply(c,S0, s)⊃
(Poss(c,S0)⊃ s= do(c,S0))∧ (¬Poss(c,S0)⊃ s=⊥). (1)

By Lemma B.14, we have that
MR |= Knows(ϕ,do(c,S0)) ∧ Poss(c,S0) iff c is executable inσ0 andϕ is known to be
true inΦ̂(c, σ0). This, together with (1), proves that

MR ∪BApply |= Knows(ϕ, s)∧Apply(c,S0, s)∧ s 6=⊥
iff c is executable inσ0 andϕ is known to be true in̂Φ(c,σ0). (2)

Furthermore, sincec is a sequence of actions, from (1),MR ∪BApply |= Apply(c,S0,⊥)
iff ¬Poss(c,S0) is true inMR . Again, by Lemma B.14, this is equivalent toc is not
executable inσ0.

The base case for the third item of the lemma is proved. (3)

76 T.C. Son, C. Baral / Artificial Intelligence 125 (2001) 19–91

The base case of the lemma follows from (2)–(3).
Inductive step: Assume that we have proved the lemma forcount(c) 6 k. We need to

prove the lemma forcount(c)= k + 1.
Case1: c is executable inσ0 andϕ is known to be true in̂Φ(c,σ0). We will show that

MR ∪BApply |= Knows(ϕ, s)∧Apply(c,S0, s)∧ s 6=⊥. We consider two cases:
Case1.1:c1 is a case plan. Assume thatc1 is the following case plan

Case

ϕ1→ p1

...

ϕl→ pl

Endcase

Sincec is executable inσ0 andϕ is known to be true in̂Φ(c,σ0)we have that⊥ 6= Φ̂(c, σ0).
This implies that

there existsj, 16 j 6 l, such thatϕj is known to be true inσ0. (4)

Let c′ = pj ; c2; . . . ; cn. Then, by definition ofΦ̂ and from (4) we have that̂Φ(c,σ0) =
Φ̂(c′, σ0). This implies that

ϕ is known to be true in̂Φ(c′, σ0). (5)

From (4) and Lemma B.19, we have that

MR ∪BApply |= Apply(c,S0, s)≡ Apply(c′,S0, s). (6)

Sincecount(c′)6 count(c)− 1, we have thatcount(c′)6 k. Thus, by inductive hypothesis
and (5), we can conclude thatMR ∪BApply |=Knows(ϕ, s)∧Apply(c′,S0, s)∧s 6=⊥. This,
together with (6), proves thatMR ∪BApply |= Knows(ϕ, s)∧Apply(c,S0, s)∧ s 6=⊥.

Case1.2:c1 is a sequence of actions. Then,c2 is a case plan. Again, let us assume that
c2 is the case plan.

Case
ϕ1→ p1
...

ϕl→ pl

Endcase

Since c is executable inσ0 and ϕ is known to be true inΦ̂(c, σ0) we have that
⊥ 6= Φ̂(c, σ0). It implies that

there existsj, 16 j 6 l, such thatϕj is known to be true in̂Φ(c1, σ0). (7)

Let c′ = c1;pj ; c3; . . . ; cn. From (7), we have that

Φ̂(c, σ0)= Φ̂(c′, σ0). (8)

It follows from (8) and Lemma B.20 that

MR ∪BApply |= Apply(c,S0, s)≡ Apply(c′,S0, s). (9)

T.C. Son, C. Baral / Artificial Intelligence 125 (2001) 19–91 77

Sincecount(c′)6 count(c)− 1, we have thatcount(c′)6 k. Thus, by inductive hypothesis
and (8), we can conclude thatMR ∪BApply |=Knows(ϕ, s)∧Apply(c′,S0, s)∧s 6=⊥. This,
together with (9), proves thatMR ∪BApply |= Knows(ϕ, s)∧Apply(c,S0, s)∧ s 6=⊥.

From the two cases 1.1 and 1.2, we can conclude that ifc is executable inσ0 andϕ is
known to be true in̂Φ(c,σ0) thenMR ∪BApply |=Knows(ϕ, s)∧Apply(c,S0, s)∧ s 6=⊥.

Case2:MR ∪BApply |= Knows(ϕ, s)∧ Apply(c,S0, s)∧ s 6=⊥. We will prove thatc is
executable inσ0 andϕ is known to be true in̂Φ(c,σ0). We consider two cases:

Case2.1:c1 is a case plan. Assume thatc1 is the following case plan

Case
ϕ1→ p1
...

ϕl→ pl

Endcase

SinceMR ∪ BApply |= Knows(ϕ, s) ∧ Apply(c,S0, s) ∧ s 6=⊥, using of Lemma (B.16),
we can conclude that

there existsj, 16 j 6 l, such thatMR |= Knows(ϕj ,S0). (10)

Let c′ = pj ; c2; . . . ; cn. Then, by Lemma B.19 and (10), we conclude thatMR ∪ BApply

|= Apply(c,S0, s) ≡ Apply(c′,S0, s). Together with the assumption thatMR ∪ BApply |=
Knows(ϕ, s)∧Apply(c,S0, s)∧ s 6=⊥, we have that

MR ∪BApply |= Knows(ϕ, s)∧Apply(c′,S0, s)∧ s 6=⊥ . (11)

Furthermore, from the definition ofM and (10), we have thatϕj is known to be true inσ0.
This implies that

Φ̂(c, σ0)= Φ̂(c′, σ0). (12)

Sincecount(c′)6 count(c)− 1, we have thatcount(c′)6 k. Thus, by inductive hypothesis
and (11), we can conclude thatc′ is executable inσ0 andϕ is known to be true in̂Φ(c′, σ0),
and from (12), we can conclude thatc is executable inσ0 andϕ is known to be true in
Φ̂(c, σ0).

Case2.2:c1 is a sequence of actions. Then,c2 is a case plan. Again, let us assume that
c2 is the case plan.

Case
ϕ1→ p1
...

ϕl→ pl

Endcase

Similar to case 2.1, we conclude that there existsj , 16 j 6 l, such that

MR ∪BApply |= Knows(ϕj , s
′)∧ Apply(c1,S0, s

′). (13)

78 T.C. Son, C. Baral / Artificial Intelligence 125 (2001) 19–91

Let c′ = c1;pj ; c3; . . . ; cn. From (13) and Lemmas B.20, we have thatMR ∪ BApply |=
Apply(c,S0, s)≡ Apply(c′,S0, s). Hence

MR ∪BApply |= Knows(ϕ, s)∧Apply(c′,S0, s)∧ s 6=⊥ . (14)

Sincec1 is a sequence of actions, we have thatϕj is known to be true in̂Φ(c1, σ0). Hence,

Φ̂(c, σ0)= Φ̂(c′, σ0). (15)

Since count(c′) 6 count(c) − 1, we have thatcount(c′) 6 k. Thus, by inductive
hypothesis and (14), we conclude thatc′ is executable inσ0 andϕ is known to be true
in Φ̂(c′, σ0). This, together with (15), proves thatc is executable inσ0 andϕ is known to
be true inΦ̂(c, σ0).

