
Secure Content Delivery in Information-Centric Networks:
Design, Implementation, and Analyses

Satyajayant Misra
Computer Science

New Mexico State University
Las Cruces, NM, USA

misra@cs.nmsu.edu

Reza Tourani
Computer Science

New Mexico State University
Las Cruces, NM, USA

rtourani@cs.nmsu.edu

Nahid Ebrahimi Majd
Computer Science

New Mexico State University
Las Cruces, NM, USA

nmajd@cs.nmsu.edu

ABSTRACT

In this paper, we propose a novel secure content delivery
framework, for an information-centric network, which will
enable content providers (e.g., Netflix and Youtube) to se-
curely disseminate their content to legitimate users via con-
tent distribution networks (CDNs) and Internet service provi-
ders (ISPs). Use of our framework will enable legitimate
users to receive/consume encrypted content cached at a
nearby router (CDN or ISP), even when the providers are
offline. Our framework would slash system-downtime due to
server outages, such as that recently experienced by Netflix,
Pinterest, and Instagram users in the US (October 22, 2012).
It will also help the providers utilize in-network caches for
shaping content transmission and reducing delivery latency.
We discuss the handling of security, access control, and sys-
tem dynamics challenges and demonstrate the practicality
of our framework by implementing it on a CCNx testbed.

Categories and Subject Descriptors

C.2.1 [Computer Communication Networks]: Network
Protocols; C.2.2 [Network Security]: Security Protocols

Keywords

ICN, CCN/NDN, content delivery, access control, security.

1. INTRODUCTION
According to the recent Cisco Visual Networking Index

Forecast [3]: high bandwidth video makes 51% of the Inter-
net traffic today and would rise to 54% by 2016; the sum of
all video traffic would become approximately 86% of global
traffic; and by 2014, mobile wireless devices will account
for 61% of world Internet traffic. In the networking com-
munity, there has been a concerted push to redesign the In-
ternet architecture to account for these future traffic trends.
This push has culminated in the proposal of an information-
centric network (ICN) approach, which has been at the core
of several recent architectures (CCN/NDN [10], DONA [11],
PSIRP [19], PURSUIT [8], and NetInf [4]). In this paper,
we explore the design of a framework for highly available
and efficient secure content delivery in such a network.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full cita-

tion on the first page. Copyrights for components of this work owned by others than

ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-

publish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

ICN’13, August 12, 2013, Hong Kong, China.

Copyright 2013 ACM 978-1-4503-2179-2/13/08 ...$15.00.

Cellular
Network

Netflix Repository

Netflix Server

Netflix Server

CDN

ISP

ISP

Figure 1: Internet content distribution architecture.

Motivation: Today, Content Providers (CPs), such as Net-
flix and Youtube, use content distribution networks (CDNs)
to cache (store) content geographically closer to the users.
The Internet hierarchy is composed of CPs at the top, fol-
lowed by the CDNs (e.g., Akamai [1]), then the ISPs (e.g.,
Comcast, AT&T, Verizon), and culminating in the static/
mobile end users, as shown in Figure 1. CDNs helps the
CPs perform load balancing and reduce data latency, and
also reduce redundant traffic requests in the network core.
However, most CDN nodes are still at the edge of the ISPs
(Fig. 1), thus the ISPs end up having to handle the explosive
growth in data requests, especially repeated requests for the
same (popular) data. In ICNs, decoupling of data from the
source allows data to be stored anywhere. This in-network
caching can be leveraged by ISPs in the information-centric
Internet to reduce their network traffic load from redundant
requests, and improve network scalability and data availabil-
ity [22]. But, the important concern is, how do we ensure
high availability of the cached data only to legitimate users?

Let’s illustrate using Netflix as the CP and the CCN/NDN
Internet architecture [10] for the ICN. Netflix uses CDNs,
such as Akamai [1], to cache contents closer to the users.
To ensure content access to only legitimate users, a user’s
Netflix player has to authenticate itself to a Netflix server
hosted on a Cloud service (e.g., Amazon EC2). Upon au-
thentication the player connects to a CDN node (based on
proximity, network load, etc.) and obtains the content. The
NDN architecture can now be leveraged to cache data at the
ISPs’ routers and serve the users’ data needs.

