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Abstract— In a wireless sensor network (WSN), the sensor
nodes (SNs) generally localize themselves with the help of anchors
that know their own positions. In this setting, the localization
process has a high risk of being subverted by malicious anchors
that lie about their own position and/or distance from the SNs.
In this paper, we propose an efficient scheme that helps the
SNs identify these malicious anchors and discard them from the
localization process. We introduce the concept of the bound circle
of an anchor with respect to an SN as the circle whose center is
at the anchor and whose radius is the estimate of the distance
between the anchor and the SN. Two bound circles may intersect,
resulting in at most two intersection points, of which at least
one point is close to the true position of the SN, such a point
is defined as a proximal point. Pairwise intersection of bound
circles results in a dense cluster of proximal points around the
position of the SN. This is true even when some of the anchors
used by an SN for localization are malicious and are colluding
with an aim to have the SN localized at a false position. We
propose CluRoL, a technique that helps each SN to localize itself
accurately, using a clustering mechanism that performs clustering
of these proximal points. Using the resulting cluster the SN is
able to identify the false anchors and exclude them from its
localization process. Our technique is decentralized and can be
easily used by the standard sensors. Simulation results indicate
that when the malicious anchors are not colluding CluRoL can
identify on an average more than 72% of them. CluRoL performs
even better when the malicious anchors are colluding in an
attempt to localize an SN at a false position, identifying more
than 85% of the malicious anchors. CluRoL also has very low
false positives.

I. INTRODUCTION

Large scale distributed wireless sensor networks (WSNs)
have become popular in both the military and civilian domains
because of their infrastructureless nature and relative ease of
deployment [1]. However, there still exist many fundamental
problems that need to be addressed [7]. The problem of robust
localization of the wireless nodes is one such problem. In an
infrastructureless WSN, for cost effectiveness, not all nodes
are equipped with self-localizing capabilities. Most sensor
nodes (SNs) localize themselves using the position estimates
of a group of nodes in the network called anchors [10], [11],
[13]. Each anchor is a fixed wireless node that knows its
own position accurately, either through GPS or from pre-
programmed information.

In this paper, we assume that Time Difference of Arrival
(TDoA) [13], [15], is the underlying mechanism used for
localization. Following the TDoA method, each anchor ai
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periodically broadcasts its identifier (ID) and position infor-
mation in its neighborhood, via a radio signal (RS) and an
ultrasound signal (US) at the same time instance. We denote
these two components together as the location reference. On
receipt of the location reference li from ai, a sensor node (SN)
u, calculates the time difference in receipt of the signals and
uses the constants, speed of light (c) and sound (s), to obtain
an estimate d̂iu of its distance (diu) from ai. The calculation
of the estimate d̂iu is given below.

d̂iu = ∆t ·
1

1/s − 1/c
, (1)

where ∆t is the time difference between the receipt of the RS
and the US. We note that the wireless medium is inherently
error-prone, hence the value of ∆t is inaccurate. This results
in u being able to only estimate diu.

When u gets a sufficient number of location references
from anchors in its vicinity, it can use them to estimate its
own position. The estimation can be done using the Minimum
Squared Error (MSE) (also known as the minimum mean
square error) method [10], [15] given by,

min
û

∑

ai∈Au

(||û − ai|| − d̂iu)2, (2)

where û is an estimate of the real position u = (ux, uy)

of u, ai = (aix, aiy) is the position of anchor ai, d̂iu

is the estimate of the distance between ai and u, calculated
by u using the TDoA method, and Au is the set of anchors
from whom u receives the location references. In the absence
of measurement errors, û is the correct estimate, that is,
||û− u‖ = 0. In the presence of measurement errors, the error
in û is dependent on the measurement error. In this scenario,
accurate localization is fairly complex as it is difficult to bound
the estimation error. The presence of malicious (lying) anchors
makes accurate localization significantly more difficult. We
demonstrate this with illustrative simulation results.

