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Abstract: In this paper, we propose two simple and efficient schemes for establishing anonymity
in Clustered Wireless Sensor Networks (CWSNs). The schemes apply to a CWSN in which the
nodes in a neighbourhood share pairwise keys for authentic and confidential communication. The
first scheme, named Simple Anonymity Scheme (SAS), uses a range of pseudonyms as identifiers
for a node in the network to ensure concealment of its true identifier (ID). After deployment,
neighbouring nodes in the network share their individual pseudonyms and use them to ensure that
the communication is anonymous, and a node’s true ID is kept private. The second scheme, named
Cryptographic Anonymity Scheme (CAS), uses a keyed cryptographic one way hash function to
ensure ID concealment. In this scheme, after deployment, nodes in a neighbourhood securely
share the information that is used by a hash function to generate pseudonyms that are used by the
communicating nodes instead of their true ID. Even when many nodes in a given neighbourhood
of the network are compromised and are colluding, our schemes ensure that non-compromised
nodes are still guaranteed complete anonymity during their mutual communication. Our schemes
require reasonably low memory and have very low computation cost, needing no change in other
protocols of the network stack. They can be embedded into any Wireless Sensor Network (WSN)
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1 Introduction

Large scale distributed Wireless Sensor Networks (WSNs)
are becoming increasingly common in a variety of
applications, ranging from military to civilian in nature

(Akyildiz et al., 2002). Despite significant improvements
in the robustness of the Sensor Nodes (SNs), they are still
hugely constrained, having limited power, memory, and
computing abilities (Karlof and Wagner, 2003). The available
redundancy and inherent energy scarcity of a sensor network
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encourages the use of aggregation of data while on its way to
the base station from the point of stimuli.

Clustering of the WSNs vastly improves this aggregation
ability. In a Clustered Wireless Sensor Network (CWSN),
the nodes in a neighbourhood organise themselves into a
cluster, with one node designated as the Cluster Head (CH)
(Bandyopadhyay and Coyle, 2003;Younis and Fahmy, 2004).
The CH gets information regarding a stimulus from the
SNs in its neighbourhood and uses an aggregation scheme
to aggregate this information. It then sends the information
to a neighbouring CH in the direction of the Base Station
(BS). This neighbouring CH may aggregate the information
further and send it ahead.

In many applications of the WSN, identity of the
nodes sending data from a locality to the BS might be
extremely sensitive information. In a mobile wireless ad hoc
network, identity of a node is generally given by a tuple,
{location, identifier, time}(Delakouridis et al., 2005). In
a static WSN, in general, the identifier (ID) is sufficient
for unique node identification. An intelligent adversary
analysing the traffic in the network may obtain access to
this identity information. Such an informed adversary can
infer and destroy/compromise the identified SNs, rendering
the network ineffective. The problem of traffic analysis
becomes even more critical in a CWSN. Identity information
of the CH in a region can allow an adversary to compromise
the CH, effectively compromising the complete cluster and
ensuring that the BS gets no information from the cluster’s
locality. To solve the problem of traffic analysis in the CWSN,
design and deployment of effective anonymity solutions is
essential. Anonymity solutions allow the SNs to use dynamic
pseudonyms during the communication, thus reducing the
scope of traffic analysis significantly.

In this paper, we propose two anonymity solutions for a
CWSN, where the SNs in a neighbourhood share pairwise
symmetric keys, generated using exchange of predeployed
information (Blom, 1985). We assume that clustering is
done in the network using the clustering scheme proposed
by Younis and Fahmy (2004). We also assume that the Tiny
OS beaconing scheme (Karlof and Wagner, 2003) is used for
creating inter-cluster routes for communication of a CH with
the BS. The first scheme is a simple yet effective scheme
that provides the SNs with dynamic pseudonyms for use
instead of their true identity during communication, ensuring
complete anonymity. The SNs are given pseudonym ranges
that are non-contiguous and chosen uniformly at random
from a pseudonym space. Our scheme guarantees complete
anonymity to a communicating SN even when several of its
neighbours are compromised and are colluding.

The second scheme has better memory efficiency and uses
keyed hash functions to generate anonymous pseudonyms
for SNs to use instead of their true identity during
communication. The SNs in a neighbourhood securely
share parameters immediately after deployment and use
these parameters to key a publicly known cryptographic
hash function that generates the anonymous IDs. Keyed
cryptographic hash functions, also known as strongly
collision resistant hash functions (Menezes et al., 1996), are
popularly used in the creation of Message Authentication
Codes (MACs) in WSNs. The key used for keying the hash
function is a secret, shared between the SNs that are involved

in the communication. It is difficult for an adversary that
is not a part of the communication to identify the key and
hence be able to forge the message. In our scheme, we
further strengthen the output from the hash function against
forgery (as compared to MACs) by using an input with a
secret component. Hence, our scheme guarantees complete
anonymity to the sender and receiver. Further, the scheme
ensures that the probability of an adversary being able to
identify the true ID of the sender and receiver, or forge an
authentic sender-receiver ID pair for a communication in its
neighbourhood, is very low.

The rest of this paper is organised as follows. In Section 2,
we briefly survey related work in the areas of clustering,
anonymity and privacy in wireless sensor and ad hoc
networks. In Section 3, we give the problem statement and
define the models, security assumptions and requirements
for anonymity in a CWSN. In Section 4, we describe
the framework for our proposed anonymity schemes. In
Section 5, we propose our first scheme, SAS, and analyse the
protocol. Section 6 contains our proposition of the second
scheme, CAS and accompanying analyses of the protocol.
In Section 7, we compare our two anonymity schemes on
the basis of their performance in terms of memory and
computation requirements. In Section 8, we present our
conclusions and scope of future work.

2 Related work

Ibriq and Mahgoub (2004) specified the design criteria
and challenges for cluster based WSNs. An on-demand
distributed clustering algorithm for ad hoc networks was
proposed by Chatterjee et al. (2004). A hybrid, energy
efficient and distributed clustering protocol (HEED), was
proposed by Younis and Fahmy (2004), which does not
depend on the network topology or size, nor makes any
assumptions on the node degree. Bandyopadhyay and Coyle
(2003) proposed a distributed and randomised clustering
algorithm that generates a hierarchy of CHs.

Security in WSNs has been a topic of intensive study in
the last few years. Karlof and Wagner (2003) considered
routing security in WSNs. They identified attacks on
WSNs and proposed countermeasures and security design
considerations. Zhu et al. (2003) proposed a key management
protocol for WSNs that supports in-network processing. The
protocol also restricts the impact of node compromise to
the local neighbourhood. Liu and Ning (2003) presented a
general framework for establishing pairwise keys between
sensors, on the basis of a polynomial-based key pre-
distribution protocol. Du et al. (2005) proposed a novel
secret key predistribution scheme that substantially improves
resilience of the network.

Anonymity and security in clustered wireless sensor
networks have not been studied in great detail, although
there have been significant work in ad hoc networks that
may be applied to these sensor networks. Poosarla et al.
(2004) used both public and symmetric key cryptography
to provide security in the cluster based routing protocol
for ad hoc networks. Delakourdis et al. (2005) presented
a novel architecture that provides location anonymity to a
mobile node by splitting the identification information among
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the entities in the network. Zhu et al. (2003) proposed the
ASR protocol that provides a form of identity anonymity
and location privacy. Wu and Bhargava (2005) proposed an
on-demand position based private routing protocol for an ad
hoc network. Kong and Hong (2003) proposed an anonymous
on-demand routing protocol for mobile ad hoc networks
deployed in hostile environments. To our best knowledge, no
research on anonymity in wireless networks has addressed
the problems we are studying in this paper.