However, if the cloud service is down, then the Netflix
service is down–users cannot be authenticated! July 1 and
October 22 of 2012 were the most recent occurrences (among
many last year) of such an event resulting in Netflix (also
Pinterest and Instagram) being unavailable for several hours [18].

73

In this scenario, data is available in routers close to the users,
however, legitimate users are unable to authenticate them-
selves and access the data securely. In this paper, we wish
to address this data-availability problem, which is widely ap-
plicable to all content delivery, by answering the question:
Can we design a practical security framework for ICNs to
deliver trusted content securely, efficiently, and with high
availability, to legitimate users/subscribers? We present in-
ferences from our initial investigation into designing such
a security framework leveraging broadcast encryption and
in-network caching. Our design is capable of handling t > 0
(order of 1− 2 million) revoked users efficiently, and can be
augmented to handle more. The framework is applicable to
all scenarios where server-based authentication is unavail-
able or difficult. We have also implemented our idea on a
CCNx testbed and present results and analyses.

Section 2 presents the related work. Section 3 presents
the system model and assumptions. We present our design
details and protocol overviews in Section 4 and our experi-
mental results and analyses in Section 5. In Section 6, we
present our conclusion.

2. RELATED WORK
Several FIA architectures, such as CCN/NDN [10], DONA

[11], PURSUIT and PSIRP [8], and NetInf [4] have been pro-
posed in the literature. Caching and name-based addressing
are integral components of all these architectures – the only
two pre-requisites of our design. For our framework, we
chose the CCN/NDN architecture for its simplicity and the
availability of the CCNx [17] code-base. In CCN, content is
split into packets/chunks, and each user sends a request (in-
terest) containing the name of the chunk, into the network
to obtain the chunk. This request propagates in the network
toward the potential content provider. Any node in the path
that contains the requested chunk can satisfy the interest.
The data chunk follows the reverse path of the interest to
reach the requester. Every intermediate node in the path
has the chance of caching the chunk(s). NDN is composed
of three main components, namely the Forwarding Informa-
tion Base (FIB), the Pending Interest Table (PIT), and the
Content Store (CS). The FIB table stores domains (name
prefixes) and their corresponding outgoing face. The PIT
table keeps track of outstanding interests; when an interme-
diate router forwards an interest packet through one of its
outgoing faces, a corresponding ‘pending interest’ entry is
created in the PIT. The last component, CS, is essentially
a content repository.

Before presenting related work in BE, we note that se-
cure group key communication [23] cannot be used here as
it requires system-wide re-keying for each node revocation.
Broadcast encryption (BE) was first proposed by Fiat and
Naor [7] and has subsequently received a lot of attention [6,
15, 21]. In our framework, we choose to use the public
key-based traitor-tracing t-resilient algorithm proposed by
Tzeng and Tzeng in [21], which uses the Shamir’s secret
sharing algorithm as a building block. For this research,
we propose to enhance the proposed BE algorithm for se-
cure content delivery. Our aim is to design a framework to
ensure that devices (even mobile devices) need only a few
extra seconds, on account of the additional BE procedures,
to securly obtain the key to decrypt the content.

We note that in this paper we only provide an overview
of the cryptographic and protocol details, choosing to con-
centrate instead on the CCN/NDN implementation specific

details and experimental testbed results for dissemination
to the ICN research community. We will extend this paper
with comprehensice details and analyses of the cryptography
and the protocols only.

Broadcast encryption has found use in the real-world, for
instance, AACS, HD DVD, and Blu-ray disc encryption.
Digital Rights Management for DVD-video discs uses Con-
tent Scramable Systems, which is based on BE. However,
those techniques do not apply automatically to Internet com-
munication, especially for constrained mobile devices, which
will make up the majority of the devices of the future.

3. MODELS AND ASSUMPTIONS

3.1 System Model
In this paper, we assume we have only one CP, say Net-

flix; our design scales to networks with multiple CPs. As
mentioned in our motivating example in Section 1, we as-
sume an obvious hierarchical set-up as shown in Fig. 1. The
content flows from the CP, to the CDN nodes, to the ISP
nodes, and finally to the end user who requests the content.
It can be cached at any node in the path from the CP to
the end user, thus enabling data-reuse.

