
Denotational Semantics 
The main idea behind the denotational method is that the meaning of a program can be 
explained in terms of the application of functions to their arguments. Since the 
mathematics of functions is well understood, we can base the semantics of a 
programming language on primitive, well-behaved mathematical objects without using a 
real machine or even a virtual machine like operational semantics does. Moreover, we 
can also model all the major concepts like memory, variables, types etc. using sets and 
functions, and thus avoid the high level of abstraction in the axiomatic method. For these 
reasons, the denotational method ahs been the most studied method, and is generally 
considered the best, although this is clearly relative to the use to which the semantic 
method is put. 

Fundamentals 
A language is partly defined through its syntax. If we define an abstract syntax for a 
language, then the forms in the syntax give us a source for the semantic attachments; 
every syntactic form will have a corresponding semantic object attached to it. Every 
semantic object is either a set or a function (which is just a mapping between sets 
anyway). Just as in the operational and axiomatic methods, we start with the idea of 
program state. However, this is modeled using a function, called the store. The basic idea 
of a store is simple: it is a mapping between names of variables and the values they 
contain. We can write this as store:I → V, where I is a domain (a set of semantic objects) 
of names, or identifiers, and V is a domain of values, including numbers, characters, 
strings and whatever else we consider to be primitive values. The store changes as 
assignments alter the mapping of individual variables, so we need a way to alter the 
function. This can be notated as, for instance s[x → 4]or as update(s, x, 4) where s is a 
store and in that store, x is mapped to the value 4. This clearly gives us the basis of 
assignment.  

Components 
The first step is to define an abstract syntax. We will define a language similar to the one 
used in the axiomatic example: 
 
P ::= S 
S ::= I = E | S1;S2 | if B then S1 else S2 end | while B do S end 
B ::= I == E | I > E | I < E | B1 or B2 | B1 and B2 | not B 
E ::= N | I | E1 + E2 | E1 – E2
 
where P is a  (syntactic) domain of programs, S is a domain of statements, I is a domain 
of names (identifiers), B is a domain of Boolean expressions, E is a domain of arithmetic 
expressions and N is the domain of integer numerals. 
 
This is not a complete language but is adequate to illustrate the parts of the method. At 
least is has the three structured programming constructs: sequence, conditional and while 
loop. 



The next step is to identify the semantic domains to be used. We will need the following 
domains: Z, the (semantic) domain of integers; Tr, the domain of truth values; Id, the 
domain of names, and the store model Id → Z, defined above. 
 
The final step is to define a family of meaning functions that each take a piece of the 
syntax and map it to a semantic object. (Syntax will be surrounded by special square 
brackets. e.g. �x� means the identifier x.) We will call this meaning function M, although 
other writers use different function names for the different constructs. If we start with the 
meaning of  numerals, we can write: 
 
M�N� = n, where n∈Z corresponding to N. Really this is: 
 
M�0� = 0, M�1� = 1, M�2� = 2 etc. 
 
Next comes assignment. Clearly the meaning of a particular assignment depends on the at 
the point of execution. So we give the function M an extra argument for that store. The 
form for this follows standard ML-like syntax where the arguments are simply written 
consecutively, without parentheses. 
 
M�I=E�s = s[I  M�E�s] 
 
which means the store s is updated with the identifier I mapped to the value of the 
expression E relative to the store s. Note we could write the same thing as a lambda 
function – the denotation: 
 
M�I=E� = ls.s[I  M�E�s] 
 
Expressions are handled individually: 
 
M�I�s = s(I) or M�I� = ls.s(I) 
M�E1 + E2�s = M�E1�s + M�E2�s, or M�E1 + E2� = ls.M�E1�s + M�E2�s 
M�E1 - E2�s = M�E1�s - M�E2�s, or M�E1 - E2� = ls.M�E1�s - M�E2�s 
 
M�I==E�s = true if s(I) = M�E}s and false otherwise, or M�I==E� = ls.s(I) equals M�E�s 
M�I > E�s = true if s(i) > M�E�s and false otherwise, or M�I > E� = ls.s(i) gt M�E�s 
M�I < E�s = true if s(i) < M�E�s and false otherwise, or M�I < E� = ls.s(i) lt M�E�s 
M�BB1 or B2� s= true if one or both of M�B1B �s and M�BB2�s is true and false otherwise, 
or M�BB1 or B2� = ls. M�B1B �s or M�BB2�s 
M�BB1 and B2�s = false if one of M�B1B �s and M�BB2�s is false and true otherwise. 
or M�BB1 and B2� = ls. M�B1B �s and M�BB2�s 
M�not B�s = true if M�B�s is false and true otherwise, or M�not B� = ls.not M�B�s. 
 
