
An Introduction to axiomatic semantics for CS471 
 
Axiomatic semantics were introduced by Tony Hoare and others as a way of defining the 
semantics of a programming language independently of the syntax and also of any 
particular way of implementing the language. It concentrates on the idea of program state 
and what must be true about the values of the variables that make up the state. Since 
program state only changes through assignment each statement about program state refers 
to the states between assignments. A logical language of assertions is used to make 
statements about program states. Essentially this language, in its simplest form, allows 
expression of equality and inequality of any arithmetic expression, and logical 
combinations of these. Variables are all considered to contain integers. Typical assertions 
are: 
 
x = 0 (the value of variable is zero in this state) 
x > 0 & y <= 0 (x is greater than zero and y is less than or equal to zero in this state) 
x = y * 2 + 1 (the value of x equals one more than the value of y multiplied by two in this 
state) 
 
Not only do the axioms below define the semantics of the language, they trail of 
assertions through the program can be used as a proof of program correctness. Essentially 
by using a standard decomposition of a program into individual statements we can ensure 
that every program state follows correctly from the previous one. Building up the 
individual statements into the whole program allows us to state that the program produces 
a final state from an initial state correctly. That is, that the program as a whole is correct, 
relative to these two assertions. The initial and final assertions are called the specification 
of the program. 

The axioms 
Although axiomatic semantics can be defined for any language, taking a very simple 
imperative language is the easiest. This language only has assignment, if-then-else and a 
while loop. Each of these forms is defined semantically by an axiom that is unprovable 
but can be justified either intuitively or by more sophisticated techniques in mathematical 
logic (that we will not consider). 
 
The first axiom is the basic one of assignment: 
 
1. assignment      {p[x→E]} x = E {p} 
    The postcondition is any logical assertion p, between the braces. The precondition 
(actually the weakest precondition since there is an infinite number of assertions which 
are true about the state before an assignment) is p with x substituted by E. Note it is a 
straight text substitution, not a value substitution). 
 
For instance take the assignment x = y*2 + 1 with the postcondition {x>10}. The current 
precondition is give in: 
 



{y*2 + 1 > 10} x = y*2 + 1 {x >10} 
 
The rule for the conditional form needs two parts, since both branches of the form must 
be included. The general form is if B then S1 else S2, where B is any Boolean expression 
and S1 and S2 are statements. 
 
2. composition      {p} S {q}, {q} S2  {r} 
 
                                 {p} S1 ; S2 {r} 
This rule expresses the fact that a sequence of two statements has an intermediate 
assertion between the two statements that is the postcondition for the first one and the 
precondition for the second. 
 
3. conditional       {p & B}S1{q}, {p & ~B}S2{q} 
         
                               {p} if B then S1 else S2 {q} 
 
Note that the axiom includes components for both branches and that this is the structured 
program type of if-then-else that results in the same state so that we can make one 
assertion q about that final state. 
 
4. loop           {I & B} S {I} 
                   
                {I} while B do S {I & ~B} 
 
The loop has the most problematic axiom since a) the statement S is repeated until the 
loop condition B is false, and b) it may never terminate. This axiom takes care of these 
problems by insisting that an assertion I is true before the loop starts, after every 
execution of the body S, and after the loop terminates. This is an invariant assertion. 
Loop termination is handled by making the loop condition part of the precondition (above 
the line in the rule) and its negation after the loop finishes. However, this, by itself, does 
not guarantee that the loop terminates, merely that if the loop terminates then it will 
terminate with ~B being true. Hoare’s methods therefore define partial correctness. 
Complete correctness that ensures that loops will terminate needs additional techniques 
that we will not discuss here. 
 
5. dummy      {p} d {p} 
      where d is the dummy statement. This is needed in the case where an if-then-else 
really has no else branch and is written if B then S else d.  
 
The remaining axiom helps with a proof of program correctness. They help with “gluing” 
assertions together where they are not exactly the same. 
 
6. consequence      p → p′, {p′} S {q′}, q′ → q 
 
                                        {p} S {q} 



 
This rule expresses the fact that a precondition that is different from the weakest 
precondition must logically imply the weakest precondition for progress to be made in the 
proof. On the other side, the postcondition must imply the precondition for the next 
statement if it is different from it. 
 

A Sample Proof 
We will illustrate the use of the axioms to prove a simple program correct. The program 
calculates the product of two integers by using repeated addition. x and y are the two 
numbers, and the strategy is to add the value of y into a product variable, p, x times. 
Since x is used as a counter, it must be greater than or equal to zero. This is the 
precondition part of the specification. The postcondition is simply p = x * y. The 
program, with specification added is: 
 
{x >= 0} 
p = 0 
n = x 
while n > 0 do 
   p = p + y 
   n = n – 1 
end 
{p = x * y} 
 
The proof of correctness we will present is informal, with may steps where we rely on 
algebraic manipulations of logical expressions that strictly speaking should also be 
proved. These proofs are hard, and will not be shown here.  
 
The first step is to find the invariant of the loop. Unless this is accurate, the rest of the 
proof will be difficult or impossible. In this case, we can find the invariant by following 
the values of p and n round the loop. It is fairly easy to see that after every execution of 
the loop body the value of p is y * (x – n). Even though this is an invariant we will not be 
able to proved the program without including the termination condition in the invariant as 
well. Since n starts out positive and goes down to zero, this portion is n ≥ 0. The invariant 
is thus: 
 
I ≡ p = y * (x – n) & n ≥ 0 
 
This is true before the loop starts, after every execution of the body and after the loop 
finishes. In order to prove that the loop body preserves the invariant we need to apply the 
assignment axiom twice for the two statements in the body. We do this by assuming the 
postcondition (the invariant and “pushing it back” through each assignment. For the 
second one this is: 
 
{p = y * (x – (n – 1)) & n – 1 ≥ 0} n = n – 1 { p = y * (x – n) & n  ≥ 0} 
 



Pushing this back one more gives: 
 
{p + y = y * (x – (n – 1)) & n – 1 ≥ 0} p = p + y { p = y * (x – (n – 1)) & n – 1 ≥ 0} 
 
 
 
By manipulating this precondition, we have: 
 
{p = y * (x – n) & n > 0} 
 
We can see that this is equivalent to I & B since n > 0 implies n ≥ 0. Using the axiom for 
composition we have: 
 
{I & n > 0} p = p + y; n = n –1 {I} 
 
We thus have the prerequisite for applying the loop axiom, which allows us to write: 
 
{I} while n > 0 do p + p + y; n = n –1 end {I & ~(n > 0)} 
 
Applying the same technique with the initialization statement before the loop we can 
write: 
 
{p = y * (x – x) & x ≥ 0} n = x {p = y *(x – n) & n ≥ 0} 
 
and then 
 
{0 = y *(x – x) & x ≥ 0} p = 0 {p = y * (x – x) & x ≥ 0} 
 
This precondition reduces to x ≥ 0 since the first part is simply true (0 = 0). Again 
applying composition we have: 
 
{x ≥ 0} p = 0; n = x {I} 
 
Applying composition to this and the loop gives: 
 
{x ≥ 0} P {I & ~(n > 0},  where P is the whole program. 
 
The final step is to show that I & ~(n >0) implies p = x * y to “glue” this assertion to the 
final assertion from the specification. Since the invariant contains n ≥ 0 and ~(n > 0) is 
equivalent to n ≤ 0 this must mean that n = 0 (proving this is hard). Since the first part of 
the invariant with n = 0  is equivalent to p = x * y, we have the desired glue, and the 
proof is complete. 
 
 


