
Operational semantics
We will show the operational semantics for a simple language which is defined by the
following abstract syntax:

P ::= S
S ::= I = E | S1;S2 | if B then S1 else S2 end | while B do S end
B ::= true | false | I == E | I > E | I < E | B1 or B2 | B1 and B2 | not B
E ::= N | I | E1 + E2 | E1 – E2

where P is a whole program, S is a statement, E is an arithmetic expression, B is a
Boolean expression, I is an identifier, and N is the category for integers. This is not a
complete language, but it does possess some arithmetic for calculations and the structured
programming constructs of sequence, conditional and iteration (while). So it can actually
do some simple jobs. For instance, since it does not possess multiplication, we need to
add this by writing an algorithm for repeated addition. This program is:

p = 0
n = x
while n > 0 do
 p = p + y
 n = n – 1
end

This program multiplies x by y and places the result in p. At the end, n is zero.

The interpreter and Virtual Machine
Now we need to define an interpreter for this language and the corresponding virtual
machine. The most important part of this is to model the memory that contains the
variables. Let us call this memory M, and give it two operations lookup and update.
Lookup takes an identifier as one argument and returns the value bound to the variable
(we will assume the variable is already present.) Update takes an identifier and a value
and binds the identifier to the value in the memory. For instance update(M, x, 0) will put
x = 0 in M, and then lookup(M, x) returns 0. How we implement these operations, and
the data structure to support them is left out here. Essentially we treat memory as an
abstract data type. A real interpreter would have to make real choices as to the
implementation of the ADT.

The interpreter is an overloaded function “interpret” that takes the syntactic forms and the
memory M as arguments, and calls the appropriate routines to get the job done. It returns
the changed memory when it is done. Along the way we will also define two expression
evaluators: “arith” and “bool” for the two kinds of expression. They are also overloaded
for the various types of expression, and call built-in functions for arithmetic (add and sub,
that operate on integers) and for the Boolean operations (equals, gt, lt, or, and, not, that
operate on the Boolean values T and F). Note that these could be assumed primitive on

the virtual machine, or could be translated into a lower level set of instructions on a more
primitive virtual machine. The interpreter functions are:

interpret(I = E, M) = update(M, I, arith(E, M))
interpret(S1;S2, M) = interpret(S2, interpret(S1, M))
interpret(if B then S1 else S2 end, M) = if bool(B, M) is T then interpret(S1, M)
 else interpret(S2, M)
interpret(while B do S end, M) = if bool(B, M) is T then interpret(S;while B do S end, M)
 else M

arith(I, M) = lookup(I, M)
arith(N, M) = N
arith(E1 + E2, M) = add(arith(E1, M), arith(E2, M))
arith(E1 - E2, M) = sub(arith(E1, M), arith(E2, M))

bool(true, M) = T
bool(false, M) = F
bool(I == E, M) = equals(lookup(I, M) , arith(E, M))
bool(I > E, M) = gt(lookup(I, M) , arith(E, M))
bool(I < E, M) = lt(lookup(I, M) , arith(E, M))
bool(B1 or B2, M) = or(bool(B1, M), bool(B2, M))
bool(B1 and B2, M) = and(bool(B1, M), bool(B2, M))
bool(not B, M) = not(bool(B, M))

The operational semantics for the program above can thus be expressed as a series of
calls to the interpreter. We will need an initial memory M0 which contains values for x
and y. The portion to be expanded is underlined.

interpret(p=0;n=x;while n>0 do p=p+y;n=n-1 end, M0)
⇒ interpret(n=x;while n>0 do p=p+y;n=n-1 end, interpret(p=0, M0))
⇒ interpret(n=x;while n>0 do p=p+y;n=n-1 end, update(M0, p, arith(0, M0)))
⇒ interpret(n=x;while n>0 do p=p+y;n=n-1 end, M1), where M1 contains p = 0
⇒ interpret(while n>0 do p=p+y;n=n-1 end, interpret(n=x, M1))
⇒ interpret(while n>0 do p=p+y;n=n-1 end, update(M1, n, arith(x, M1)))
⇒ interpret(while n>0 do p=p+y;n=n-1 end, update(M1, n, lookup(x, M1)))
⇒ interpret(while n>0 do p=p+y;n=n-1 end, M2), where M2 contains n = x
⇒ if bool(n>0, M2) is T then interpret(p=p+y;n+n-1;while N>0 do p=p+y;n+n-1 end, M2)
else M2

and so on. At each stage we “run” the appropriate VM code for the syntactic form. If our
interpreter is defined correctly, we will end up with a final memory that contains the
value of x * y in p and n will contain 0. It is even feasible to prove that the memory will
contain x * y in p, but this is much better done in the axiomatic and denotational
methods.

Summary
Our virtual machine contains an ADT for memory, called M, with two operations update
and lookup. Primitive values are integers and Booleans. Built-in operations on this VM
are add and sub for arithmetic, and equals, gt, lt, or, and, not for Booleans. Control
structures are function call (including recursion), and if-then-else. Note that we don’t
need assignment (although we could have it if we wanted) since we are using functions
calling other functions as the basic idea.

	Operational semantics
	The interpreter and Virtual Machine
	Summary