Message authentication codes have been used as a
common mechanism for achieving message authentication
in all kinds of communication networks. Many techniques
such as CBC-MAC, universal hash functions, hashed MAC
(HMAC), XOR MAC (XOR-MAC) and NMAC have been
proposed for generation of MACs. Bellare et al. (1996a,b)
proposed the NMAC and HMAC schemes for MAC. Both
the schemes are proved to be secure if the underlying hash
function used has a good cryptographic strength. Bellare
et al. (1994) showed that the CBC-MAC construction is
secure if the underlying block cipher on which it is based
is secure. Preneel and Oorschot van (1995) proposed a
generic construction (MDx-MAC) for transforming any
secure hash function of the MD4-family into a secure MAC.
Bellare et al. (1995) proposed the XOR-MAC scheme
that has the desirable properties of parallelisability and
incrementability while also being provably secure. Black
et al. (1999) presented a secure MAC algorithm named
UMAC that was an order of magnitude faster than other
MAC algorithms by virtue of being highly parallelisable.
The second anonymity scheme that we propose uses a chosen
keyed cryptographic hash function, which may be similar to
one of the MAC generation schemes to create anonymous
IDs for communicating nodes in the neighbourhood.

3 Problem statement

3.1 System model

We consider a wireless sensor network composed of a large
number of similar, small, low cost, and immobile sensors.
These sensors are assumed to have unique IDs. They have
limited power, memory and computation abilities, and are
not tamper resistant. The network is partitioned into clusters.
The links in the network are assumed to be bidirectional.
The SNs send sensed data to the elected CH. The role of a
CH rotates between the SNs in a neighbourhood. We assume
the neighbourhood of an SN consists of all other SNs within
its transmission range and also includes itself.

There are many clustering algorithms that have been
proposed in the literature (Bandyopadhyay and Coyle, 2003;
Chatterjee et al., 2002; Younis and Fahmy, 2004). We
assume that the network uses some clustering mechanism.
We propose schemes for establishing anonymity in a given
CWSN. Our anonymity schemes can work on top of any
clustering scheme. The CH aggregates data in its cluster
and sends it to the BS using a multi-hop path created using
intermediate CHs. The intermediate CHs may also aggregate
data from their neighbouring CHs before sending it towards
the BS. The BS acts as the interface for the sensor network
to the internet or a wired network. It is assumed to have

unlimited power source and computation ability, that is,
orders of magnitude higher than the sensor nodes themselves.
We assume that the BS is secure and is not compromised by
any malicious user.

We assume that the clustering algorithm, HEED (Younis
and Fahmy, 2004) is used for cluster formation, with an
added assumption that the SNs are static after deployment.
These SNs have the ability to transmit at several discrete
power levels. The highest power level is used for inter-
cluster communication. The lower power levels are used
for intra-cluster communication and are called the cluster
power levels (Younis and Fahmy, 2004). Clustering and
CH election are done on the basis of residual energy, while
the average minimum reachability power as proposed by
Younis and Fahmy, (2004) is used to break ties. Each node
declares itself a CH with a probability that is dependent on
its residual energy. The process of CH selection goes through
many iterations. At the end of the iterations, a node that is
neither a CH nor part of any cluster declares itself as a CH.
To ensure the inter-cluster connectivity, we assume, that the
routing mechanism used in Tiny OS, namely, base station
beaconing (Karlof and Wagner, 2003), is used. The base
station beaconing protocol constructs a breadth first spanning
tree of the network, rooted at the BS. The BS broadcasts a
route update beacon periodically. All nodes receiving the
BS’s beacon designate it as their parent and forward the
beacon using their ID as the sender ID. A node receiving
this beacon designates its parent as the node whose ID is in
the sender field. This algorithm continues recursively till it
terminates at the periphery of the network. In our scheme
only the CHs forward the BS beacon message, thus creating
a connected network of CHs from the BS to the periphery of
the network. Given the higher order transmit power used for
inter-cluster communication, we can assume, as assumed by
Ye et al. (2003) and Younis and Fahmy (2004), that complete
network connectivity is guaranteed.

3.2 Security assumptions

The BS acts as the key server and also shares a key with
every SN in the network for authentic and confidential
communication. The SNs are identical to the current
generation TelosB motes (Polastre et al., 2005) in their
computation, communication and power resources. We
assume that the SNs have adequate memory for storing up
to hundreds of bytes of keying material to be used by our
anonymity schemes. During initial set-up and neighbourhood
discovery, the SNs in a neighbourhood exchange their
identity information for key set-up. For the complete
mechanism of such a set-up, we refer the readers to the
work of Du et al. (2005). After the key set-up, each
SN can communicate securely with every other SN in its
neighbourhood and authenticate messages using the shared
pairwise keys. Also, each SN shares a secret cluster key
with every other SN in its neighbourhood. These cluster keys
may be generated by each SN and sent securely to every
neighbour using the shared pairwise secret key. The cluster
key is used by an SN for secure intra-cluster communication
in its neighbourhood as the CH. Zhu et al. (2003) assumed
that in a WSN there exists a lower bound on the time interval
(Tmin) that is necessary for an adversary to compromise



Efficient anonymity schemes for clustered wireless sensor networks 53

an SN. The initial set-up for our first anonymity scheme,
which involves exchange of a few encrypted range messages
between neighbours, is possible in time much less than Tmin.
Also, the set-up phase of the second scheme, which requires
the exchange of some parameters between the neighbours,
can be easily completed in time much less than Tmin.

3.3 Characteristics of CWSN

In this paper, we propose two anonymity and privacy
solutions for a CWSN that are characterised by the following
attributes:

1 All nodes in the CWSN are loosely time synchronised.

2 All SNs outside the range of transmission of a given
SN cannot comprehend its transmission and treat it as
noise.

3 The SNs have enough compute power to generate
pseudo-random numbers.

4 SNs do not communicate among themselves other than
during the initial set-up or the CH election phase. All
other communications happen between the CH and the
SNs or between the CHs, and are of broadcast or
unicast nature.

5 Similar to the assumption in Kong and Hong (2003), we
assume that the SNs have the ability to obfuscate
address fields in their medium access control layer
header. This ensures that an SN’s medium access
control layer header does not give out its identity to a
compromised SN in the neighbourhood.

3.4 Adversary and threat model

Generally two types of attackers are considered for a wireless
sensor network: a sensor class attacker, also known as the
inside attacker, and the high power laptop class attacker,
also known as the outside attacker. The inside attacker
might consist of more than one compromised SN that can
mount a concerted attack on the network. On the other hand,
a laptop class attacker has higher capacity than the SNs in the
network and can jam or eavesdrop on the entire network, or
create wormholes or sinkholes (Karlof and Wagner, 2003). In
this paper, we assume an adversary that is much stronger than
the sensor nodes in the network. The adversary is capable of
both insider and outsider attacks, but has bounded computing
and traffic analysing abilities.

Communication of an SN with the BS and pairwise
one-hop neighbours is confidential and authenticated. The
adversary would not be able to decrypt any communication
until it compromises the nodes in the network. However, it
can identify the centres of stimuli in the network by looking
at the source and destination IDs in the packet headers. As
a direct consequence, it can identify the clusters sending
important information and infer the IDs of the CHs in the
clusters. Knowing the ID of the CH, the adversary can infer
its location and compromise/destroy it, in turn rendering all
communications in the cluster compromised.