Motivation: In our illustrative simulation set-up, each ma-
licious anchor lied in a way that its distance from an SN it
is involved in localizing is in [d, d · (1 + ε)], where d is the
true distance and ε = 0.5 (for this illustration only). Fig. 1(a)
shows the average of the square of the localization error (Serr)
over 20 iterations, when lying anchors are included in the
localization process. Fig. 1(b) shows Serr when the lying
anchors are not included in the localization process. We would
like the reader to note the difference in scale of the Y-axis in
the two figures and point out that the value of Serr when the
number of lying anchors is 0 is the same in both cases. It
is easy to see that the error in localization when malicious
anchors are included is an order of magnitude higher than
when the localization is done with only the true anchors.
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(a) Malicious anchors included in localization
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(b) Only true anchors used for localization
Fig. 1. Localization error in MSE method

For instance, when there are 10 anchors in the range of an
SN and 5 of them are malicious, the inclusion of malicious
anchors in localization results in a value of Serr > 50 sq.
m. However, when localization is done without the malicious
anchors, the value of Serr < 0.8 sq. m. Thus, we can
conclude that the presence of malicious anchors is detrimental
to accurate localization and their revocation is necessary to
increase accuracy.

In this paper, we propose CluRoL, a distributed clustering
technique that helps SNs identify the malicious anchors and
performs accurate localization without these anchors, using
MSE. Simulation results indicate that CluRoL successfully
identifies on an average more than 72% of the malicious
anchors in the network when they are not colluding and more
than 85% of the malicious anchors when they are colluding.
The subsequent localization has significantly improved accu-
racy.

In Section II, we present related work. In Section III,
we present the system and threat models along with our
assumptions. Section IV presents our proposed mechanism,
while Section V presents the simulation results. We conclude
our paper in Section VI.

II. RELATED WORK

Localization schemes in WSNs may be classified as range-
based and range-free. The range-based mechanisms [3], [5],
[10], [16], perform localization by measuring properties such
as point-to-point distance or angle estimates, whereas the
range-free mechanisms [6], [8], [9], [11], [15] do not require
any physical measurements to perform localization. Range-
free mechanisms may use hop count or area-based estimation

to localize a node [6]. Generally, range-based mechanisms
lead to more accurate localization. However, they tend to be
resource intensive and may require specialized hardware [13],
[16]. The method used for position estimation may be based on
minimum mean/median square estimation [10], [15], convex
programming [2], [4], or triangulation [16].

Many schemes have been proposed [5], [8], [9], [10], [11],
[16] to increase security and robustness of localization by
performing secure localization, location anomaly detection, or
location verification. Accurate localization in the presence of
malicious anchors that are transmitting erroneous estimates
has been dealt with in [5], [10], [11]. The schemes in [5],
[10] attempt to identify the anomaly and perform compromise-
resistant localization, whereas the scheme in [11] attempts to
detect and remove the malicious anchors from the network.

Our scheme CluRoL, is fully distributed. It allows the SNs
to localize themselves with high accuracy, in the presence of
colluding malicious anchors, without any external assistance.
The Least Median Square (LMS) based scheme proposed by
Li et al. [10] is the only other scheme with similar objectives.
In this paper, we compare the result of CluRoL with the LMS
scheme. CluRoL results in more accurate localization than
LMS and also has much lower time complexity. In LMS, to
achieve high accuracy, the parameters have to be estimated
accurately. This requires a search over an exponential number
of subsets of the location references, resulting in higher time
complexity. CluRoL, however, is polynomial in the number of
anchors.

III. SYSTEM MODEL AND ASSUMPTIONS

The network consists of a set of anchors A = {ai, i =
1, . . . , K} and a set of sensors S = {si, i = 1, . . . , L} that
are deployed randomly and are fixed after deployment. Each
anchor ai knows its own position ai (ai = (aix, aiy)). The
transmission range of the SNs is r > 0 and that of the anchors
is R ≥ r. The anchors are equipped with radio/ultrasound
transmitters and can transmit both signals simultaneously. The
SNs are equipped with both radio and ultrasound receivers. All
devices have omnidirectional antennas. The anchors broadcast
their location references periodically. The measurement error
in the distance estimate is proportional to the actual distance of
the anchor from the SN u. The measurement error proportion
for the estimate of the distance between ai and u is a uniform
random variable, δiu v U [−δmax, δmax]. The anchors transmit
their references encrypted using a key from a hash chain. The
key is released at a later time instant (delayed key disclosure
mechanism), similar to the µTESLA scheme [14].