From the two cases 2.1 and 2.2, we conclude that ifMR ∪ BApply |= Knows(ϕ, s) ∧
Apply(c,S0, s)∧ s 6=⊥ thenc is executable inσ0 andϕ is known to be true in̂Φ(c,σ0).

The two cases 1 and 2 show thatc is executable inσ0 andϕ is known to be true in
Φ̂(c, σ0) iff

MR ∪BApply |= Knows(ϕ, s)∧Apply(c,S0, s)∧ s 6=⊥ . (16)

The proof of the third item of the lemma, i.e.,̂Φ(c,σ0) =⊥ iff MR ∪ BApply |=
Apply(c,S0,⊥) is similar to the proof of the second item of Lemma B.21 and is omitted
here. This, together with (16), proves the inductive step of the lemma, and hence, proves
the lemma. 2
Proposition 3. LetD be a domain description andR(D) be the corresponding first-order
theory. Letc be a conditional plan andϕ be a fluent formula. Then,

D |=AK Knows ϕ after c iff

R(D) ∪BApply |= Apply(c,S0, s)∧Knows(ϕ, s)∧ s 6=⊥ .

Proof.
• Assume thatD |=AK Knows ϕ after c. We will prove thatR(D) ∪ BApply |=

Knows(ϕ, s)∧Apply(c,S0, s)∧s 6=⊥. Assume the contrary,R(D)∪BApply 6|= Knows(ϕ, s)
∧ Apply(c,S0, s) ∧ s 6=⊥. By definition, there exists a modelMR of R(D) such that
MR ∪BApply 6|= Knows(ϕ, s)∧Apply(c,S0, s)∧ s 6=⊥. There are two possibilities

– MR ∪ BApply |= Apply(c,S0,⊥). Hence, by Lemma B.22, there exists a modelM =
(σ0,Φ) of D such thatΦ̂(c, σ0) =⊥. This implies thatD 6|=AK Knows ϕ after c.
Hence, this case cannot happen. (1)

– MR ∪ BApply |= Apply(c,S0, s) ∧ s 6=⊥ andMR ∪ BApply 6|= Knows(ϕ, s). Then, by
Lemma B.22, there exists a modelM of D such thatM 6|= Knows ϕ after c. This
implies thatD 6|=AK Knows ϕ after c. This contradicts with the assumption that
D |=AK Knows ϕ after c. Hence, this case cannot happen too. (2)

From (1) and (2), we conclude that our assumption is incorrect, i.e., we have proved that
R(D) ∪BApply |= Knows(ϕ, s)∧Apply(c,S0, s)∧ s 6=⊥. Therefore, we have that

if D |=AK Knows ϕ after c then
R(D) ∪BApply |= Knows(ϕ, s)∧Apply(c,S0, s)∧ s 6=⊥ . (3)

T.C. Son, C. Baral / Artificial Intelligence 125 (2001) 19–91 79

• Assume thatR(D) ∪BApply |= Knows(ϕ, s)∧ Apply(c,S0, s)∧ s 6=⊥. We will prove
thatD |=AK Knowsϕ after c. Assume the contrary,D 6|=AK Knowsϕ after c. This means
that there exists a modelM = (σ0,Φ) of D such thatM 6|= Knows ϕ after c. There are
two subcases:

– Φ̂(c, σ0) =⊥. Then, by Lemma B.21, there exists a modelMR of R(D) such that
MR ∪ BApply |= Apply(c,S0, ⊥). This implies thatMR ∪ BApply 6|= Knows(ϕ, s) ∧
Apply(c,S0, s) ∧ s 6=⊥, which contradicts with our assumption. Therefore, this case
cannot happen. (4)

– Φ̂(c, σ0) 6=⊥. Then,F is not known to be true in̂Φ(c,σ0). Then, by Lemma B.21,
there exists a modelMR of R(D) such thatMR ∪ BApply 6|= Knows(ϕ, s) ∧
Apply(c,S0, s) ∧ s 6=⊥. This implies thatR(D) ∪ BApply 6|= Knows(ϕ, s) ∧ Apply(c,
S0, s)∧s 6=⊥, which contradicts our assumption. Hence, this case cannot happen too.

(5)
From (4) and (5), we have thatD |=AK Knows ϕ after c. Hence, we have that

if R(D) |= Knows(ϕ, s)∧Apply(c,S0, s)∧ s 6=⊥
thenD |=AK Knows ϕ after c. (6)

From (3) and (6), we can conclude that

D |=AK Knows ϕ after c iff
R(D) ∪BApply |= Knows(ϕ, s)∧Apply(c,S0, s)∧ s 6=⊥ . 2

Appendix C. Soundness ofω-Approximation

In this section we prove the soundness of theω-Approximation with respect to the
semantics ofAK . Throughout the section, byD we denote an arbitrary but fixed domain
description. We will need the following notations and lemmas.

Let σ = 〈T ,F 〉 be an a-state andδ = 〈u,Σ〉 be a c-state. We sayσ agrees withδ if for
every states ∈Σ , T ⊆ s andF ∩ s = ∅.

For an a-stateσ = 〈T ,F 〉, by true(σ) and false(σ) we denote the setT and F
respectively.

For a sequence of actionsα = a1, . . . , an (n > 1) and a states, by Res(α, s)
we denote the stateRes(an, . . . ,Res(a1, s)). Similarly Res0(α,σ) denotes the state
Res0(an, . . . ,Res0(a1, σ)) whereσ is an a-state andα = a1, . . . , an.

The following observations are trivial and will be used in the proofs in this section.

Observation C.1. Letσ = 〈T ,F 〉 be an a-state andδ = 〈u,Σ〉 be a grounded c-state such
thatσ agrees withδ, then

(1) if ϕ is a fluent formula andϕ holds inσ (σ |= ϕ), then for everys ∈Σ , ϕ holds in
s;

(2) for every actiona,Φ(a, δ) is a grounded c-state;
(3) Σ ⊆ {true(σ ′) | σ ′ ∈Comp(σ)};
(4) if α is a sequence of non-sensing actions andσ is complete, true(Res0(α,σ)) =

Res(α, true(σ));

80 T.C. Son, C. Baral / Artificial Intelligence 125 (2001) 19–91

(5) If a sequence of non-sensing actions,α, is ω-executable inσ thenα is executable
in δ.