A compromised CH closer to the BS shall also allow the
adversary to monitor any communication happening through
it. Furthermore, an adversary can obtain routing information

from the compromised nodes or by eavesdropping. By
analysing this information, it can obtain knowledge of the
network’s topology, thus, becoming equipped to disrupt the
network.

3.5 Requirements for anonymity in a CWSN

Based on Section 3.2, we can define the anonymity
requirements of a CWSN consisting of the following:

1 Every SN can communicate with any other SN in its
neighbourhood and the BS in an anonymous and a
secure manner.

2 Routing of messages is anonymous. The CHs that are
in the forwarding path of a CH to the BS cannot infer
its true ID.

3 The nodes in a cluster are indistinguishable. A
malicious agent that is not a part of the CWSN should
not be able to identify the nodes involved in
communication.

4 SNs outside the neighbourhood of a cluster cannot
figure out the CH of the cluster. This entails that when
the CH communicates in its cluster, any other node
not in the cluster cannot identify that it is the CH.
Furthermore, when a CH communicates with a
neighbouring CH, no other SN can identify it.

5 In essence, any anonymity solution in a
CWSN environment should provide the following
three kinds of privacy (Zhu et al., 2003):

• Identity privacy: this ensures that neither the
destination node knows the true identity of the
source node of a packet nor do the source and
destination know the true identity of the
intermediate forwarding nodes.

• Location privacy: a node in the network should
not know the location of any other node in the
network.

• Route privacy: an adversary, irrespective of
whether it is on the route of a packet it has
received or not, cannot trace the source of the
packet or the intermediate nodes the packet has
traversed.

We note that the final destination of all inter-cluster packets
is the BS. This can be inferred from the final destination field
in the packet. However, this does not aid in traffic analysis
for identifying the source of the packet, as all packets are
destined to the BS.

In a key exchange scheme such as that suggested by Blom
(1985), a neighbouring SN needs to identify the sender of a
packet to be able to use the correct pairwise key to decrypt
the packet’s contents. The identity privacy requirement has to
be enforced in a way that the receiver recognises the sender
to be able to select the correct key for decryption. However,
it should not be able to determine the sender’s true identity.
We address this important aspect in our solution. We do not
consider the requirement of location privacy, as the clustering
and routing schemes we use do not exchange any location
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information. We address the issue of route anonymity but do
not propose any new routing algorithm. Our scheme can be
used with any existing routing algorithm, to ensure that node
discovery, route requests, and route replies use pseudonyms
and the true identity of a node is kept private.

4 Framework for the anonymity schemes

In this section, we present the basic framework and
definitions we use to build our anonymity schemes. Table 1
gives a list of notations used and their meaning. We
shall define some of the notations that are not implicitly
understandable at the place of their use.

Table 1 Notations table

Notation Explanation

N number of nodes in the network

M number of neighbours of a node in

the network

K number of bits used for the

pseudonym space

u, v nodes that we shall use in

our illustrations

k
′
uc secret key used by SN u for

intra-cluster communication as a CH

k
′
uv mutually shared secret key used by

SNs u and v for encrypting

communication

kuc shared secret hash key used by SN u

for anonymous intra-cluster

communication

kuv mutually shared secret hash key

used by SNs u and v for anonymising

the header

F is a family of pseudo-random functions

H a set of hash functions s.t. for each

k ε K there is a hash function

hk ε H.

Each hk: X −→ Y

(X, Y, K, H) defined as a hash family

2|�| pseudonym subrange each SN assigns

to each neighbour in the SAS

|| the concatenation operator

Defined below are a few terms that we are going to use in the
rest of the paper.

Definition 1: A node u in the network is said to have complete
anonymity, if no node v that captures packets sent by u has
any way to identify that the sender is u, in spite of having
knowledge of the IDs in the packets.

Definition 2: The neighbourhood set Ni of a node i is
the set containing all its neighbours including itself. The
common neighbourhood set, SC , of a group of colluding
compromised nodes C, is defined as the intersection of the
neighbourhood sets of the compromised nodes, excluding

the compromised nodes themselves. If the set of colluding
nodes is defined as, C = {1, 2, . . . , C}, then, SC =
{N1 ∩ N2 ∩ . . . ∩ NC} \ {C}.
In the following two definitions, we define some terms we
shall use in the design of our second anonymity scheme. They
pertain to some basic cryptographic primitives as specified by
Stinson (2002).

Definition 3: Let FX,Y denote the set of all functions from X

to Y , where |X| = N and |Y | = M . Then |FX,Y | = MN . Any
hash family F ⊆ FX,Y is termed an (N, M) hash family.

Definition 4: A keyed hash family is a four tuple (X, Y, K, H),
where for each k ε K , there is hash function hk ε H where
hk : X → Y . A (N, M) hash family in this context is defined
as one in which each hk : X → Y , where |X| = N and
|Y | = M .

The two schemes we propose ensure that a node
in the network has complete anonymity during the
communication with uncompromised nodes, even when
colluding compromised nodes exist in its neighbourhood.
Our interpretation for anonymity is that if an SN’s true ID
is not known to other nodes in the network, they cannot
infer it, hence it shall be anonymous. Hence, an SN should
use a pseudonym to identify itself. However, use of a static
pseudonym is as bad as using true ID, as it renders the SN
open to traffic analysis by the adversary. The idea of using
the shared symmetric keys to encrypt the true ID and using
the encrypted ID as a pseudonym has the same drawback
as well. Also, if the ID is encrypted, the receiver does not
know which node has sent the message. Hence, in the worst
case, to identify the sender, it might have to decrypt the
encrypted pseudonym, with the symmetric keys it shares
with each SN in its neighbourhood, which is computationally
expensive. A better solution is for the SNs to use a range
of indistinguishable pseudonyms while communicating with
other SNs in the network. However, we still have to ensure
that the receiver is able to identify the sender in order to
select the proper key to decrypt the mutual communication.
To identify the sender, a receiver may store a mapping of the
relevant pseudonym ranges of the sender with the mutually
shared key. We shall describe this in more detail in Section 5.
At the time of set-up and neighbourhood discovery, the SNs in
a neighbourhood exchange the information to recognise each
other’s pseudonyms during the later communication. Once
this information is exchanged, the SNs delete the information
needed to decipher each other’s true identity. We assume
as specified in Section 3.2, that is, in this initial period of
exchange of the pseudonym ranges as required by our first
scheme or parameters as required by our second scheme, the
SNs are not compromised (Zhu et al., 2003, 2004a,b), and
follow the respective outlined procedures correctly.

5 Simple anonymity scheme

We shall propose here the Simple Anonymity Scheme
(SAS). For anonymity, we use a ‘K’ bit pseudonym
scheme for all the nodes in the network. Hence, the
pseudonym space range for the K bits pseudonyms is,
0 – 2K − 1, a total of 2K pseudonyms. We refer to it as



Efficient anonymity schemes for clustered wireless sensor networks 55

the pseudonym space. Further, we assume that a sensor
node u uses, L = 2|�| pseudonyms for communicating
with each neighbour (excluding itself). This pseudonym
sub-range for each neighbour is contiguous. Each packet
sent by u to neighbour v has a pseudonym chosen randomly
from the corresponding subrange. This usage of dynamic
pseudonyms by u for sending messages renders traffic
analysis ineffective.