A. Assumptions

When the malicious anchors are not colluding, each ma-
licious anchor ai from whom an SN u receives location
reference lies independently, with the resulting false distance
estimate d̂iu = d′iu(1 + εiu), where d′

iu is the measured
distance between ai and the SN u and εiu ∼ U [−εmax, εmax]
is the lying proportion, where εmax is an unknown con-
stant. The malicious anchors can also collude by changing
their distance estimates so that the SN localizes itself at a
false position (xf ). For a malicious anchor ai, if dif =



‖ai − xf‖, then the false distance estimate d̂if of ai is such
that d̂if ∼ U [dif (1 − δiu), dif (1 + δiu)]. If the number
of anchors from which an SN receives location references is
N , then an upper bound on the number of malicious anchors
M that can be handled is given by M ≤ bN/2c − 2. This
upper bound on the number of malicious anchors for accurate
localization was proved in [12], when the measurement errors
were absent. This bound also holds when measurement errors
exist. The SNs are pre-deployed with the position information
of all the anchors in the network. Since the number of anchors
in the network is generally small, this is feasible. The anchors
have the ability to generate and store hash chains of the keys
used to authenticate the location references. The deployment
authority (DA) knows the last value (K0) of the hash chain for
each anchor, which can be used to verify any element of the
chain. The DA installs K0 of each anchor in each SN during
pre-deployment.

B. Threat Model and Security Assumptions

In a WSN, the adversary may be classified as, either an
outside adversary or an inside adversary. An outside adversary
is not part of the network and generally is more powerful
than the SNs. It has bounded abilities to jam or eavesdrop on
communication, compromise legitimate nodes, and inject false
nodes in the network. An inside adversary on the other hand, is
a node in the network that has been compromised. The inside
adversary is also a potent attacker as it is a part of the system
and hence is privy to the shared secrets. We assume that the
malicious anchors may be compromised by a powerful external
adversary to lie about their distance references. Hence the
malicious anchors are internal adversaries. In this subsection,
we use ai to denote a malicious anchor.

The use of delayed key disclosure by the anchors for trans-
mitting their location references ensures that malicious anchors
in the neighborhood cannot change or replay the references.
In addition, malicious anchor ai cannot revoke a true anchor
aj by masquerading as aj and broadcasting false location
references. CluRoL is not affected by wormholes. A wormhole
is created when two adversaries have a communication link
with latency that is much lower than the other links in the
network. A wormhole is dangerous as it may be used to
subvert the localization process. A malicious anchor far from
an SN can be made to appear very close using a wormhole.
A reference that is affected by wormhole is identified as
malicious and is not used in the localization process. The
malicious anchors information obtained by the SNs during the
operation of CluRoL can also be relayed to the BS. The BS can
analyze this information to identify the wormholes. We do not
discuss the technique in detail in this paper. It suffices to say
that CluRoL ensures that wormholes do not affect localization
accuracy.

In this set-up, there are only three possible mechanisms by
which a malicious anchor can subvert accurate localization,
namely by lying about its position, its distance (by not
transmitting the RS and the US simultaneously), or by lying
both ways. For ai, lying about its position is not viable as the
SNs know the positions of the anchors in the network and can

easily detect the location discrepancy. The only other feasible
attack is distance enlargement/reduction attack. We note that,
if the true distance of a true anchor aj from the SN u is
dju, due to measurement error, the distance estimate d̂ju can
become d̂ju = dju ·(1+δju). If malicious anchor ai lies about
its estimate, then d̂iu = diu · (1 + δiu) · (1 + εiu).

Another potent attack is collusion. The malicious anchors
can collude to localize the SN at a false position, xf . The
colluding anchors can choose xf in the network and ma-
nipulate the value of their distance estimates such that xf

is the most likely position obtained by the SN when it
performs localization. CluRoL addresses all these possible
attack scenarios and helps the SNs perform robust localization.

We note here that distance enlargement/reduction attacks
may also be caused by denial of service (DoS) attacks. These
attacks may be prevented by using error correcting codes or
spread spectrum techniques [17]. We do not consider DoS
attack in our threat model.