For illustrating our design and experimentation, we as-
sume the CCN/NDN [10] based Internet architecture. How-
ever, all ICN architectures share the same premise of caching
and name based routing, and our design can be adapted to
any ICN architecture.

In our design, we use the Schnorr group [14], where the
large prime numbers Q and P are related as P = rQ+1 (i.e.
r = 2), n ≤ (Q− t−1) is the number of users in the system,
t(<< n) is the revocation threshold, and all polynomial op-
erations are performed in Z

∗
Q, the multiplicative group of

integers of order Q. A first-time user registers with the
CP to get its credentials and can obtain data from nearby
sources (ISP routers or CDN nodes), subject to availability.

3.2 Set-up and Security Assumptions
We assume that the content is encrypted by the content

provider, either at the servers or in the CDN (if it is trusted),
using a popular symmetric key encryption algorithm. A con-
tent or a group of contents (set of movies) may be encrypted
using the same secret key. Our objective is to ensure that
the content is encrypted and cannot be used by an entity
that is not a legitimate user/customer (not even the CDN
or the ISPs). We achieve this by ensuring that only a le-
gitimate user can obtain the symmetric key (transmitted
using BE) to decrypt the content, whereas a fake or a re-
voked user cannot. We also assume that the user plays
the content in a content provider specific player (e.g., Net-
flix, Hulu, etc.) and the player, which is non-tamperable,
does not store the secret key used to decrypt the content.
Without this assumption, no known encryption scheme can
be used for security. A revoked user does not know the
number of revoked users in the system or their identities.
We assume that the user does not use tunneling or other
location-cloaking mechanisms, such as the Tor network [20],
to hide its network location.

3.3 Threat Model
In a set-up for content delivery, data security is of utmost

importance. The use of symmetric key infrastructure, pub-
lic key infrastructure, and our framework guarantees data
security. However, there are several other attack scenar-
ios. For instance, an attacker could mount denial of service

74

(DoS) attacks in the network by sending out a large number
of interests or replaying interest/data packets. An adver-
sary can pollute the cache of the routers in the network by
sending out unpopular requests [24]. Traffic analysis attack
can be performed on a specific user to identify her/his con-
tent access pattern [12]. A compromised or colluding user’s
keying materials can be extracted and used by an adversary,
not part of the system, to mount impersonation and Sybil
attacks. A few revoked users can collude to generate a key
for an illegitimate user to decode the content. Also, there
are standard attacks by an adversary, such as chosen plain-
text attack (CPA), chosen ciphertext attack (CCA), and
adaptive chosen ciphertext attack (A-CCA) [14, 21].

Our framework, operating in the CCN/NDN architecture,
can address most of the aforementioned threats. For in-
stance, the use of the sequence numbers in the interest and
data packets, and caching at the edge routers can help neu-
tralize replay attacks. Moreover, the use of the CCN/NDN
interest packets make it difficult to mount DoS attacks on
the system. Note that neither the NDN architecture nor our
design require the users to identify themselves in the inter-
est packets, thus ensuring privacy. Cache pollution attacks
can be addressed in the NDN architecture satisfactorily [24].
The CPA, CCA, and A-CCA attacks can be handled by the
BE protocol itself [21]. We discuss Sybil attack detection
after discussing our framework.

4. DESIGN OF OUR FRAMEWORK
Our framework helps perform the following for content

delivery in a CCN: (i) Allows ISPs to cache the content
packets at their edge-routers, thus ensuring that the band-
width is not wasted in redundant transmissions. (ii) In-
creases the availability of the content to the users by not
requiring user authentication by an online server each time
a content is requested. (iii) Ensures that only legitimate
users can get access to the content and no revoked user
can access the contents. In our design, all protocols are im-
plemented at the top and the bottom level of the system
hierarchy (Fig. 1). The BE algorithm is essentially a plug-
gable component for our framework. In this paper and in
the experiments, we used a specific BE scheme proposed
by Tzeng and Tzeng [21], which is a variant of Shamir’s
(t + 1)-threshold secret sharing scheme. In the variant, the
threshold t+1 of Shamir’s scheme helps define a revocation
threshold of t, which is the threshold for number of users
that can be revoked from the system while still ensuring se-
crecy of the data. We assume that there are n legitimate
users in the system and the number of revoked users (|R|)
can be at most t (<< n). We augment the proposed BE
scheme to allow efficient encryption of the content, and en-
sure that the content can only be used by legitimate users,
but not by the revoked users.