SAS is a simple scheme for ensuring ID anonymity and
privacy for an SN even when a significant number of its
neighbours is compromised and are colluding. We describe
this scheme in two broad phases in Sections 5.1 and 5.2.

5.1 Predeployment phase

Before deployment, the predeployment authority:

1 Divides the IDs from the pseudonym space, uniformly
into subranges of size 2|�| each. The value of � is chosen
in such a way that the pseudonym space can be divided
into at least N2 subranges.

2 Assigns each SN u, N randomly chosen subranges,
distributed uniformly in the pseudonym space.
Figure 1 illustrates such an assignment. Hence,
node u shall have N ranges of size 2|�| to use in place of
its true ID.

3 Creates a table at the BS that stores the pseudonym
ranges of each node u. This ensures that when the
BS receives packets from u it is able to figure
out the correct key to decrypt and authenticate the
message.

Figure 1 Pseudonyms ID space assignment

5.2 Postdeployment phase

After the SNs are deployed:

1 Each SN u randomly chooses one subrange from
its N subranges to ensure anonymity while forwarding
the BS beacons. The beacons forwarded by u

identifies node u as the CH, as only the CHs forward
the beacons.

2 The beacon subrange are also used by CH u when
broadcasting messages in its cluster. SNs outside the
boundary of the cluster cannot identify these messages
as they are sent using only the cluster power level.

3 Each neighbour v of u is also assigned a pseudonym
sub-range, chosen uniformly at random from the
remaining N − 1 subranges.

4 Each SN u has a pseudonyms table it uses
to store the subranges for communication with
other SNs in its neighbourhood. The table maps the
pseudonym subranges that u uses to communicate
with a neighbour v and the subranges v uses for u,
to the corresponding pairwise key shared
between them.

5 To each neighbour v, u securely communicates the
beaconing subrange and the pseudonym subrange that u

has assigned for mutual communication with v. To
prevent cases of simultaneous communication, we
assume that the SN with higher true ID starts the
communication. Here, we assume u > v.

6 SN u also sends the index in its pseudonym table where
it shall store the range information for v, in the same
message. We shall explain the need for the index
information later.

7 When node v receives the range message from u, it
selects a random subrange from its pseudonym
subranges for communication with u. It then stores this
information about the subranges for mutual/beacon
communication with u and u’s index along with the
mutual key in its pseudonym table. Then v sends its
beacon sub-range and the sub-range for mutual
communication with u along with the index of the
information in its pseudonym table to u. Further, v

deletes the true ID of u. Now, v can only identify u by
the pseudonyms u shares with it.

8 When u receives the message from v, it stores the
subrange and index information in the appropriate
position in its pseudonym table and deletes the true ID
of v. Figure 2 shows the pseudonym table of u with the
entry for SN v, containing the stored subranges, index
of v and the mutual secret key.

9 When v wants to communicate with u, it chooses
an ID, (IDvu), randomly from the pseudonym
subrange, IDvu1 − IDvu2, it shares with u and
another random ID, (IDuv), from the subrange,
IDuv1 − IDuv2, u shares with it, for mutual
communication. The sender ID and receiver ID are
generated as follows: Sender ID = Indexu||IDvu, where
Indexu = Index where u stores information
about v, and Receiver ID = Indexu||IDvu.

10 When node u receives the message, it checks the
sender ID and uses the index (Indexu), to index
into its pseudonym table and compare the sender ID
with the subrange of v it has stored in the table. If the
pseudonym is in the subrange, it identifies that the
packet is from the correct source. Note that our
reference to nodes u and v is simply for illustration.
Node identification is based solely on the pseudonym
ranges.
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11 When CH u wants to communicate with the BS through
a neighbour CH v, it uses the same sender ID for both
node v and BS. The BS has information about the
ranges of all nodes. It disregards the index information
and uses the pseudonym itself to identify the source
using a stored reference table.

12 A CH forwards the BS beacon using a pseudonym from
its beacon subrange as sender ID. Nodes in its
neighbourhood check their table for pseudonym match
and identify the CH. They mark the CH’s index in their
pseudonym table for future communication with the
CH. When a CH communicates in its cluster
neighbourhood, it uses a special sentinel character as
index. When a cluster SN gets this message, it uses the
index it has stored as the CH’s index to identify the
pseudonym.

Figure 2 Pseudonym table for node u

Use of index will not aid traffic analysis, as the same index
will be used by different SNs in a neighbourhood for mutual
communication. Furthermore, the IDs used by an SN are
dynamic. Thus, knowledge of the index cannot help the
adversary to correctly infer the communicating SNs.

5.3 Node revocation

In this subsection, we shall discuss the issue of node
revocation and illustrate how it is handled by the SAS. The
issue of revocation is a practical one in a WSN. In the event of
identification of one or more compromised SNs, it is essential
that they be revoked. In this paper, we do not deal with the
issue of how one or more compromised SNs are detected or
how the revocation procedure is effected. We assume that
there exist mechanisms to detect and revoke compromised
SNs. Using these existing mechanisms, our scheme works on
top to provide anonymity during the communication, given
the presence of one or more compromised/revoked SNs in
the network.

To ensure complete revocation of an SN u in the
anonymous network, it is essential that u is unable to identify
the source of any anonymous intra-cluster communication
in its neighbourhood. To this effect, all the SNs in the
neighbourhood of u need to share new pseudonym sub-ranges
to generate anonymous IDs for intra-cluster communication.
Generally, the neighbourhood size of a node is smaller
than the total size of the network. Thus, in general,
each SN has several free pseudonym subranges from its
N subranges. When the SNs in a neighbourhood identify
a compromised SN, by whichever mechanism, they can
exchange new pseudonym subranges among themselves and

use them for anonymous beacon/cluster communication.
The compromised SN has no means of identifying these
ranges, as it was not involved in these exchanges. Mutual
communication between two SNs is not compromised in any
way given the presence of compromised SNs. This is because
the compromised SNs have no idea of the subranges used by
other non-compromised SNs for their communication.

5.4 Anonymity analysis of SAS protocol

Node anonymity in SAS is due to each SN using randomly
chosen IDs from the corresponding pseudonym subranges
when it wants to communicate with a given neighbour
or broadcast the BS beacon. Given some communication
between two non-compromised nodes in a neighbourhood,
a group of colluding, compromised neighbours cannot infer
the source/destination of the communication. This is because
an SN chooses the pseudonym subrange for each neighbour
randomly. These chosen pseudonym sub-ranges are non-
overlapping and non-contiguous. Thus, there is no way,
given the knowledge of the sub-ranges of an SN, the
colluding nodes can figure out the other sub-ranges the
SN is using. Thus, our scheme ensures that a sender is
guaranteed complete anonymity in communication with an
uncompromised SN despite the existence of compromised,
colluding SNs in the neighbourhood. We give below a
theorem that further illustrates the level of anonymity
provided by SAS.

Theorem 1: Let, S denote the common neighbourhood of k

compromised nodes that are colluding. Assume that a unicast
communication between two uncompromised nodes in S is
heard by the k colluding nodes:

a) If S > 1, then there is no way for the k colluding nodes
to identify the sender/receiver of the message.

b) The probability that the k compromised colluding
nodes will guess the sender correctly is, 1/|S|.