The proof of Proposition 6 is based on the following lemmas.

Lemma C.1. LetD be a domain description,σ be an a-state, andδ be a grounded c-state
ofD such thatσ agrees withδ. Then, for every sequence of non-sensing actionsα of D,
Resω(α,σ) agrees withΦ̂(α, δ).

Proof. Assume thatσ = 〈T ,F 〉, δ = 〈s,Σ〉, andΦ̂(α, δ)= 〈ŝ, Σ̂〉. Let

f ∈ true(Resω(α,σ)).

⇒ f ∈
⋂

σ ′∈Comp(σ)

true(Res0(α,σ
′)). (by definition ofResω)

⇒∀σ ′ ∈Comp(σ) f ∈ true(Res0(α,σ
′)).

⇒∀σ ′ ∈Comp(σ) f ∈Res(α, true(σ ′)). (by item (4), Observation C.1)

⇒∀s′ ∈Σ f ∈Res(α, s′). (by item (3), Observation C.1)

⇒∀s∗ ∈ Σ̂ f ∈ s∗. (1)

Let

f ∈ false(Resω(α,σ)).

⇒ f ∈
⋂

σ ′∈Comp(σ)

false(Res0(α,σ
′)). (by definition ofResω)

⇒∀σ ′ ∈Comp(σ) f ∈ false(Res0(α,σ
′)).

⇒∀σ ′ ∈Comp(σ) f /∈Res(α, true(σ ′)). (by item (4), Observation C.1)

⇒∀s ∈Σ f /∈Res(α, s). (by item (3), Observation C.1)

⇒∀s∗ ∈ Σ̂ f /∈ s∗. (2)

The lemma follows from (1) and (2).2
Lemma C.2. LetD be a domain description,σ be an a-state, andδ be a grounded c-state
ofD such thatσ agrees withδ. Then, for every sensing actiona ofD that isω-executable
in σ , there existsσ ′ ∈Φω(a,σ) such thatσ ′ agrees withΦ(a, δ).

Proof. Assume thata occurs in the k-propositions:a determinesf1, . . ., a determinesfn
By definition, we have thatK(a,σ)= {f1, . . . , fn}.
Assume thatσ = 〈T ,F 〉 andδ = 〈s,Σ〉. LetK1= s ∩K(a,σ) andK2=K(a,σ) \ s.
Sinceδ is a grounded c-state, we have thats ∈ Σ . From the assumption thatσ agrees

with δ, we have thatT ⊆ s andF ∩ s = ∅. This, together with the definitions ofK1 andK2,
implies thatK1∩F = ∅ andK2∩T = ∅. Therefore, we have thatσ ′ = 〈T ∪K1,F ∪K2〉 ∈
Φω(a,σ). We will prove thatσ ′ agrees withΦ(a, δ).

LetΦ(a, δ)= 〈s,Σ ′〉 = δ′. Consider an arbitrarys′ ∈Σ ′. By definition ofΦ(a, δ), we
have thats′ ∩ {f1, . . . , fn} = s ∩ {f1, . . . , fn} =K1 and{f1, . . . , fn} \ s′ = {f1, . . . , fn} \

T.C. Son, C. Baral / Artificial Intelligence 125 (2001) 19–91 81

s = K2. Thus,K1 ⊆ s′ ands′ ∩K2 = ∅. Sinceσ agrees withδ we have thatT ⊆ s′ and
F ∩ s′ = ∅. Therefore,

T ∪K1⊆ s′ and(F ∪K2)∩ s′ = ∅. (1)

Since (1) holds for every states′ ∈ Σ ′, we have that〈T ∪ K1,F ∪ K2〉 agrees with
〈s,Σ ′〉. This proves the lemma.2

The next lemma is the generalization of the Lemmas C.1 and C.2 to a sequence actions
consisting of both sensing and non-sensing actions.

Lemma C.3. LetD be a domain description,σ be an a-state, andδ be a grounded c-state
ofD such thatσ agrees withδ. Then, for every sequence of actionsα that isω-executable
in σ ,

(i) α is executable inδ; and
(ii) there exists an a-stateσ ′ ∈ Φ̂ω(α,σ) such thatσ ′ agrees withΦ̂(α, δ).

Proof. Let ns(α) be the number of sensing actions occurring inα. We prove the lemma by
induction overns(α).

Base case: ns(α) = 0, i.e., α is a sequence of non-sensing actions. Item (5) of
Observation C.1 proves thatα is executable inδ. Furthermore, by Lemma C.1, we have
thatResω(α,σ) agrees withΦ̂(α, δ). Sinceα = pre(α), by definition ofΦ̂ω, we have that
Φ̂ω(α,σ)=Φω(α,σ)= {Resω(α,σ)}. This proves the base case.

Inductive step: Assume that the first sensing action occurring inα is a, i.e.,α = β;a;γ
whereβ does not contain a sensing action. LetΦ̂(β, δ)= δ1 andResω(β,σ)= σ1. Then,
by Lemma C.1,σ1 agrees withδ1.

Sinceδ is a grounded c-state andβ is a sequence of non-sensing actions, using item (2)
of Observation C.1, we can easily prove thatδ1 is a grounded c-state.α is ω-executable in
σ implies thata;γ isω-executable inσ1. Hence, by Lemma C.2,a is executable inδ1 and
∃σ2 ∈Φω(a,σ1) such thatσ2 agrees withΦ(a, δ1)= δ2.

Again, from the assumption thatα is ω-executable inσ we conclude thatγ is ω-
executable inσ2. Sincens(γ)= ns(α)− 1, by the induction hypothesis, we conclude that
γ is executable inδ2 and∃σ3 ∈ Φ̂ω(γ,σ2) such thatσ3 agrees witĥΦ(γ, δ2)= δ3.

From Resω(β,σ) = σ1, σ2 ∈ Φω(a,σ1), σ3 ∈ Φ̂ω(γ,σ2), and by definition ofΦω, we
have that

σ3 ∈ Φ̂ω(α,σ). (1)

FromΦ̂(β, δ)= δ1, Φ(a, δ1)= δ2, Φ̂(γ, δ2)= δ3, and by definition of̂Φ, we have that

Φ̂(α, δ)= δ3. (2)

Sinceσ3 agrees withδ3, from (1) and (2), we can conclude the induction step. Hence,
the lemma is proved.2

In the next lemma we extend the result of Lemma C.3 to an arbitrary conditional plan.