IV. DESCRIPTION OF THE SCHEME

Let u be an SN, and Au be the set of anchors from whom
u receives location references. The bound circle of an anchor
ai ∈ Au with respect to SN u is the circle with ai as the
center, and d̂iu (the estimate of the distance between u and
ai) as the radius. For each u, CluRoL performs clustering of
the intersection points of the bound circles of the anchors in
Au and identifies the malicious anchors by performing some
additional operations as detailed later. We motivate the use of
clustering using Fig. 2.

B

D
C

A

Farther intersection point

bound circle

anchor

sensor(u)

Closer intersection point

Fig. 2. Motivation for using clustering

The figure shows SN u and all the anchors in Au =
{A, B, C, D}. The corresponding bound circles are illustrated
by the solid (blue) circles. We assume that all the anchors
are true, and that the distance estimates of the anchors are
error-prone. Anchor A has negative measurement error (its
distance estimate is less than its correct distance from u),
while the rest of the anchors have positive measurement errors
(their distance estimates are greater than their correct distances
from u). If there were no measurement errors, all four bound
circles would intersect at node u. However, due to the presence
of measurement errors, not all of the bound circles may
pass through u. The bound circles of any two true anchors
can intersect at at most two points. Let the set of all such
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intersection points be S. Due to the geometry of the bound
circles, at least one of the intersection points shall be close
to the position of the SN, occasionally both the intersection
points may be equidistant from u. As a result, the density of
the intersection points is highest close to u, as indicated by
the solid red points in Fig. 2. We refer to these points close
to u as the proximal points and denote them by the set SP .
We note that SP ⊂ S. Even when some of the anchors are
malicious, intersections of the true bound circles still results
in the creation of the proximal points, with the intersection
of every pair of true bound circles contributing at least one
point to SP . This can be inferred from Fig. 3. In Fig. 3, u
receives location references from six anchors: A, B, C, D, E,
and F , where A, B, C, and D are true anchors (solid blue
bound circles) and E and F are malicious anchors (dashed
red bound circles) that lie about their distance estimates.
E lies by increasing its distance estimate while F lies by
decreasing its distance estimate. The solid red circles depict
the proximal points, the hollow black circles represent the
intersection points of the true bound circles that are farther
from u, and the black triangles represent the intersection
points resulting from the intersection of the bound circles of
the malicious anchors. We can see that the presence of the
false anchors generates more intersection points. However, due
to the enlargement/reduction of their distance estimates, the
resultant additional points of intersection are farther from u

than the proximal points. Thus, using SP we can effectively
differentiate between the true and malicious anchors. Given
SP , the true anchors can be identified as the anchors on whose
bound circles at least one of the points x ∈ SP exists. The
anchors that are not identified are malicious.

We note that due to measurement errors, u is not inferable
from the intersection points of the bound circles, but the points
in SP can be used as representative of u, to identify the true
anchors. However, note that since the correct position of u is
not known, identifying SP is also difficult. The next subsection
details a mechanism that uses clustering to approximate SP

by a cluster of the intersection points, Cmax.

A. Clustering the intersection points

If SN u receives location references from N anchors, then
the number of pairwise intersections between the correspond-
ing bound circles is C2

N . For each pair of bound circles, BCi

and BCj , there exist at most two intersection points, hence

|S| ≤ 2 · C2
N . At least one of the two intersection points is

a proximal point, so |SP | ≥ C2
N . However, if some of the

anchors are malicious, the above inequality may no longer
be true. For an SN u, if |Au| = N and the measurements
are accurate, Misra et al. [12], identified the upper bound
on the number of malicious anchors that can be involved
in the localization of u while still not being able to subvert
the localization process. This upper bound holds even when
the malicious anchors are colluding. According to the upper
bound, the number of malicious anchors is, M ≤ bN/2c− 2.
When the measurements are error-prone, the bound becomes
more strict, as accurate localization is even more difficult to
achieve. In this paper, we use the above upper bound on
the number of malicious anchors. If M satisfies the upper
bound, then the number of true anchors, T ≥ dN/2e + 2.
Each malicious anchor reduces/dilates its distance estimates.
The distance of the intersection points, resulting from the
intersection of its bound circle with other bound circles, from
u depends on how much the malicious anchor lies. The
bigger the lie the greater is the distance, hence the intersection
points are less likely to form a part of SP . Note that |S| =
2C2

N ,while |SP | ≥ C2
dN/2e+2. In what follows, we describe a

clustering procedure which generates a cluster Cmax of S, as
an approximation to SP .