Proof: a) The N subranges for each node are chosen
randomly. Further, each node selects a subrange randomly for
each of its neighbours and the beacon. Each neighbour of u

shares two pseudonym subranges with it, the beacon subrange
being common to all. The common neighbourhood is formed
by the k nodes sampling only the packets accessible to all of
them. The k colluding nodes know only k + 1 subranges of
a node u in this neighbourhood. If |S| = 1, the k nodes shall
be able to identify the communication is from the only node
in S. If S > 1, the k nodes cannot identify the sender/receiver
of the message, as they cannot infer the pseudonym ranges.

Proof: b) The compromised nodes know k + 1 of the N

sub-ranges of each common neighbour. A pseudonym that
belongs to any of these subranges will be recognised by
the compromised nodes with probability 1, because it is
addressed to one of them. Any pseudonym from outside
these subranges is chosen uniformly from the remaining
{N |S| − (k + 1)|S|} subranges. The probability that the
pseudonym belongs to a node, u ∈ S, is 1/|S|. Hence, if
the colluding nodes try to guess the sender, the chance that
their guess is right is only 1/|S|.
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According to Theorem 5.4(b), even if there are only 2
uncompromised nodes in the neighbourhood, the probability
that the compromised neighbours can even guess correctly
which uncompromised node is transmitting is only 1/2.
The larger the number of uncompromised nodes in
a neighbourhood, the lower the probability that the
compromised nodes can guess the sender of a packet
correctly.

5.5 Memory and computation requirements

In the SAS, each node u stores 2 subranges for each of
its neighbours. u also stores its N pseudonym subranges.
Consider a K bits pseudonym space and the neighbourhood
size of a node upper bounded by M . Each node has to store
4KM + 2KN bits for the ranges. For example, for an ID
space of 64 bits, with a CWSN of 1000 nodes, and an average
neighbourhood size of 100 nodes, the memory requirement
is 4 × 64 × 100 + 2 × 64 × 1000 = 153.6 KBits = 19.2
KB. Assuming 2 bytes for storing the index per entry in the
table, the total memory requirement is 19.4 KB. In a CWSN
of 10, 000 nodes, and average neighbourhood size of 1000
nodes, total memory requirement should be 192.2 KB. The
TelosB motes (Polastre et al., 2005) we use have an external
flash memory of size 1 MB along with the internal RAM
of 48 KB. These motes use the Von Neumann architecture,
wherein the complete memory space is accessible for code.
Hence, the range information could be stored in the external
flash as dynamically loadable modules.

The computation involved in deciphering the sender
pseudonym involves indexing into the pseudonym table using
the index prepended to the sender pseudonym, and checking
if the pseudonym falls in the sender’s subrange. Hence, the
total computation complexity for pseudonym checking is
O(1). There are ways of improving the memory utilisation
by using hashing, compression, etc.; however, we do not
discuss them in this paper.

6 Cryptographic anonymity scheme

In this section, we propose our second scheme, named the
Cryptographic Anonymity Scheme (CAS). To start with, we
define the term computational resistance property for a given
keyed hash function.

Definition 5: Given a keyed one way hash family (X;Y; K; H),
as defined in definition 4, with the domain |X| = |Y | = K

and a hash function hk ∈ H , the computational resistance
(CR) property implies that an adversary that has no prior
knowledge of the key k, cannot compute a new text-MAC pair
(x, hk(x)) for some text x �= xi , given its knowledge of one
or more pairs (xi , hk(xi)).

In CAS, we use the above definition of the CR
property (Menezes et al., 1996, Chapter 9) of Keyed Hash
Function (KHF) and further augment it to generate unrelated
pseudonyms for a given SN. Hence, the pseudonyms cannot
be identified nor generated by an outside adversary even if it
captures previous messages sent by the SN. The CR property
is used in Message Authentication Codes (MAC) to generate
the MAC value, hk(xi) for any message xi , while precluding

the possibility of an adversary being able to generate the
same. In our construction, a part of each xi is a secret,
which is unknown to an outside adversary, making it even
more difficult for the adversary to be able to generate a valid
pseudonym.

Similar to the SAS, in CAS we use a K bit pseudonym
with the pseudonym space lying between 0 and 2K − 1. The
CAS ensures that an SN is anonymous and its ID remains
private in spite of several compromised colluding SNs in the
neighbourhood. Sections 6.1 and 6.2 detail and analyse the
scheme in depth.

6.1 Predeployment phase

Before the SNs are deployed, the predeployment authority:

1 Generates and assigns to each SN u a pseudo-random
function f u ∈ F, where F is the pseudo-random
function family (Goldreich et al., 1986). SN u uses
this function to generate keys for the keyed
hash function used to generate the pseudonyms.

2 Loads on each SN u the parameters required by u to
anonymously communicate with the BS. The
parameters are:

• The hashed key kBu that u uses to anonymise its
ID when sending a message to the BS.
kBu = f

K
′
Bu

(u), where f is a pseudo-random
function used by the predeployment authority, and
K

′
Bu is the mutually shared key between the

BS and u for secret communication.

• A randomly generated variable aBu that is used by
u as a seed to generate anonymous sender ID. The
procedure is defined in Section 6.2.

6.2 Set-up phase

In the set-up phase, the SNs in a neighbourhood
exchange required parameters to set up the mechanism to
create pseudonyms, for anonymous unicast or broadcast
communication in a neighbourhood. For an SN u to
communicate anonymously with a neighbour v, they require
to share the following three parameters:

• the hash key kuv .

• a randomly generated seed, auv used by each node to
generate the receiver ID.

• the starting sequence number sequv . Without loss of
generality, we assume that all sequence numbers used in
our scheme start at 1. Each packet contains the
sequence number, whose value is incremented by 1, by
the sender after transmission of the packet and the
receiver after reception of the packet.

Each SN also shares four parameters with all its neighbours,
for anonymous cluster communication when it performs the
role of the CH. For instance, SN u shares hash key kcu, two
seeds acu and bcu, and the sequence number seqcu with all its
neighbours. For our illustrations, we assume that the ID of
SN u > v. Then the parameters exchange takes place in the
following manner.
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The set-up phase consists of the following steps:

1 After the initial neighbour discovery is completed,
SN u generates the hash key kuv that it shall share with
SN v. kuv is generated using the pseudo-random
function f u as, kuv = f u

k
′
uv
(v), where k

′
uv is the secret

key shared by SN u and v during the pairwise key
set-up for secret mutual communication, and v is the
ID of node v.

2 SN u also generates the random seed auv .

3 Before exchanging the parameters for mutual
anonymous communication with its neighbours, each
node u generates the parameters, it requires for
anonymous broadcast communication as a CH. u

generates the hashed key kcu = f u

k
′
cu
(u), where k

′
cu is

the cluster key u shares with all its neighbours. And u

also generates the random seeds acu and bcu.

4 For each SN v in its neighbourhood that has an ID less
than itself, u generates the information needed for
anonymous communication and stores it in a
pseudonym table. Also, u securely communicates this
information for mutual anonymous communication to
each neighbour v, along with the information for v to
decipher cluster communication when u is the CH. In
the same message, u also sends the index in the
pseudonym table where it stores this information.

5 SN v responds by sending a message to u containing
the information needed for u to decipher the
anonymous cluster messages sent by v as the CH, and
also the index in the pseudonym table where it stores
all the information corresponding to u. Figure 3
illustrates the messages communicated between u

and v.