82 T.C. Son, C. Baral / Artificial Intelligence 125 (2001) 19–91

Lemma C.4. LetD be a domain description,σ be an a-state, andδ be a grounded c-state
ofD such thatσ agrees withδ. Then, for every conditional planc such thatc is executable
in σ ,

(i) c is executable inδ; and
(ii) there exists an a-stateσ ′ ∈ Φ̂ω(c, σ) such thatσ ′ agrees withΦ̂(c, δ).

Proof. By Observation 3.1, we know thatc can be represented as a sequence of conditional
plansc1; . . . ; cn whereci is either a sequence of actions or a case plan and for everyi < n

if ci is a sequence of actions thenci+1 is a case plan. We prove the lemma by induction
overcount(c), the number of case plans inc.

The base case,count(c)= 0, is proved by Lemma C.3.
We now prove the inductive step, i.e., assume that the lemma is shown forcount(c)6 k,

we prove the lemma forcount(c)= k + 1. We consider two cases:
(a)c1 is a case plan. Assume thatc1 is the following plan

Case
ϕ1→ p1
...

ϕl→ pl

Endcase

From the assumption that⊥/∈ Φ̂ω(c, σ) we can conclude that there existsj , 16 j 6 l,
such thatϕj holds inσ . Let c′ = pj ; c2 . . . ; cn. Then, by definition of̂Φω we have that

Φ̂ω(c, σ)= Φ̂ω(c′, σ). (1)

Hence,⊥/∈ Φ̂ω(c′, σ). Sincecount(c) > count(c′) + 1, we have thatcount(c′) 6 k. By
inductive hypothesis, we have that

c′ is executable inδ and there exists a stateσ ′ ∈ Φ̂ω(c′, σ) such that
σ ′ agrees witĥΦ(c′, δ). (2)

Sinceσ agrees withδ andϕj holds inσ , we can conclude thatϕj holds inδ, which implies
thatc is executable inδ and

Φ̂(c, δ)= Φ̂(c′, δ). (3)

From (3), (2), and (1), we have thatσ ′ ∈ Φ̂ω(c, σ) andσ ′ agrees witĥΦ(c, δ). This proves
the lemma for the case (a).

(b) c1 is a sequence of actions. Letc′ = c2; . . . ; cn. Then, by definitions of̂Φ andΦ̂ω,
we have that̂Φ(c, δ)= Φ̂(c′, Φ̂(c1, δ)) and

Φ̂ω(c, σ)=
⋃

σ ′∈Φ̂ω(c1,σ)
Φ̂ω(c

′, σ ′). (4)

Sinceσ agrees withδ and δ is a grounded c-state, by Lemma C.3, we know that there
exists a stateσ1 ∈ Φ̂ω(c1, σ) such thatσ1 agrees witĥΦ(c1, δ). Sincec is ω-executable in
σ we have thatc′ is ω-executable inσ1. Furthermore, sincec′ starts with a case plan and
count(c′)= k + 1, from the first case, we can conclude that

T.C. Son, C. Baral / Artificial Intelligence 125 (2001) 19–91 83

c1 is executable inδ andc′ is executable in̂Φ(c1, δ) and there exists a state
σ ′ ∈ Φ̂ω(c′, σ1) such thatσ ′ agrees witĥΦ(c′, Φ̂(c1, δ)). (5)

From (4) and (5), we have thatc is executable inδ, σ ′ ∈ Φ̂ω(c, σ) andσ ′ agrees with
Φ̂(c′, Φ̂(c1, δ))= Φ̂(c, δ). Hence the inductive step is proved for case (b).

The inductive step follows from the above two cases.2
We are now ready to prove the Proposition 6.

Proposition 6 (Soundness ofω-Approximation with respect to|=AK). LetD be a domain
description,ϕ be a fluent formula, andc be a conditional plan. Then,

if D |=ω Knows ϕ after c thenD |=AK Knows ϕ after c.

Proof. Let σ0 be the initial a-state ofD and δ0 be a grounded initial c-state ofD. By
definition ofσ0 andδ0, we have that

σ0 agrees withδ0. (1)

FromD |=ω Knows ϕ after c, by definition of|=ω, we have that

⊥ /∈ Φ̂ω(c, σ0), and (2)
for everyσ ′ ∈ Φ̂ω(c, σ0), ϕ holds inσ ′. (3)

By Lemma C.4, (1)–(3), we have that

c is executable inδ0, and (4)

there exists a stateσ ′ ∈ Φ̂ω(c, σ0), such thatσ ′ agrees witĥΦ(c, δ0).
This, together with (4), implies thatϕ is known to be true in̂Φ(c, δ0). (5)

(4) and (5) hold for every model(δ0,Φ) ofD. This implies thatD |=AK Knows ϕ after c.
The proposition is proved.2
Appendix D. Proof of the regression proposition

In this section, we prove the regression proposition. For shorter notation, we writeσ |= ϕ
(respectivelyσ 6|= ϕ) to denote thatϕ holds inσ (respectivelyϕ does not hold inσ). We
first prove several lemmas that we will use in the proof.

Lemma D.1. Let f be a fluent literal,a be an action, ands be a state. Assume thata is
executable ins. Then,f holds in Res(a, s) iff Regression(f, a) holds ins.

Proof. Consider the case thata is a non-sensing action andf is a fluent. Assume that
a causesf if %1, . . . , a causesf if %n, anda causes¬f if %′1, . . . , a causes¬f if %′m are
the ef-propositions inD whose action isa. Then, we have that

Regression(f, a)=∨n
i=1%i ∨ (f ∧

∧m
i=1¬%′i) holds ins

iff there exists an ef-propositiona causesf if % in D such that% holds ins or

84 T.C. Son, C. Baral / Artificial Intelligence 125 (2001) 19–91

f holds ins and there exists no ef-propositiona causes¬f if %′ in D
such that%′ holds ins

iff f ∈E+a (s) or (f ∈ s andf /∈E−a (s))
iff f ∈ s ∪E+a (s) \E−a (s)
iff f holds in Res(a, s). (1)

Similarly, we can prove that (1) also holds whenf is a negative fluent literal. (2)

Consider the case thata is a sensing action. Then, we have thatRes(a, s)= s (recall that
we assume that the set of sensing actions and non-sensing actions are disjoint) and,

Regression(f, a)= f. Thus, the lemma is trivial for this case. (3)

The lemma follows from (1)–(3).2
The next corollary follows immediately from Lemma D.1 and the fact that

Regression

(
n∧
i

fi , a

)
=

n∧
i

Regression(fi , a).