Let D = {(x, y, d(x, y))| x, y ∈ S}, where d(x, y) =
‖x − y‖. Also, let D′ = {(u, v, d(u, v))| u, v ∈ SP}, the
set containing the tuples for every pair of points in SP . Let
α = C2

dN/2e+2 and β = 2 · C2
N . Then the ratio between |D′|

and |D| satisfies |D′|/|D| ≥ C2
α/C2

β . Although we know that
T ≥ dN/2e + 2, the true value of T is unknown. So we
approximate the ratio |D′/|D| using C2

α/C2
β . Let

η =
⌈

C2
α/C2

β

⌉

· 100. (3)

Then given two points x, y ∈ S they can belong to the same
cluster if d(x, y) satisfies the condition, d(x, y) ≤ dth. dth

is the distance threshold, which is the value of the distance
element of the ηth percentile tuple of D, when the tuples
of D are sorted in ascending order of the third element of
the tuple (pairwise distance). The intuition for using the ηth

percentile tuple’s distance value is as follows. The points
in SP account for at least η of all the pairwise distances.
Since they are packed close to the position of the SN with
high density, as seen in Figs. 2 and 3, most of the tuples
in the first ηth percentile of the sorted set D would be
(x, y, d(x, y)), where x, y ∈ SP . Algorithm 1, findMaxCluster,
utilizes the above property to cluster the points in S into
clusters, Ci, i = 1, . . . , k, and return Cmax, the cluster with
the maximum cardinality.The algorithm takes the sorted set
D = {D1, . . . , D|D|} and the value of dth as inputs. Lines 1
and 2 of Algorithm 1 initialize the first cluster C1. The two
points x, y belonging to the first tuple D1 ∈ D are added to
C1. Lines 3 to 27 perform the clustering operation for each
subsequent tuple (x, y, d(x, y)) ∈ D. For the pair of points
{(x, y)|(x, y, d(x, y)) ∈ D} such that d(x, y) ≤ dth, there
are four possible conditions. Lines 5 to 7 handle the case
where x, y do not belong to any cluster. Then x and y are
added to a new cluster. Lines 8 to 12 handle the case where
x belongs to a cluster Cp while y does not belong to any



Algorithm 1 findMaxCluster

Input: D = {D1, D2, . . . , D|D|}, dth > 0.
Output: Cmax.

1: k = 1; {Counter for the number of clusters used}
2: C1 = {x, y}; {(x, y, d(x, y)) ∈ D1}
3: for i = 2 to |D| do
4: x, y ∈ Di;
5: if (x /∈ Cp) ∧ (y /∈ Cp), for p = 1, . . . , k then
6: k++; {x, y not in any cluster, add to a new cluster}
7: Ck = {x, y};
8: else if (x ∈ Cp) ∧ (y /∈ Cq), for p, q = 1, . . . , k then
9: {x ∈ Cp and y does not belong to any cluster}

10: if d(x, y) ≤ dth then
11: Cp = Cp ∪ {y};
12: end if
13: else if (x /∈ Cp) ∧ (y ∈ Cq), for p, q = 1, . . . , k then
14: {x does not belong to any cluster and y ∈ Cq}
15: if d(x, y) ≤ dth then
16: Cq = Cq ∪ {x};
17: end if
18: else if {(x ∈ Cp) ∧ (y ∈ Cq)} ∧ {Cp 6= Cq}, p, q =

1, . . . , k then
19: {Need to check if Cp and Cq can be merged}
20: MCp

= {
∑|Cp|

j=1 p}/|Cp|; {Centroid of Cp}

21: MCq
= {

∑|Cq|
j=1 q}/|Cq|; {Centroid of Cq}

22: if ‖MCp
− MCq

‖ ≤ dth then
23: Merge Cp and Cq ;
24: k = k – 1; {One less cluster}
25: end if
26: end if
27: end for
28: Cmax = {Ci| |Ci| = max{|Ci|, i = 1, . . . |C|}};
29: return Cmax;