4.1 Design Overview of the Framework
Our framework consists of three major components: The

first two components are performed at the server and are
related to encrypting τ , the symmetric key for data encryp-
tion; the last component is formed at the client. In the
first component, the server generates a polynomial of de-
gree t and evaluates n + t (>> t) number of points on it.
The server distributes n of the evaluated points among the
clients (one per client) and it keeps t of them as its own
shares. In the second component, the server generates
the enabling block, which contains the secret symmetric key

(τ), and is used by the client in the last component for the
secret extraction. The enabling block is forwarded to the
routers, in which the contents are cached, and forms an in-
tegral part of the content. In the third component, a
legitimate client extracts the embedded secret key from the
enabling block that is downloaded along with the content,
by using its share.

4.2 Basic Protocols
For illustration purposes, we use a server S to illustrate

the computations at the server(s) or the CP and uj to illus-
trate the end-user. Now we sketch the protocols that make
up the three steps, note that the uj needs to be registered
to obtain its share.

4.2.1 Polynomial and Shares Generation

This protocol is performed at the server and takes as in-
put a prime number Q, ZQrand() a random number gen-
erator in the field of Q, Z∗

Q the multiplicative group of in-
tegers of order Q, the number of users n < Q, and the
maximum number of allowed revoked users t. The server
calculates random coefficients a0, . . . , at of a t-degree poly-
nomial pt(x). Then it calculates each user uj ’s share/tuple
Tj =< xj , f(xj) >, where xj is generated randomly and
f(xj) is calculated, both in the field Z∗

Q. The server calcu-
lates t-tuples that it stores as the server share E.

For registration, a first-time user creates a verified user
profile. On successful access to the system, the server trans-
mits to the user uj , Tj encrypted using uj ’s public key Pj ,
the signature, and the timeout TO so that uj can correctly
extract the secret key and then decrypt the content.

4.2.2 Generation and Encryption of Enabling Block

The server (or the CP) encrypts the content using a sym-
metric key algorithm and a secret key τ . For simplicity of
exposition, we assume that τ ∈ Z

∗
Q, where Q is of the or-

der of the number of users (in millions). A bigger key, say
128-bit key for AES, can be handled by splitting the key
Υ = {τ1|| . . . ||τb|| . . . ||τm}, where each τb ∈ Z

∗
Q. This proto-

col, implemented at the server, deals with the generation of
the enabling block and its secure transmission as a part of
the encrypted content. An enabling block is an integral part
of any BE scheme. It contains information for a legitimate
user to extract the secret key τ and is delivered to the user
along with the data packets.

This protocol takes the server share E, a random number
r ∈ Z

∗
Q, a generator g of a cyclic group GQ of order Q, coef-

ficient a0, and τ . The server calculates γ = τ ·gra0 (γ is the
encrypted symmetric key) and creates the enabling block for
the user to decrypt γ and obtain τ . The user can decrypt
γ using the enabling block and by the Lagrangian interpo-
lation method [21]. However, the Lagrangian interpolation
method requires computations of t Lagrangian coefficients
at the client (user) with running time complexity of O(t2),
which can be excessive for large values of t. Thus, we have
devised a mechanism for pre-computing the Lagrangian co-
efficients at the server and sending them as a part of the
enabling block to reduce the running time complexity of the
computation at the user to O(t). This precomputation, is
our novel contribution to the state-of-the-art in BE, making
it usable in mobile devices. This protocol requires O(t) mod-
ular exponentiations, which make the bulk of the running
time. This results in decryption at the user taking around 4
seconds for t = 1 million. Additionally, as we will show us-

75

. . .