Corollary D.1. For a conjunction of fluent literalsϕ, an actiona, a states such thata is
executable ins, ϕ holds in Res(a, s) iff Regression(ϕ, a) holds ins.

Lemma D.2. Let ϕ be a fluent formula,a be an action, ands be a state such thata is
executable ins. Then,ϕ holds in Res(a, s) iff Regression(ϕ, a) holds ins.

Proof. Since every Boolean expression can be represented by a CNF formula, we assume
thatϕ =∨i ϕi where eachϕi is a conjunction of fluent literals. Thus the lemma follows
directly from Corollary D.1 and the fact that

Regression

(
n∨
i

ϕi, a

)
=

n∨
i

Regression(ϕi, a). 2

Lemma D.3. Let ϕ be a fluent formula,a be an action, andσ = 〈s,Σ〉 be a grounded
c-state. Assume thata is executable in every state belonging toΣ . 11 Then,
• if Regression(Knows(ϕ), a) holds inσ thenKnows(ϕ) holds inΦ(a,σ); and
• if Regression(Knows(ϕ), a) does not hold inσ then Knows(ϕ) does not hold in
Φ(a,σ).

Proof. Consider the casea is a non-sensing action. Then, we have thatRegression
(Knows(ϕ), a)= Knows(Regression(ϕ, a)).
• Regression(Knows(ϕ), a) holds in σ implies thatRegression(ϕ, a) holds in every

states′ ∈Σ . This implies thatϕ holds inRes(a, s′) for every states′ ∈Σ such thata
is executable ins′ (Lemma D.1). Therefore,Knows(ϕ) holds inΦ(a,Σ).

11This implies thata is executable ins sinceσ is a grounded c-state.

T.C. Son, C. Baral / Artificial Intelligence 125 (2001) 19–91 85

• Regression(Knows(ϕ), a) does not hold inσ means that there existss′ ∈Σ such that
Regression(ϕ, a) does not hold ins′. Sincea is executable ins′, by Lemma D.1, we
conclude thatϕ does not hold inRes(a, s′). This implies thatKnows(ϕ) does not hold
in Φ(a,σ).

Consider the casea is a sensing action that senses a fluentg, 12 we have that
Regression(ϕ, a)= ϕ andΦ(a,σ)= 〈s,Σ ′〉 whereΣ ′ ⊆Σ and each states′ in Σ ′ agrees
with s ong.
• Regression(Knows(ϕ), a) = (g→Knows(g→ϕ)) ∧ (¬g→Knows(¬g→ϕ)) holds

in σ implies thatg ∈ s (respectivelyg /∈ s) implies thatKnows(g→ϕ) (respectively
Knows(¬g→ϕ)) holds inσ . So, ifg ∈ s (respectivelyg /∈ s) theng ∈ s′ (respectively
g /∈ s′) implies thatϕ holds ins′ for everys′ ∈Σ . In other words, for everys′ ∈Σ , if
s ands′ agree ong thenϕ holds ins′. Hence,ϕ is known to be true inΦ(a,σ), i.e.,
Knows(ϕ) holds inΦ(a,σ).
• Regression(Knows(ϕ), a) = (g→Knows(g→ϕ)) ∧ (¬g→Knows(¬g→ϕ)) does

not hold inσ implies that either (i)(g→Knows(g→ϕ)) does not hold inσ or (ii)
(¬g→Knows(¬g→ϕ)) does not hold inσ . Let us assume thatg→Knows(g→ϕ)
does not hold inσ , i.e., (i) holds. This means thatg holds inσ but Knows (g→ϕ)
does not. So, there exists a states′ in Σ such thatg ∈ s′ andϕ does not hold ins′
or for everys′ in Σ , g /∈ s′. The first case implies thatKnows(ϕ) does not hold in
Φ(a,σ). The second case is impossible becauseσ is a grounded c-state. Thus if (i)
holds thenKnows(ϕ) does not hold inΦ(a,σ). Similarly, if (ii) holds, we can show
thatKnows(ϕ) does not hold inΦ(a,σ).

The lemma follows from the above two cases.2
Lemma D.4. For a c-formulaϕ∗, an actiona, and a grounded c-stateσ = 〈s,Σ〉 such
thata is executable in every state belonging toΣ ,
• if σ |=Regression(ϕ∗, a) thenΦ(a,σ) |= ϕ∗; and
• if σ 6|=Regression(ϕ∗, a) thenΦ(a,σ) 6|= ϕ∗.

Proof. Follows from Lemmas D.2 and D.3 and the fact that each c-formulaϕ∗ can be
represented by a disjunction

∨n
i=1ϕ

∗
i whereϕ∗i is a conjunction of fluent literals and k-

formulas of the formKnows(%) for some fluent formula%. 2
Lemma D.5. Letϕ be a c-formula andc be a conditional plan. Then, Regression(ϕ, c) is
a c-formula.

Proof. The proof is done inductively overcount(c), the number of case plans inc. The
base case,c is a sequence of actions, follows immediately from items (1)–(4) and the first
two sub-items of item (5) of the definition of the regression formulas. The inductive step
follows from inductive hypothesis and the last two sub-items of item (5) of the definition
of the regression formulas.2

12The proof for the case whena senses more than one fluentg1, . . . , gn is similar and is omitted here.

86 T.C. Son, C. Baral / Artificial Intelligence 125 (2001) 19–91

Lemma D.6. For a c-formulaϕ, an action sequenceα, and a grounded c-stateσ such that
α is executable in every grounded c-stateσ ′ = 〈s′,Σ ′〉 whereΣ ′ ⊆Σ ,
• if σ |=Regression(ϕ,α) thenΦ̂(α,σ) |= ϕ; and
• if σ 6|=Regression(ϕ,α) thenΦ̂(α,σ) 6|= ϕ.

Proof. Induction over|α|, the length ofα.
Base case: |α| = 0, i.e.,α = []. Then, we have thatRegression(ϕ, [])= ϕ andΦ̂([], σ)=

σ . The lemma is trivial. (Notice that for|α| = 1, the lemma follows from Lemma D.4.) The
base case is proved.

Inductive step: Assume that we have proved the lemma for|α| = n. We need to prove
the lemma for|α| = n+ 1. Letα = β;a. Then, we have that|β| = n.