cluster. Then y is added to the cluster Cp. Lines 13 to 17
handle the exactly opposite case. Lines 18 to 26 handle the
case where the x and y belong to two different clusters. In that
case, the centroids of the two clusters, MCp

and MCq
are used

to identify if the two clusters can be combined. Clusters Cp

and Cq can be combined if d(MCp
, MCq

) ≤ dth. The centroid
technique prevents the undesirable case where two clusters Ct,
containing only points from SP and Cm, containing no points
from SP are merged because there exist two points x ∈ Ct and
y ∈ Cm such that d(x, y) ≤ dth. This is undesirable because
Cm may contain points of intersection of bound circles of
malicious anchors. Hence those points will become a part of
Cmax, resulting in large number of false negatives, that is,
malicious anchors not being caught. The centroid technique
guarantees that Cp and Cq are merged only when there exist
many pairs {(x, y)| x ∈ Cp, y ∈ Cq}, such that d(x, y) ≤ dth.
After the clustering procedure, the algorithm returns the cluster
with the maximum cardinality Cmax. The running time of
Algorithm 1 is O(N4).

We note that Cmax shall contain a large number of proximal
points, as the pairwise distance of most of these points are
below the threshold. As a result, Cmax can be used to

approximate SP . However, it is likely that SP \ Cmax 6= ∅.
We prove in Theorem 1 that this shall not result in significant
false positives, that is, true anchors identified as malicious. The
theorem computes the probability that at least one proximal
point resulting from a true anchor exists in Cmax and hence
the probability that the anchor is identified as true.

Theorem 1: Let γ = dN/2e + 1 and k′ = |Cmax|. Let
k ≤ k′ be the number of proximal points in Cmax, where
k ≤ |SP |. Then the probability that at least one proximal point

of a true anchor belongs to Cmax is at least 1 −
(

γ−1
γ+1

)k

.
Proof: The bound circle of each true anchor aj intersects

with at most dN/2e + 1 of the remaining true bound circles,
resulting in at most dN/2e + 1 proximal points. Given that
the number of proximal points in Cmax is k, the probability
P that none of the k points are points of intersection of
ai with another true anchor is given by, P = γ(γ−1)

γ(γ+1) ·

γ(γ−1)−1
γ(γ+1)−1 . . . γ(γ−1)−(k−1)

γ(γ+1)−(k−1) = (γ−1)k

(γ+1)k ·
(γ− 1

γ−1

γ− 1
γ+1

. . .
γ− k−1

γ−1

γ−k−1

γ+1

)

.

For all possible values of k, the expression inside the pair of
braces is no greater than 1. Therefore P ≤ (γ−1)k

(γ+1)k . Thus the
probability of atleast one intersection point of the true anchor
aj being present in Cmax is 1 −P ≥ 1− (γ−1)k

(γ+1)k .
The theorem indicates that if findMaxCluster is used, the
probability of false positive is low. For illustration, let N = 8,
then γ = 5 and the number of proximal points is 15. Even
if k is as small as 5, the probability that a true anchor is
identified as true, is 0.87, which is a fairly high probability.
This indicates that using findMaxCluster will result in low
false positives.

It is also possible that Cmax contains more than one x ∈
S \ SP . In that sense our findMaxCluster is pessimistic, as
Cmax could potentially contain some points of intersection
of malicious bound circles thus resulting in false negatives.
However, we note that our emphasis is on the reduction of
false positives at the expense of some false negatives.

We would like to note that even when the malicious anchors
are colluding, the set Cmax would comprise of a large num-
ber of proximal points. When the malicious anchors collude
this results in the creation of another set of closely placed
intersection points near the false position of u. However, the
cardinality of the cluster resulting from these points cannot
be larger than the cardinality of the cluster containing the
proximal points, as M < T .
B. Identification of malicious anchors using CluRoL

Now we are ready to present CluRoL, which uses the
clustering algorithm findMaxCluster to identify the malicious
anchors, removes them from the localization process, and
localizes the SN u with high accuracy.