001 002 003 last

Enabling Block

Name of chunk x : /Netflix.com/video/category/moviename/V3/

. . .

last.avi003.avi002.avi001.avi

Content Object

Payload

Name

Signature

Expiry time

Name

Signature

Payload

Expiry time

Name of chunk x : /Netflix.com/video/category/EnablingBlock/V1/x x.avi

Figure 2: Naming scheme for Chunks.

ing our experiments the increase in the size of the enabling
block due to the addition of the coefficients is acceptable.
The server signs the enabling block using it’s private key to
guarantee provenance.

4.2.3 Secret Extraction at the User

The user uj obtains the enabling block from a router in
it’s neighborhood, verifies the source of the enabling block
by verifying the signature. On successful verification it com-
putes the t complete Lagrangian coefficients (from the par-
tials) using its share and also the Lagrangian coefficient cor-
responding to it’s own share, resulting in a total of t + 1
coefficients. The user uj uses the computed Lagrangian co-
efficients to extract the secret key τ from γ using the La-
grangian interpolation method. This protocol requires O(t)
modular exponentiations, which again make the bulk of the
running time. We do not go into the details of the protocol,
but refer the reader to [21] for more details. We also remind
the reader that our framework can use any BE algorithm.

4.3 CCN/NDN Architecture Specific Details
User Registration: In the CCN/NDN architecture all
communication are initiated with interests. In our approach,
for registration a user uj sends a registration interest to the
CP. The format used for the name of the registration inter-
est is: /Netflix/Registration/Unique User ID. This in-
terest packet contains the uj ’s credentials, encrypted with
the CP’s public key and signed by uj ’s private key. The CP
then replies to uj with a data packet containing uj ’s unique
valid share encrypted with uj ’s public key. This exchange
is a unicast exchange between the CP (or its server) and
the client uj and no router on the path caches the reply.
Even if the data is cached by a malicious router it does not
undermine communication secrecy.
Chunk Creation: After the registration procedure, the
user can send data interest packets. In the CCN/NDN ar-
chitecture one single interest elicits one data packet, thus
a large content has to be broken down into smaller packets
(chunks). In our framework, the content is split into smaller
chunks with a unique name per chunk. The size of each
chunk is a constant, in our experiments we used chunk-size
of 4kB, but chunk sizes may conform to lower layer packet
sizes (e.g., a 1300 byte packet conforms to the Ethernet as
the Link layer protocol and prevents fragmentation). Fig. 2
illustrates the splitting of the content – the enabling block
and the content are both split into equal sized chunks and
given appropriate names to distinguish them.
Packet Naming: In CCN/NDN a user needs to know the
name of each individual data chunk to generate the corre-
sponding interest packet, thus a naming scheme is impor-
tant. Each name has to be unique and a complete ordering
of the chunks can be obtained using the names. As shown in
Fig. 2, we choose a name in accordance with the hierarchical
naming convention of CCN/NDN – the first segment of the

name is the CP’s name, the second is the fact that it is a
video, the third is the category (Sci-Fi, Comedy, etc.), the
fourth is the type of data (Enabling block or movie name),
the fifth is the version, and the last part of the name repre-
sents the number of the chunk. We assume that movies that
belong to a particular category are all encrypted using the
same key and hence can reuse the same enabling block. We
propose two schemes to assign the chunk-number, namely
sequential numbering and random numbering, each with in-
herent advantages.
Sequential Numbering: With reference to Fig. 2, in sequen-
tial naming, each chunk of the enabling block has a name {/
Netflix.com/video/category/EnablingBlock/V1/x} , whe-
re the chunk number x ∈ {001, 002, . . .}. In this set-up,
the client can easily generate the name for the first interest
packet if it knows the naming convention and then incre-
ments the x value for each subsequent packet. We assume
that the first chunks of the enabling block and the content
object contain the x for their corresponding last chunks so
that the user knows when to stop. The sequential scheme
is easy to implement, but enables an attacker to probe the
cache at the router/proxy to perform traffic analysis [12].
Random Numbering: In the random numbering, the value of
x for the first packet is 1, however, each subsequent packet
has a random x value. Each chunk carries the x value of
the next chunk so that the user can construct the name
of the next chunk. The use of random sequence numbers
can undermine the traffic analysis attack mentioned above,
however, this approach may also undermine the ability to
aggregate request for several chunks in one interest packet.
We are exploring enhancements in this direction.
Versioning: The names of the enabling block and the
movie both contain version information (V 1 and V 3 respec-
tively in Fig. 2). The content may be available in several
qualities, each will have its own version number. Versioning
of the enabling block is essential to handle the dissemina-
tion necessitated by user revocation. A router can use the
version number to distinguish between two versions of the
enabling block and replace the old version with the new one,
even before the old one times out.
User Revocation: A user can cancel his subscription, ef-
fectively revoking his content access privilege. The user re-
quests service-cancellation using a revocation interest packet.
The revocation interest is sent out to the CP in the same
way as the registration request. This request contains the
information that the user provides at the registration time
in addition to the revocation part. The CP, validates the re-
vocation request according to the provided credentials and
the user’s signature. After that the CP regenerates the new
enabling block according to the procedure mentioned in sec-
tion 4.2. A revoked user has access to the enabling block
and hence the encrypted content cached in the router, until
the enabling block is updated. Hence the updated enabling
block has to be disseminated in the network. This may be
done in a proactive manner (immediately after a revocation),
periodically (every week or month), or by a pull-mechanism
from the network (when the enabling block at routers times
out, they seek new versions of the enabling block). The pe-
riodic or the pull-mechanism are obviously better than the
system-wide dissemination.