6 After the secure mutual exchange of the information
needed for set-up, the pseudonym table entries of each
node u stores the information required for mutual
communication and intra-cluster communication, with
each of its neighbours. u also stores the indexes in the
pseudonym table of its neighbours where its
information is stored. A representative entry in SN u’s
pseudonym table corresponding to neighbour v is
illustrated in Figure 4. Further, u deletes the true ID of
the neighbours and also the pseudo-random function
f u used to generate the keys for the hash.

Deleting f u prevents an adversary that compromises u to
figure out the true IDs of the neighbours of u. This is possible
if the adversary uses the brute-force method for creating the
keys for all possible IDs using f u, and compares it with
the already existing key for a neighbour.

Figure 3 Set-up phase message exchanges between u and v

�u �v
�

Indexu, kuv, auv, sequv,
kcu, acu, bcu, seqcu

�
Indexv, kcv, acv, bcv, seqcv

Similar to SAS, the index information is used by the receiving
SN to identify the parameters to use for deciphering, if it is the
intended receiver. Without the use of the index, it becomes
computationally intensive for the receiver to figure out which
parameters to use to identify if it is the receiver and further,
decrypt the message if it is the intended receiver. As we have
noted before, use of index in the message does not aid traffic
analysis as many messages in a neighbourhood will have the
same index.

Figure 4 Pseudonym table for node u in CAS
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6.3 Operation phase

In this subsection, we shall illustrate how the CAS provides
anonymity during communication between the SNs in the
network. For illustration we shall use the two SNs, u and v as
before. For mutual pairwise communication (here we assume
without loss of generality that u starts the communication)
the two SNs follow the procedure given below.

6.3.1 Mutual communication procedure

1 Any message from u to v (with BS as the final
destination) is composed as, Mu→v :
SID || RID || EncryptedPayload || sequv , where the
value of sequv is the current sequence number
value for mutual communication between u and v.
The sender ID is, SID = Indexv ||hkBu

(aBu ⊕ sequv),
the receiver ID is, RID = Indexv ||hkuv (auv ⊕ sequv),
and ⊕ is the XOR operator. Let us define, sid =
hkBu

(aBu ⊕ sequv) and rid = hkuv (auv ⊕ sequv) for
later use. u increments the value of sequv by 1 for the
next message. The SID generated is used by u as the
sender ID for both the forwarding neighbour v

and the BS.

2 When v receives Mu→v , it uses Indexv in the
message to index into its pseudonym table and obtain
the values, kuv and auv . Using the obtained values and
sequv from the message, it constructs
rid

′ = hkuv (auv ⊕ sequv). If rid
′ = rid, then v has

verified the sender and may use the corresponding key
k

′
uv to decrypt the payload. If rid

′ �= rid, v drops the
packet as it is not the intended receiver. At the end of
this procedure, if v received a packet that passed
the verification test, v increments the value of
sequv by 1.

3 When v forwards the message it receives from u, the
payload of the message consists of
EncryptedPayload|| sequv , as the BS needs the sequv

value to identify the source of the packet. Any SN on
the path to the BS uses this payload.
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4 When the BS receives the message sent from u via
some SN w in its neighbourhood, it decrypts the
payload with the mutually shared secret key k

′
Bw and

gets the sequence number in the payload sent by u. It
then uses the stored values of the random seed for all
the SNs and the sequence number obtained from the
message to identify the sender. It follows the same
procedure as u’s neighbour v. When BS verifies u to be
the sender it uses the shared key to decrypt the message.

For the computationally powerful BS, which might be a PC
class machine, the process of finding a match for the sender
ID in a 1000 node network for a 160 bit ID generally takes
less than 0.7 ms (Black et al., 1999). For the 64-bit or 32-
bit pseudonym implementations of the schemes suggested in
this paper, the time taken shall be much less.

Even in the case of loss of many consecutive packets
during communication between two SNs, the receiver is able
to correctly receive and identify a packet intended for it,
and is even able to deduce the number of packets that were
lost, which is equal to seqcurrent − seqprevious. In this context,
seqcurrent = sequence number in the currently received packet
and seqprevious = sequence number of the last correctly
received packet.

A node w that is in the neighbourhood of u and v and
not the recipient of the message Mu→v , follows the same
procedure as v to identify if its the receiver, and discards the
packet when it finds that rid

′ �= rid.
The intra-cluster message sent by a CH may either be a

broadcast of the beacon message or some information for the
SNs in the cluster. For any such intra-cluster communication
originating from a CH, say u to the SNs in the cluster, the
procedure adopted is defined below.

6.3.2 Intra-cluster communication

1 The intra-cluster message Mu→∗, sent by CH u is
composed of the following: Mu→∗ :
SID || RID || EncryptedPayload|| seqcu, where
SID = Sentinel||hkcu(acu ⊕ seqcu) and
RID = Sentinel||hkcu(bcu ⊕ seqcu). Here we define
sid = hkcu(acu ⊕ seqcu) and rid = hkcu(bcu ⊕ seqcu).
The sentinel is for the receiving SNs to identify that the
communication is from the CH. This mechanism is the
same as the one used in SAS. u then increments seqcu

by 1.

2 When an SN v in the cluster receives the first
intra-cluster message from the CH, it follows the same
procedure as in SAS. v goes through all neighbours in
its pseudonym table and uses the acx value
corresponding to each neighbour x to calculate
sid

′ = hkcx (acx ⊕ seqcx). It checks for which neighbour,
sid

′ = sid in the received packet. That neighbour is the
CH. Then v marks the corresponding index as the
CH for future communication from the CH.

3 For all the packets sent by the CH after the first one,
each SN in the cluster neighbourhood uses the stored
index of the CH to index into its pseudonym table and
verify the sender pseudonym and also decrypt the
payload of the message.

For a communication between two pairs of nodes in a
neighbourhood, there is a chance that the index values used
in the sender/receiver IDs is the same. In addition, given
the pseudo-random nature of the pseudonyms generated,
there is a possibility that the IDs generated by the two
simultaneously communicating nodes in the neighbourhood
might match, leading to an ID collision. We prove below
that the probability of such an occurrence is very low. It is
understood that the pseudonym generated by one or more
nodes in a neighbourhood are mutually independent. These
pseudonyms appear as pseudo-random sequences for a node
not a party to a given communication, due to the avalanche
effect (Fiestel, 1973) of the hash function, and also due to
the fact that the hash key as well as a part of the input are
unknown to it. Given the use of a K-bit pseudonym, the
following theorem shows that two IDs generated by two
different transmitting nodes in a neighbourhood, where M
nodes are transmitting, is the same with very low probability.

Theorem 2: If there are M simultaneously transmitting nodes
in a given neighbourhood, the probability that the sender or
the receiver pseudonyms collide for any two simultaneous
communication originating from two different nodes in the

neighbourhood is, 2

(
M
2

)
1/2 K .

Proof: The choice of two simultaneously communicating
nodes in a neighbourhood consisting of M simultaneously

communication nodes is given by,

(
M
2

)
. Given a

choice of two communicating nodes, let one of the nodes
generate a sender and a receiver pseudonym. Given the
pseudo-random and mutually independent nature of the
pseudonym generation procedure, the probability that
the sender pseudonym generated by the other node is
the same is only 1/2K , as all the IDs in the ID space
are equally likely. The case for the receiver ID may be
similarly argued. Hence, the probability that there is a
collision of either the sender or the receiver ID for the two
communicating nodes is 2×1/2 K . Thus, the probability that
the sender or the receiver pseudonyms collide for any two
simultaneous communication in a neighbourhood is given

by, 2

(
M
2

)
1/2 K .