We describe CluRoL as Algorithm 2. Line 2 performs
initialization of the variables, S, D, and Cmax. ancStatus is
an array that contains the status of the anchors obtained from
CluRoL. If ancStatus[i] = false, then ai is malicious. Lines
4 to 8 populate S with the pairwise intersection points and
have running time O(N 2). Lines 9 to 12 populate the set D
and have running time O(N 4). Line 13 performs the sorting
of the pairwise distances, with running time O(N 4 log N).
Line 14 obtains the value of dth by the procedure described



Algorithm 2 Algorithm for CluRoL at each SN u

Input: Position ai of the anchors in range of u and their
distance estimates d̂iu, i = 1, . . . , N , |T |, the lower bound
on number of true anchors, δmax, and εmax.

Output: û and the malicious anchors;
1: BCi = {Bound circle of anchor ai},
2: S = ∅,D = ∅, Cmax = ∅;
3: ancStatus[N ] = false; {An anchor is true or malicious}
4: for i = 1 to N − 1 do
5: for j = i + 1 to N do
6: S = S∪{x| x ∈ (BCi∩BCj)}; {x is an intersection

point of BCi and BCj}
7: end for
8: end for
9: for all x, y ∈ S do

10: d(x, y) = ‖x − y‖; {Pairwise distance tuple}
11: D = D ∪ (x, y, d(x, y));
12: end for
13: Sort D in ascending order of the pairwise distances;
14: dth = ηth percentile tuple’s pairwise distance value;
15: Cmax = findMaxCluster(D, dth);
16: for each x ∈ Cmax do
17: for i = 1 to N do
18: UB = d̂iu(1 + δmax)2;
19: LB = d̂iu/(1 + δmax)2;
20: if {(‖x− ai‖ ≤ UB) ∧ (‖x− ai‖ ≥ LB)} then
21: ancStatus[i] = true;
22: end if
23: end for
24: end for
25: A = {(ai, d̂iu)| ancStatus[i] = true}, i = 1, . . . , N .
26: û = MSE(A);
27: return û, ancStatus;

in subsection IV-A. Line 15 calls Algorithm 1 to obtain
Cmax. Lines 16 to 24 illustrate the use of the maximum
measurement error proportion to distinguish true anchors from
the malicious anchors. As mentioned earlier, it is difficult to
obtain Cmax = SP , since u is not known. Thus SP \ Cmax

may not be ∅. Hence there exists a small probability that
findMaxCluster does not identify any proximal point of a true
bound circle, thus resulting in the anchor being identified as
malicious. Consider the scenario where there are M malicious
anchors and T true anchors (N = T + M ). Let T − 1
of the true anchors (t1, . . . , tT−1) be subject to very little
measurement error. Hence, the proximal points resulting from
the intersection of the bound circles of these anchors would
be located closely about u. Further, let tT be subject to
the maximum measurement error (δmax). Without loss of
generality, let two malicious anchors, m1 and m2, lie by
increasing their distance estimates by a very small proportion,
that is, (1+δmiu)(1+εmiu) << (1+δmax), i = 1, 2. Then the
intersection points of BCm1

and BCm2
with the other bound

circles is going to be close to u, in fact closer than the points
of intersection of BtT

. As a result, Cmax shall contain no
proximal points obtained from BtT

, but may contain some of

the points of intersection of Bm1
and Bm2

. Thus, tT shall be
incorrectly identified as malicious, resulting in a false positive.
At the same time, m1 and m2 might be identified as true.
Lines 16 to 24 attempt to reduce such false positives even
further. Since there is no way of identifying if a measurement
is subject to positive/negative measurement error, we use the
estimate of each anchor to define two conservative estimate
bounds, the Upper Bound (UB) and the Lower Bound (LB)
as shown in the algorithm. If an anchor is true, the position
of the SN u is inside the circle drawn with UB as the radius,
while it is outside the circle with LB as the radius. CluRoL
uses the points of Cmax to approximate SP , whose points are
representative of u. If at least one of the points in Cmax is
such that it falls within the UB and LB circles of tT , then tT is
identified as true, even if none of its intersection points belong
to Cmax. This technique also results in malicious anchors that
lie very little, such as m1 and m2, to be identified as true.
However, this is unavoidable, as any malicious anchor ai that
lies such that (1 + δiu)(1 + εiu) << (1 + δmax) cannot be
distinguished from a true anchor subjected to measurement
errors, thus cannot be identified by any mechanism.