We have thatRegression(ϕ,β;a) = Regression(ϕ,β;a) = (Regression(ϕ, a),β). By
inductive hypothesis we have that:
• If σ |= Regression(ϕ,α) then Φ̂(β,σ) |= Regression(ϕ, a). Thus, by Lemma D.4,
Φ(a, Φ̂(β,σ)) |= ϕ, i.e.,Φ̂(α,σ) |= ϕ.
• If σ 6|= Regression(ϕ,α) then Φ̂(β,σ) 6|= Regression(ϕ, a). Again, by Lemma D.4,

we have thatΦ(a, Φ̂(β,σ)) 6|= ϕ, i.e.,Φ̂(α,σ) 6|= ϕ.

Lemma D.7. For a c-formulaϕ, a grounded c-stateσ = 〈s,Σ〉, and a conditional planc
such thatc is executable in every c-stateσ ′ = 〈s′,Σ ′〉 whereΣ ′ ⊆Σ ,
• if σ |=Regression(ϕ, c) thenΦ̂(c, σ) |= ϕ; and
• if σ 6|=Regression(ϕ, c) thenΦ̂(c, σ) 6|= ϕ.

Proof. As in previous proofs related to conditional plans, we assume thatc is a sequence
of conditional plansc1; . . . ; cn whereci is either a sequence of actions or a case plan and
for everyi < n if ci is a sequence of actions thenci+1 is a case plan. We prove the lemma
by induction overcount(c), the number of case plans inc.

Base case: count(c)= 0. Then,c is a sequence of actions. The base case follows from
Lemma D.6.

Inductive step: Assume that we have proved the lemma forcount(c) 6 k. We need to
prove the lemma forcount(c)= k + 1. By construction ofc, we have two cases:

Case1: cn is a case plan of the form

Case
ϕ1→ p1
...

ϕl→ pl

Endcase

Let c′ = c1; . . . ; cn−1. We have that

Regression(ϕ, c′; cn)=Regression(Regression(ϕ, cn), c
′).

Sincecount(c) = count(c′) + count(cn) andcount(cn) > 1, we have thatcount(c′) 6 k.
Furthermore, by Lemma D.5, we have thatRegression(ϕ, cn) is a c-formula. Consider two
cases:

T.C. Son, C. Baral / Artificial Intelligence 125 (2001) 19–91 87

Case1.1:σ |=Regression(ϕ, c). By inductive hypothesis (forRegression(ϕ, cn), σ , and
c′), we have that̂Φ(c′, σ) |=Regression(ϕ, cn).

Let δ = Φ̂(c′, σ). Sincec is executable inσ we conclude that there exists somej
(16 j 6 l) such thatδ |= Knows (ϕj) and δ 6|= Knows (ϕi) for i 6= j . This, together
with the fact thatRegression(ϕ, cn) = ∨l

i=1(Knows (ϕi) ∧ Regression(ϕ,pi)), implies
that δ |= Knows (ϕj) ∧ Regression(ϕ,pj). Hence,δ |= Regression(ϕ,pj). Applying the
inductive hypothesis one more time (forϕ, δ, andpj), we can conclude that̂Φ(pj , δ) |= ϕ.
SinceΦ̂(cn, Φ̂(c′, σ))= Φ̂(pj , δ), we have that

Φ̂(cn, Φ̂(c
′, σ)) |= ϕ, i.e.,Φ̂(c, σ) |= ϕ. (1)

Case1.2:σ 6|= Regression(ϕ, c). Again, by inductive hypothesis (forRegression(ϕ, cn),
σ , andc′), we have that̂Φ(c′, σ) 6|=Regression(ϕ, cn).

Let δ = Φ̂(c′, σ). Sincec is executable inσ we conclude that there exists somej
(16 j 6 l) such thatδ |= Knows (ϕj) and δ 6|= Knows (ϕi) for i 6= j . This, together
with the fact thatRegression(ϕ, cn) = ∨l

i=1(Knows (ϕi) ∧ Regression(ϕ,pi)), implies
that δ 6|= Knows (ϕj) ∧ Regression(ϕ,pj). Hence,δ 6|= Regression(ϕ,pj). Applying the
inductive hypothesis one more time (forϕ, δ, andpj), we have that̂Φ(pj , δ) 6|= ϕ. Since
Φ̂(cn, Φ̂(c

′, σ))= Φ̂(pj , δ), we have that

Φ̂(cn, Φ̂(c
′, σ)) 6|= ϕ, i.e.,Φ̂(c, σ) 6|= ϕ. (2)

The inductive step for case 1 follows from (1) and (2).
Case2: cn is a sequence of actions. Letc′ = c1; . . . ; cn−1. We have that

Regression(ϕ, c′; cn)=Regression(Regression(ϕ, cn), c
′).

It follows from Observation 3.1 thatcn−1 is a case plan. By case 1 and the inductive
hypothesis, (forRegression(ϕ, cn), σ , andc′), we have that:
• If σ |= Regression(ϕ, c) then Φ̂(c′, σ) |= Regression(ϕ, cn). Then, by Lemma D.6

(for ϕ, Φ̂(c′, σ), andcn), we can conclude that̂Φ(cn, Φ̂(c′, σ)) |= ϕ, i.e.,Φ̂(c, σ) |=
ϕ.
• If σ 6|= Regression(ϕ, c) thenΦ̂(c′, σ) 6|= Regression(ϕ, cn). Again, by Lemma D.6,

we have that̂Φ(cn, Φ̂(c′, σ)) 6|= ϕ, i.e.,Φ̂(c, σ) 6|= ϕ.
This proves the inductive step and hence, the lemma is proved.2

We now prove Proposition 8.

Proposition 8. Given a domain descriptionD, letϕ be a c-formula, andσ1, . . . , σn be the
set of grounded initial c-states ofD, andc be a conditional plan that is executable in all
the grounded initial c-states ofD. Then,

∀i,16 i 6 n, σi |=Regression(ϕ, c) iff ∀j,16 j 6 n, Φ̂(c, σj) |= ϕ.