4.4 System Dynamics: A Discussion
There are several factors that lend dynamism to the sys-

tem. For instance, (i) how can we handle the need to revoke

76

/Netflix.com/video/category/EnablingBlock/V1/x
/Netflix.com/video/category/EnablingBlock/V1/x

a subscribed user at the end of his subscription? (ii) Can we
handle the case where the number of revoked users is more
than the threshold t? (iii) How do we handle a new user
when the system reaches its user capacity n? We present
some initial attempts to answer the questions.

When a user ur has to be revoked in a secret sharing
based scheme as the one used in our framework, the server
replaces one of its t tuples in the server shares, which forms
the part of the enabling block, with the tuple Tr of ur. This
disables ur from decrypting τ . Then the updated enabling
block is disseminated in the network.

The scenario of number of revoked users (|R|) being more
than the threshold t can be handled in a preemptive or a
reactive manner. In the preemptive approach, the system
can be re-keyed by the CP when |R| gets close to t. In
the reactive approach, the key τ can be broken into several
sub-keys and each sub-key can be encrypted independently.
The server shares for each of the corresponding enabling
blocks will be chosen as |R|Ct (|R| choose t), such that a
revoked user’s share appears in at least one of the enabling
block. This ensures that the revoked user cannot accurately
decrypt τ .

When the system reaches user capacity, there is some
scope for reuse of the tuples, which the revoked users’ tu-
ples replaced in the server’s share. However, in the worst
case, there is a need for reinitializing the whole system in-
cluding distribution of the new tuples to the users and the
corresponding enabling block(s).

4.5 Security Analysis
The outstanding security concerns for our framework in-

clude Sybil attacks, collusion attacks, and well-known at-
tacks, such as CPA, CCA, and A-CCA. With the use of
the NDN architecture, even if a client signs the interest
packet, there is no way to stop a Sybil attack in the net-
work as a Sybil node possesses the keys of the legitimate
node. This reconfirms Douceur’s [5] observation of the dif-
ficulty of containing Sybil attack without a central verifica-
tion entity. However, one possible way to identify a Sybil
node is through mandated periodic user-credential verifica-
tion by the CP or a proximal router. The verification can
use gross location information (based on location of closest
ISP router or CDN node) to obtain a gross estimate of the
user’s geographic location. If a user appears at multiple
locations simultaneously (or over a short span of time) it
would imply a Sybil attack, and the user can be revoked.

A set of colluding nodes can create a new share for a
new malicious (illegitimate) node, however this requires at
least t + 1 malicious/revoked nodes to collude, armed with
the knowledge of the prime numbers used to bootstrap the
system, so that they can re-generate the polynomial using
their shares. With t + 1 being of the order of thousands
(or millions) that is unlikely. For addressing the other at-
tacks, such as CPA, CCA, and A-CCA, we refer the read-
ers to [21] – the proofs are similar and we omit them here
for brevity while stating that the secrecy of τ is preserved
against those attacks. To counter longstanding threats of
content piracy, τ can be renewed at regular intervals and
content re-encrypted. Several user privacy threats have
been identified in the ICN literature [2, 12]. We do not
discuss them as they are outside the scope of this paper.