For example, if we assume that we are using 64-bit
pseudonyms, the probability that there shall be an ID collision

in a neighbourhood of size 100 is, 2

(
M
2

)
1/2 64 =

5.3668 × 10−16. This implies that there is a probability of an
ID collision of 1 in every 1.8633 × 1015 packets, a very low
probability. Given a 250-kbps channel capacity, as supported
by TelosB motes, a possible collision may happen in 7020
years, which is much more than the supposed lifetime of any
current generation WSNs.

6.4 Node revocation

In this subsection, we shall discuss the issues of node
revocation and addition of new nodes post network
deployment and illustrate how they are handled by the CAS.
As we have explained while considering node revocation
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in the SAS, we do not deal with the issue of how one
or more compromised SNs are detected, or how the
revocation procedure is effected. We assume there exist
mechanisms to detect and revoke compromised SNs. To
ensure complete revocation of an SN u in the anonymous
network, it is essential that u is unable to identify the
source of any anonymous intra-cluster communication in
its neighbourhood. To this effect, all the SNs in the
neighbourhood of u need to share new keys and random
seeds, to be used by the hash function to generate
anonymous IDs for intra-cluster communication. However,
as specified in Section 6.2, each SN deletes its pseudo-
random function to ensure that if it is compromised by an
adversary, the adversary cannot identify the other SNs in
the neighbourhood. SNs in the compromised neighbourhood
elicit the help of the BS in this scenario. Each uncompromised
SN v in the neighbourhood requests the BS for a pseudo-
random function. The BS generates and sends a different
pseudo-random function f v′

to each v, in a secure manner.
Using f v′

and its own ID, v generates a new key for the
cluster hash function and also new values for acv and bcv

and securely communicates these parameters to each of its
non-revoked neighbours as a unicast message.

After the exchange of parameters, each SN in the
neighbourhood updates its pseudonym table. With the use
of the new parameters for intra-cluster communication,
the compromised SNs have no means of identifying
the CH sending the intra-cluster message. Mutual
communication between two non-compromised SNs in a
neighbourhood is still uncompromised as the compromised
SNs still have no way of identifying the source/destination
pseudonyms.

6.5 Anonymity analysis of CAS protocol

In CAS, SN anonymity results from each SN using a keyed
hash function, which is strongly forgery resistant, to generate
anonymous sender and receiver IDs. A group of colluding
nodes in a neighbourhood have no means of finding out
the source or destination of an anonymous communication
between two uncompromised nodes in the neighbourhood.
Despite of the fact that the hash function is known to all SNs,
the compromised SNs have no idea of the key used by the
hash function nor the starting parameters used in the hash
function. The only information that the compromised nodes
have is the sequence number.

It might appear that since a part of the input to the
keyed hash function is constant, it may be forged or guessed
by the adversary. However, in reality this is not the case.
There are two reasons to support this argument. First, the
keyed hash function used by us and also the MAC schemes,
such as Cipher-Block-Chaining (CBC-MAC) or Hashed
MAC (HMAC), are strongly pseudo-random (Bellare et al.,
1996a,b), which provides them the CR property. As a result,
these functions exhibit a property called the avalanche effect
(Fiestel, 1973). Avalanche effect ensures that even if two
inputs to the hash function differ by atmost a single bit,
the corresponding outputs obtained from the hash function
are totally unrelated. In general, an adversary cannot find
a relation between the two inputs and the corresponding
outputs in time to compromise the system, even when it

knows the inputs. Second, in CAS we further augment the
unforgeability of the scheme by keeping the seeding value a
secret, which is unknown to any node other than the two
communicating nodes. This arrangement ensures that the
adversary cannot mount any of the attacks possible on MAC,
such as known-text attack, chosen-text attack, or adaptive
chosen-text attack (Menezes et al., 1996, Chapter 9). The
adversary has no mechanism to interact with the sender to
have a choice in the text used. In this paper, we use CBC-
MAC that has a block of size K/2, where K is the bit-size of
the pseudonyms, as the keyed hash function. CBC-MAC is
provably secure for fixed length input as specified by Karlof
et al. (2004). An improved variant of CBC-MAC may also be
used as specified by Bellare et al. (2000), if enhanced security
is desired. To be able to forge a pseudonym, the adversary
has to correctly guess the key as well as the seed value and
use the correct sequence number, to input to the pseudonym
generation procedure. The probability that the adversary can
get all the steps right is very low.

Thus, we conclude that the partial information with the
adversary is inadequate for identifying the communicating
SNs. Hence, the CAS guarantees a pair of uncompromised
nodes complete anonymity during communication, despite
the existence of many compromised and colluding SNs in
the neighbourhood.

Below we present a theorem that further strengthens our
claim of anonymity.

Theorem 3: Let S denote the common neighbourhood of k

compromised nodes that are colluding. Assume that a unicast
communication between two uncompromised nodes in S is
heard by the k colluding nodes:

a) If |S| > 1, then there is no way for the k colluding
nodes to identify the sender/receiver of the message.

b) The probability that the k compromised colluding
nodes will guess the sender correctly is, 1/|S|.

c) Given that each parameter used by CAS is a
K-bit integer, the probability that the k compromised
colluding nodes are able to guess a parameter
is 1/2K , and the probability that they can defeat the
scheme by forging a valid sender and a receiver
pseudonym for a communication in the
neighbourhood is 1/24K .

Proof: a) The common neighbourhood is formed by the k

nodes sampling only the packets accessible to all of them.
Each uncompromised SN u in the common neighbourhood
uses the keyed hash function hkBu

, the secret seed aBu, and
the sequence number, sequv , for creating the anonymous
sender ID, and hkuv , auv and sequv to create the receiver
ID, to communicate with the corresponding neighbour v,
which is on its path towards the BS. The colluding SNs in the
neighbourhood do not know the values of the keys nor the
other parameters being used for generating the anonymous
IDs. Hence, they have no means of identifying the source or
the destination of the communication. As a result, if |S| = 1,
the k nodes shall be able to identify the communication is
from the only node in S. However, if |S| > 1, the k nodes
cannot identify the sender/receiver of the message, as they
cannot infer the pseudonym ranges.
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b) Each compromised node knows only the parameters
that each non-compromised node in the neighbourhood
shares with it. Together the k compromised nodes only
know the parameters that the non-compromised nodes share
with them for cluster or mutual communication, this is
the only combined knowledge the compromised nodes
possess. Given this knowledge they can in no way guess the
parameters of the SNs communicating nor verify the sender
pseudonym or receiver pseudonym of a captured packet.
Thus, in a given common neighbourhood, if there are |S|
common nodes, then the probability that the node guessed as
the sender by the compromised nodes is the right sender, is
indeed 1/|S|.

c) Given that a parameter is a K-bit integer, since
the colluding adversaries have no idea of the value of
the parameter, the only option available is to guess the
value. The probability that the guessed value is the correct
value is obviously only 1/2K . For the colluding nodes to
correctly generate the sender and receiver pseudonyms for a
communication between two nodes u and v in the common
neighbourhood (final destination of the message is the BS),
they have to correctly guess the values of the four parameters,
the hashed keys kBu and kuv , and the seeds aBu and auv . Each
of the four values are mutually independent from each other;
hence, can be chosen in 2K ways each. Hence, the probability
that the colluding nodes may be able to generate a valid
source and destination pseudonym for a communication in
the common neighbourhood by guessing the values of the
parameter is 1/24K . It is also easy to see that the probability
of generation of just one pseudonym correctly is 1/22K . Thus,
the likelihood of successful forgery in this case is highly
improbable.