Proof. Let σi = 〈s,Σ〉 be a grounded initial c-state ofD. It is easy to see that each
grounded c-state〈s′,Σ ′〉 whereΣ ′ ⊆ Σ is also a grounded initial c-state ofD. Thus,
by the first item of Lemma D.7, we have that

if σi |=Regression(ϕ, c) thenΦ̂(c, σj) |= ϕ. (1)

88 T.C. Son, C. Baral / Artificial Intelligence 125 (2001) 19–91

Using the second item of Lemma D.7, we can prove that

if Φ̂(c, σj) |= ϕ thenσi |=Regression(ϕ, c). (2)

The conclusion of the lemma follows from the fact that (1) and (2) hold for everyi,
16 i 6 n. 2

Appendix E. Overview of nested circumscription

Nested Abnormality Theories (NATs) is a novel circumscription [32,39] technique
introduced by Lifschitz [33]. With NATs it is possible to circumscribe several predicates
each with respect to only parts of the theory of interest, as opposed to previous techniques
such as parallelized and circumscription theories where the circumscription must be
done with respect to all of the axioms in the underlying theory. Furthermore, all the
complications arising from the interaction of multiple circumscription axioms in a theory
are avoided in NATs with the introduction of blocks. Ablock is characterized by a set of
axiomsA1, . . . ,An—possibly containing the abnormality predicateAb—which ‘describe’
a set of predicate/function constantsC1, . . . ,Cm. The notation for such a theory is

{C1, . . . ,Cm :A1, . . . ,An}, (E.1)

where eachAi may itself be a block of form (E.1). The ‘description’ ofC1, . . . ,Cm by a
block may depend on other descriptions in embedded blocks.

Interference between circumscription in different blocks is prevented by replacing a
predicateAb with an existentially quantified variable. Lifschitz’s idea is to makeAb ‘local’
to the block where it is used, since abnormality predicates play only an auxiliary role, i.e.
the interesting consequences of the theory are those which do not containAb. The next
section contains the formal definitions of this concepts.

The following definitions are from [33]. LetL be a second-order language which does
not includeAb. For every natural numberk, letLk be the language obtained by adding the
k-ary predicate constantAb toL. {C1, . . . ,Cm :A1, . . . ,An} is ablock if eachC1, . . . ,Cm
is a predicate or a function constant ofL, and eachA1, . . . ,An is a formula ofLk or a
block.

A Nested Abnormality Theoryis a set of blocks. The semantics of NATs is characterized
by a mappingϕ from blocks into sentences ofL. If A is a formula of languageLk , ϕA
stands for the universal closure ofA, otherwise

ϕ{C1, . . . ,Cm :A1, . . . ,An} = (∃ab)F (ab),
where

F(Ab)=CIRC[ϕA1∧ · · · ∧ ϕAn;Ab;C1, . . . ,Cm].
Recall that CIRC[T ;P ;Q], means circumscription of the theoryT , by minimizing the
predicates inP , and varying the objects inQ.

For any NATT , ϕT stands for{ϕA | A ∈ T }. A modelof T is a model ofϕT in the
sense of classical logic. Aconsequenceof T is a sentenceφ of languageL that is true in
all models ofT . In this paper, as suggested in [33], we use the abbreviation

{C1, . . . ,Cm,minP :A1, . . . ,An}

T.C. Son, C. Baral / Artificial Intelligence 125 (2001) 19–91 89

to denote blocks of the form

{C1, . . . ,Cm,P :P(x)⊃Ab(x),A1, . . . ,An}.
As the notation suggests, this type of block is used when it is necessary to circumscribe a
particular predicateP in a block. In [33] it is shown that

ϕ{C1, . . . ,Cm,minP :A1, . . . ,An}
is equivalent to the formula

CIRC[A1∧ · · · ∧An;P ;C1, . . . ,Cm],
when eachAi is a sentence.

References

[1] C. Baral, Reasoning about actions: Non-deterministic effects, constraints and qualification, in: Proc. IJCAI-
95, Montreal, Quebec, 1995, pp. 2017–2023.

[2] C. Baral, M. Gelfond, Representing concurrent actions in extended logic programming, in: Proc. IJCAI-93,
Chambéry, France, 1993, pp. 866–871.

[3] C. Baral, M. Gelfond, Reasoning about effects of concurrent actions, J. Logic Programming 31 (1–3) (1997)
85–117.

[4] C. Baral, M. Gelfond, A. Provetti, Representing actions: Laws, observations and hypothesis, J. Logic
Programming 31 (1–3) (1997) 201–243.

[5] C. Baral, A. Gabaldon, A. Provetti, Formalizing narratives using nested circumscription, Artificial
Intelligence 104 (1–2) (1998) 107–164.

[6] A. Barrett, K. Golden, J. Penberthy, D. Weld, UCPOP User’s Manual, Version 2.0, Technical Report 93-09-
06, Department of Computer Science and Engineering, University of Washington, Seattle, WA, 1993.

[7] F. Bacchus, J. Halpern, H. Levesque, Reasoning about noisy sensors in the situation calculus, in: Proc.
IJCAI-95, Montreal, Quebec, 1995, pp. 1933–1940.

[8] C. Baral, V. Kreinovich, R. Trejo, Planning and approximate planning in presence of incompleteness, in:
Proc. IJCAI-99, Stockholm, Sweden, 1999, pp. 948–953.

[9] C. Baral, T. Son, Formalizing sensing actions: A transition function based approach, Technical Re-
port, Department of Computer Science, University of Texas at El Paso, TX, 1998, http://cs.utep.edu/
chitta/chitta.html.

[10] Y. Dimopoulos, B. Nebel, J. Koehler, Encoding planning problems in non-monotonic logic programs, in:
Proc. European Conference on Planning, 1997, pp. 169–181.

[11] O. Etzioni, S. Hanks, D. Weld, D. Draper, N. Lesh, M. Williamson, An approach to planning with incomplete
information, in: Proc. Internat. Conference on the Principles of Knowledge Representation and Reasoning
(KR-92), Cambridge, MA, 1992, pp. 115–125.

[12] E. Erdem, V. Lifschitz, Transformations of logic programs related to causality and planning, in: Proc. 5th
International Conference on Logic Programming and Non-monotonic Reasoning, 1999.

[13] E. Erdem, Application of logic programming to planning: Computational experiments; draft (http://www.
cs.utexas.edu/tag).

[14] R. Fagin, J. Halpern, Y. Moses, M. Vardi, Reasoning about Knowledge, MIT Press, Cambridge, MA, 1995.
[15] R. Goldman, M. Boddy, Representing uncertainity in simple planners, in: Proc. Internat. Conference on the

Principles of Knowledge Representation and Reasoning (KR-94), Bonn, Germany, 1994, pp. 238–245.
[16] R. Goldman, M. Boddy, Expressive planning and explicit knowledge, in: Proc. AIPS-96, 1996, pp. 110–117.
[17] M. Gelfond, Strong introspection, in: Proc. AAAI-91, Anaheim, CA, 1991, pp. 386–391.
[18] K. Golden, O. Etzioni, D. Weld, Planning with execution and incomplete informations, Technical Report,

TR96-01-09, Department of Computer Science, University of Washington, Seattle, WA, February 1996.
[19] E. Giunchiglia, G. Kartha, V. Lifschitz, Representing action: Indeterminacy and ramifications, Artificial

Intelligence 95 (1997) 409–443.