If an anchor ai is not identified by CluRoL. This implies
that there exists no x ∈ Cmax such that x lies within the
UB and LB circles of ai. This is possible if ai is lying, thus
ai is identified by CluRoL as malicious with high likelihood.
In line 2, the position of the SN is estimated using the MSE
method. Only the estimates from the anchors identified as true
are used in the procedure. The running time of Algorithm 2 is
O(N4 log N). We note that in general the number of anchors
from whom a SN receives location references is fairly small,
hence the running time of Algorithm 2 is reasonable.

The simulation results demonstrate the effectiveness of
CluRoL in identifying malicious anchors increasing the ac-
curacy of localization.

V. SIMULATION RESULTS

The WSN is deployed in a 100 × 100 sq. m. field. The
transmission range of the anchors is set to 30m, |δmax| = 0.05,
and |εmax| = 1.0. The location references are broadcast every
second. The number of anchors in range of the SN is between 4
and 12. For each value of N , the number of malicious anchors
M varies between, {0, . . . , bN/2c − 2}. For the case where
the malicious anchors are colluding, the anchors collude to
localize the SN u 30m away from its original position u. When
the malicious anchors do not collude, each anchor lies about its
distance estimate independently. Fig. 4 shows the percentage
of malicious anchors identified by CluRoL and the percentage
of false positives resulting from CluRoL.

For the results in Fig. 4, for each configuration of number
of anchors and number of malicious anchors, we perform 50
simulation runs. Our scheme displays very little false positives.
The percentage of false positives is less than 2% for both when
the malicious anchors collude and when they do not. CluRoL
results in a significant percentage of malicious anchors being
caught. When the malicious anchors are not colluding we catch
anywhere between 65% to 82% of them. When they collude
we catch more than 85% of them. The increase in percentage
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√
MSE when no scheme is used, CluRoL, or LMS are used.

of malicious anchors caught when they collude is because
the intersection points of their bound circles are farther from
the position of the SN due to their collusion, thus they are
not identified as true in lines 2 to 2 of Algorithm 2. This
demonstrates the effectiveness of our scheme. In the figure, the
curves depicting the malicious anchors caught start at N = 6,
as for N < 6, M ≤ 0. If a malicious anchor lies such that the
false estimate is within the allowed maximum error, it cannot
be caught. We do not consider such anchors as malicious in
our simulations study.

In Fig. 5, we show the result of the comparisons of CluRoL
with the Least Median Square (LMS) scheme [10], and the
standard MSE method using all the anchors. For each configu-
ration of number of anchors and number of malicious anchors,
we perform 100 simulation runs. The figures show the average
error in localization (‖û− u‖) over all possible values of M
for a given value of N . Fig. 5(a) shows ‖û−u‖ given that the
malicious anchors are non-colluding. As already illustrated in
Section I, use of MSE without filtering the malicious estimates
results in significant error in localization. With the LMS
technique the error in localization is reduced significantly,
however, with CluRoL the performance is even better. This
is because in the LMS scheme, an estimate that deviates from
a calculated threshold by a chosen constant factor, is identified
as an outlier and not involved in the localization process and
the corresponding anchor is identified as malicious. However,
inaccuracies in the choice of the factor can increase the false
positives or false negatives. The accuracy of LMS depends
on the number of subsets of the distance estimates used to
identify the parameters. Larger the number of subsets more
accurate is the scheme. To get the best possible result requires
exponential time in N , as all subsets of the set of estimates
need to be enumerated. In CluRoL on the other hand, the
use of the points in Cmax to approximate SP and hence to
represent the position of the SN and the use of UB and LB
help reduce the false positives. More importantly CluRoL has
significantly less time complexity in comparison to LMS.

When the malicious anchors collude, the error in localiza-

tion increases significantly in the unfiltered case. The LMS
and the CluRoL schemes fare better, with CluRoL still being
better than LMS because of the same reasons as before. This
is illustrated in Fig. 5(b). Thus, CluRoL identifies a large
proportion of the lying anchors and also improves localization
accuracy.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have proposed a clustering based scheme
that successfully identifies a large number of malicious an-
chors that may subvert the localization process in a WSN.
We have demonstrated the increase in accuracy of subsequent
localization without the identified malicious anchors. In the
future, we would like to implement this technique on a
testbed for further evaluation and perform rigorous quantitative
analyses.
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