The CAS ensures that when two non-compromised
SNs are communicating in a neighbourhood consisting of
compromised nodes that are colluding, there is no way
that the nodes can identify the sender and receiver of the
communication. Further, given the common knowledge that
the SNs use hash function to generate the IDs, it is still
very difficult for the compromised nodes to identify the
communication, or even generate packets that would appear
authentic to a receiver. As the compromised nodes have no
knowledge of the mutual key used in the hash function nor do
they know the value of the random numbers used to seed the
hash function. Hence, the CAS is guaranteed to be completely
anonymous.

6.6 Memory and computation requirements

In this subsection, we shall illustrate the memory required at
each node of a given WSN to store the parameters needed to
communicate anonymously in it neighbourhood and with the
BS. We also identify the computation requirements at each
node to identify if the packet is destined for it or otherwise.
Consider a K-bit pseudonym space, and the neighbourhood
size of a node upper bounded by M . Each node u, stores
the four parameters, kCu, aCu, bCu and seqCu for creating
anonymous ID when it is the CH. Further, u has to store the
two variables, kBu and aBu, to generate the sender ID and
for each of its neighbour v, u stores three parameters, kuv ,
auv and sequv , for pairwise anonymous sender and receiver
ID generation. It also has to store the parameters required to

identify cluster communication originating from any of its
neighbours v performing the role of the CH. Hence, the four
parameters, kCv , aCv , bCv and seqCv .

Hence, the total memory requirement of a node is, 4K +
2K + 3KM + 4KM = 6K + 7KM . For instance, for an
ID space of 64 bits, in a CWSN containing 1000 nodes
network, and an average neighbourhood size of 100 nodes.
The memory requirement shall be, 6 × 64 + 7 × 64 × 100
= 45, 184 bits = 5648 bytes = 5.5 KB. Assuming 2 bytes
for index, the total memory requirement is 5.7 KB. For a
CWSN with 10,000 nodes and a neighbourhood size of 1000
nodes, the memory requirement is, 6×64+7×64×1000 =
448, 384 bits = 56, 048 bytes = 54.7 KB, with 2 bytes for
index, the total memory requirement is 56.7 KB. There is
no extra code added to the code base, as the same code
that is used to generate MAC for messages may be used for
generating the pseudonyms.

In this paper, we assume that the underlying block cipher
used for the hash function (either CBC-MAC or HMAC) is
skipjack (Brickell et al., 1993). In the CAS, the sender has to
generate two pseudonyms. If we assume the use of skipjack
for the underlying cipher block generation, generating a 64
bits block cipher takes less than 0.42 ms (Karlof et al., 2004)
on a mica mote (Hill et al., 2000). Hence, for two pseudonyms
in a packet, the total time is less than 0.84 ms. Most SNs in
a typical WSN transmit a packet per minute, hour, or day.
In such a scenario, the CAS serves to provide a pseudonyms
generation mechanism with acceptable latency per packet.
An SN receiving the packet has to be able to identify if it is
the intended receiver of the packet, and also the correct key
to use for decrypting the packets. For this, the receiver has
to use the index prepended to the receiver ID to index into
the pseudonym table and obtain the sequence number, the
stored seed value and the mutually shared hash key. Then,
using the mutually shared hash key, it shall obtain the hash
value and compare with the value of the receiver ID in the
received packet. If there is a match, then the receiver knows
that the packet is intended for it. This requires indexing into
the table, a O(1) operation, and the hash value calculation,
which depends on the kind of hash algorithm used. Use of the
skipjack as the underlying block cipher for the pseudonym
generation process shall take 0.42 ms; the comparison can be
done in constant time. A node that is not the intended receiver
of the message has to follow a similar process and discard the
packet when the receiver ID that it calculates does not match
the one in the received packet.

7 Discussion

In this section, we do a comparative analysis of the SAS
and the CAS protocols. In terms of memory requirements,
the CAS performs better; it has a memory saving of more
than 230% in comparison to the SAS. Also, the CAS does
not require any extra code size, the code that is used for
MAC generation can be reused for pseudonym generation.
In terms of computation, the SAS is faster than the CAS, as
it requires only a constant time for indexing and comparison.
However, the CAS has a higher computation requirement,
as generation of a pseudonym is dependent on the size of
the cryptographic block used, and the complexity of the
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underlying cryptographic keyed hash function used, which
is not a constant running time algorithm. In CAS, each node
receiving a packet has to generate a receiver pseudonym at
its end and compare it with the receiver pseudonym in the
packet to identify if it is the intended receiver. This results in
the CAS having a higher computation requirement than SAS
for each packet, in general. However, the computation and
time requirements for the CAS are well within reasonable
bounds as shown in Section 6.6.

We believe that the CAS is computationally more secure
than the SAS. The probability of an adversary being able to
successfully forge a pseudonym in the CAS is lower than
the probability of similar success of forgery in the SAS. This
is because, to forge the pseudonyms in CAS, the adversary
has to actually identify the parameters that form the input
to the keyed hash function and also the current sequence
number value for the given communication between two SNs,
which is computationally difficult as proved in Theorem 3. In
addition, the probability that the adversary guesses the correct
value for either pseudonym (sender/receiver) is extremely
low as illustrated in the same theorem.

In the SAS, on the other hand, the adversary may be
able to identify the range of the communicating SNs in its
neighbourhood by capturing several transmitted packets. By
observing and analysing these packets in its neighbourhood
the adversary may be able to create partial pseudonym
subranges for the corresponding communicating nodes.
However, we note here that this requires intensive analysis
and also capture of significant number of packets. Once the
adversary has some knowledge of the subranges used in its
neighbourhood, it can generate and transmit fake packets,
with forged sender and receiver pseudonyms. We do not
quantitatively analyse the possibility of success of such an
endeavour; however, it suffices to say that the possibility,
although small, does exist. Another possible means of forgery
in SAS is that an adversary may be able to inject false packets
in the network, using the same sender and destination ID as
that of a previous packet it has captured in the neighbourhood.
This kind of a replay attack can, however, be contained
by extending the SAS to use a monotonically increasing
sequence number in any mutual communication between two
communicating nodes.

Despite the chance of a possible forgery, we note here that
in any event of forgery by one or more compromised nodes,
the identity of any uncompromised communicating node(s) in
the network is guaranteed to remain uncompromised in either
of our schemes. Thus, our schemes continue to guarantee
complete anonymity to uncompromised communicating
nodes in a CWSN, even in the event of existence of malicious
nodes in the neighbourhood.

8 Conclusions and future work

In this paper, we have discussed the requirements for
anonymity in a CWSN. We have proposed two memory
and computation efficient anonymity schemes that preserve
node identity and privacy and ensure complete anonymity.
From the analysis, we observe that the first scheme requires
lesser computation while the second one is better at memory
utilisation. Both the schemes can be easily implemented

and used in a WSN environment without much resource
penalty and are useful for anonymous communication.
A WSN testbed implementation comparing the efficacy of
the two schemes in different scenarios is an exciting future
direction of work.
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