90 T.C. Son, C. Baral / Artificial Intelligence 125 (2001) 19–91

[20] M. Gelfond, V. Lifschitz, Representing actions in extended logic programs, in: Proc. Joint International
Conference and Symposium on Logic Programming, 1992, pp. 559–573.

[21] M. Gelfond, V. Lifschitz, Representing actions and change by logic programs, J. Logic Programming 17 (2–
4) (1993) 301–323.

[22] K. Golden, Planning and knowledge representation for softbots, Ph.D. Thesis, University of Washington,
Seattle, WA, November 1997.

[23] K. Golden, D. Weld, Representing sensing actions: The middle ground revisited, in: Proc. Internat.
Conference on the Principles of Knowledge Representation and Reasoning (KR-96), Cambridge, MA, 1996,
pp. 174–185.

[24] L. Haas, A syntactic theory of belief and action, Artificial Intelligence 28 (1986) 245–292.
[25] G. Kartha, Soundness and completeness theorems for three formalizations of action, in: Proc. IJCAI-93,

Chambéry, France, 1993, pp. 724–729.
[26] G. Kartha, V. Lifschitz, Actions with indirect effects: Preliminary report, in: Proc. Internat. Conference on

the Principles of Knowledge Representation and Reasoning (KR-94), Bonn, Germany, 1994, pp. 341–350.
[27] H. Kautz, D. McAllester, B. Selman, Encoding plans in propositional logic, in: Proc. Internat. Conference on

the Principles of Knowledge Representation and Reasoning (KR-96), Cambridge, MA, 1996, pp. 374–384.
[28] K. Krebsbach, D. Olawsky, M. Gini, An empirical study of sensing and defaulting in planning, in: Proc. 1st

Conference of AI Planning Systems, 1992, pp. 136–144.
[29] H. Kautz, B. Selman, Planning as satisfiability, in: Proc. ECAI-92, Vienna, Austria, 1992, pp. 359–363.
[30] H. Kautz, B. Selman, Unifying sat-based and graph-based planning, in: Proc. IJCAI-99, Stockholm, Sweden,

1999, pp. 318–325.
[31] H. Levesque, What is planning in the presence of sensing?, in: Proc. AAAI-96, Portland, OR, 1996,

pp. 1139–1146.
[32] V. Lifschitz, Circumscription, in: D.M. Gabbay, C.J. Hogger, J.A. Robinson (Eds.), The Handbook of Logic

in AI and Logic Programming, Vol. 3, Oxford University Press, Oxford, 1994, pp. 298–352.
[33] V. Lifschitz, Nested abnormality theories, Artificial Intelligence 74 (1995) 351–365.
[34] V. Lifschitz, Two components of an action language, Ann. Math. Artificial Intelligence 21 (2–4) (1997)

305–320.
[35] F. Lin, Embracing causality in specifying the indirect effects of actions, in: Proc. IJCAI-95, Montreal,

Quebec, 1995, pp. 1985–1993.
[36] F. Lin, R. Reiter, State constraints revisited, J. Logic Comput. 4 (5) (1994) 655–678.
[37] F. Lin, Y. Shoham, Concurrent actions in the situation calculus, in: Proc. AAAI-92, San Jose, CA, 1992,

pp. 590–595.
[38] J. Lobo, S. Taylor, G. Mendez, Adding knowledge to the action description languageA, in: Proc. AAAI-97,

Providence, RI, 1997, pp. 454–459.
[39] J. McCarthy, Applications of circumscription to formalizing common sense knowledge, Artificial Intelli-

gence 26 (3) (1986) 89–116.
[40] R. Moore, Reasoning about knowledge and action, Ph.D. Thesis, MIT, Cambridge, MA, 1979.
[41] R. Moore, A formal theory of knowledge and action, in: J. Hobbs, R. Moore (Eds.), Formal Theories of the

Commonsense World, Ablex, Norwood, NJ, 1985.
[42] R. Miller, M. Shanahan, Narratives in the situation calculus, J. Logic Comput. 4 (5) (1994) 513–530.
[43] N. McCain, H. Turner, A causal theory of ramifications and qualifications, in: Proc. IJCAI-95, Montreal,

Quebec, 1995, pp. 1978–1984.
[44] L. Pryor, G. Collins, Planning for contingencies: A decision-based approach, J. AI Res. 4 (1996) 287–339.
[45] E. Pednault, ADL and the state-transition model of actions, J. Logic Comput. 4 (5) (1994) 467–513.
[46] M. Peot, D. Smith, Conditional non-linear planning, in: Proc. 1st Conference of AI Planning Systems, 1992,

pp. 189–197.
[47] R. Reiter, The frame problem in the situation calculus: A simple solution (sometimes) and a completeness

result for goal regression, in: V. Lifschitz (Ed.), Artificial Intelligence and Mathematical Theory of
Computation, Academic Press, New York, 1991, pp. 359–380.

[48] R. Reiter, Knowledge in Action: Logical Foundation for Describing and Implementing Dynamical Systems,
MIT Press, Cambridge, MA, 1998, Manuscript.

[49] R. Scherl, H. Levesque, The frame problem and knowledge producing actions, in: Proc. AAAI-93,
Washington, DC, 1993, pp. 689–695.

T.C. Son, C. Baral / Artificial Intelligence 125 (2001) 19–91 91

[50] D. Smith, D. Weld, Conformant graphplan, in: Proc. AAAI-98, Madison, WI, 1998.
[51] T.C. Son, Reasoning about sensing actions and its application to diagnostic problem solving, Ph.D. Thesis,

University of Texas at El Paso, TX, 2000.
[52] H. Turner, Signed logic programs, in: Proc. 1994 International Symposium on Logic Programming, 1994,

pp. 61–75.
[53] H. Turner, Representing actions in logic programs and default theories, J. Logic Programming 31 (1–3)

(1997) 245–298.
[54] D. Weld, C. Anderson, D. Smith, Extending graphplan to handle uncertainity and sensing actions, in: Proc.

AAAI-98, Madison, WI, 1998, pp. 897–904.
[55] D. Weld, An introduction to least commitment planning, AI Magazine 15 (4) (1994) 27–61.