The semantic operations equals, gt, lt, and , or, not can be expressed in the lambda 
calculus, but that is not shown here. 



 
The control structures are also handled specially: 
 
M�S1;S2�s = M�S2�(M�S1�s), or M�S1;S2� = ls.M�S2�(M�S1�s) 
 
i.e. the result of executing a sequence of two statements with a particular store is the same 
as executing the second one in the store that results from executing the first one. 
 
M�if B then S1 else S2 end�s = M�S1�s if M�B�s = true and M�S2�s if M�B�s is false, 
or M�if B then S1 else S2 end� = ls.M�B�s → M�S1�s ñ M�S2�s , where the form _→_ñ_ is 
a conditional form that can also be expressed in lambda calculus (not shown here). 
i.e. the result of executing a conditional statement depends on the value of the expression 
B. 
 
M�while B do S end�s = M�S; while B do S end�s if M�B�s is true and s if M�B�s is false, 
or M�while B do S end� = ls. M�B�s → M�S; while B do S end�s ñ s 
 
Of course this must be recursive to allow for an indefinite number of iterations of the 
loop. Note that the body is executed every time B evaluates to  true and that the store is 
returned unchanged if B evaluates to false. 

Example 
If we take the example as before: 
 
p = 0 
n = x 
while n > 0 do 
     p = p + y 
     n = n – 1 
end 
 
We can, with some effort, write out a  derivation for M�P� with an initial store s0 = s[x  

3][y  2], where s is an empty store. We simply match each syntactic form with the 
relevant function and evaluate the expressions relative to the store passed to the various 
functions. We will not show the whole derivation here, but there are important parts as 
follows: 
 
The first step is to peel off the first assignment: 
 
M�p = 0; n = x; while n > 0 do p = p + y; n = n – 1 end�s0

⇒ M�n = x; while n > 0 do p = p + y; n = n – 1 end�(M�p = 0�s0) 
 
Now M�p = 0�s0 = s0[p  M�0�s0], and M�0� = 0 (the store is irrelevant here), so 



M�p = 0�s0 = s0[p  0] which is s[x  3][y  2][p  0], or s1. We have added the 
binding for p to the initial store. The same goes for n = x: 
M�n = x�s1 ⇒ s1[n  M�x� s1] ⇒ s1[n  s1(x)] ⇒ s1[n  3], or s2

 
The loop is handled as: 
 
M�while n > 0 do p = p + y; n = n – 1 end�s2

⇒ M�p = p + y;n = n - 1; while n > 0 do p = p + y; n = n – 1 end�s2, since M�n > 0�s2 is 
true: M�n > 0�s2 ⇒ M�n�s2 gt M�0�s2 ⇒ 3 gt 0 ⇒ true. Thus the body of the loop will 
yield a store that will be used for the next iteration. Eventually the store will contain n = 
0, and the loop will stop. 
 
An assignment with an expression is handled as: 
 
M�n = n – 1�s3  
⇒ s3[n  M�n - 1�s3] 
and M�n - 1�s3

⇒ M�n�s3 - M�1�s3
⇒ s3(n) - 1 
⇒ (for instance) 3 - 1, if s3 = s[x  3][y  2][p  2][n  3] 
⇒ 2 
 
If we applied these techniques to derive a meaning for the whole program we would end 
up with a state sf = s[x  3][y 2][p  6][n 0] 
Note that we have not proved that the program multiplies 2 by 3 as in the axiomatic 
method, nor do we have a sequence of low level instructions running on  virtual machine 
as in the operational method, but what we do have is a denotation for the program as a 
program state in which p is 6 and n is 0. Moreover, we have arrived at that point via a 
sequence of states that represents the execution sequence of the program’s statements. If 
we wished we could replace the initial values of x and y with placeholders for any value 
(e.g. a and b). We could still do the derivation, but we would not be able to simplify the 
store expressions involving arithmetic, which would be left with expressions involving a 
and b. For example, take the assignments p = p + y; n = n - 1 in the store s[x  a][y  

b][p  0][n  a]. This gives a new store: s[x  a][y  b][p  b][n  a - 1]. The next 

iteration gives s[x  a][y  b][p  b + b][n  a - 2]. Clearly, without knowing the 
value of a we cannot terminate the program, but with some advanced techniques we can 
actually show that the final store is s[x  a][y  b][p  b * a][n  0]. We can therefore 
prove that the program terminates with p = a * b, part of the original specification in the 
axiomatic method. 
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