5. IMPLEMENTATION RESULTS IN CCNX
We implemented our framework in our CCNx-0.7 [17]

testbed, which currently consists of three nodes. Each node

5 10 15 20 25 30 35 40

0

2

4

6

8

10

12

Polynomial Degree (in thousand)

T
im

e
 (

th
o

u
s

a
n

d
s

 o
f

s
e

c
o

n
d

s
)

1 Million

5 Million

10 Million

15 Million

20 Million

(a) Polynomial and Users
Share Generation time

5 10 15 20 25 30 35 40

0

200

400

600

800

1000

Polynomial Degree (in thousand)

S
iz

e
 (

k
B

)

SD

PSD

(b) Enabling Block Size

5 10 15 20 25 30 35 40

0

20

40

60

80

100

120

140

160

180

Polynomial Degree (in thousand)

T
im

e
 (

in
 s

e
c
o

n
d

)

PSD

SD

(c) Symmetric Key Extraction

Figure 3: Results from Protocols Implementation:
(a) Time taken to generate pt(x) and the users’
shares; (b) Enabling Block Size: with precomputa-
tion (PSD) and without precomputation (SD); (c)
Time required for secret key extraction.

in the testbed has an Intel Core i7 processor with an 8 GB to-
tal system memory and each core clocked at 2.4 GHz. Only
one core was used in the experiments. The protocols were
implemented in C++ using the gcc compiler version 4.5.2
and used the GNU Multi-Precision Arithmetic (GMP) li-
brary [9] for cryptographic operations. Our multimedia con-
tent – a 24.1 MB video – was hosted (using the ccnputfile
command) in the content store of one testbed node (server).
The rest of the nodes were clients, which sent out the inter-
ests to the server using the ccnsimplecat command to receive
the corresponding chunks. We split the content into chunks
of 4 Kilobytes each.

We implemented the Polynomial Generation protocol, the
Enabling Block Generation and Encryption protocol, and
the Secret Extraction protocol. In our implementation, the
total number of users ranged from 1M to 20M (close to
Netflix’s user base size) in multiples of five, and the value
of t ranged from 5K to 40K in increments of 5K, where
M and K stand for million and thousand respectively. In
our framework, the server performs pre-computation of the
Lagrangian coefficients. We compare our framework (de-
noted as PSD) with a replica of our framework, without the
server-side pre-computation (denoted as SD). Our results
were averaged over 100 experiment runs.

Fig. 3 displays some of our results. Fig. 3(a) shows the
time taken by the server to generate a polynomial (pt(x)) of
a certain degree, including generating its random coefficients
({a0, . . . , at}), and then evaluating pt(x) at n+t points. The
average time for the procedure for t ranging from 5K-40K
and n ranging from 1M to 20M is shown here. The X-axis
represents different values for t and the Y -axis represents
the time in thousands of seconds. The least running time
corresponds to pt(x) with the polynomial degree being t =
5K, and 1M users (number of points on the polynomial is
1.005M), requiring 80 seconds. The highest running time
corresponds to t = 40K with 20M users and takes about
12687 seconds. The polynomial generation procedure is the
most time consuming component of our framework, however,
it is executed by the server only and can be performed offline.

77

It is easy to see why the running time is dependent on the
value of t and n and why it scales linearly – the generation
time for 20M users is 20 times more than that for 1M users,
for the same values of t.

Fig. 3(b) shows the size of the enabling block in the PSD
and SD cases. The X-axis represents the polynomial degree
(t) and the Y-axis represents size in KiloBytes. The size of
the enabling block is independent of the number of members,
is proportional to the revocation threshold t, and increases
linearly with an increase in t. It is desirable to have an
enabling block of small size, since the server has to generate
a new enabling block each time a user is revoked. Also, with
service differentiation (basic, premium, etc.), we may have
multiple enabling blocks need to be stored at each router
in the network, corresponding to different sets of users and
possibly for different set of contents. Hence, smaller the size
of the enabling block lesser the network overhead.

We note that the extra server-side precomputation results
in the enabling block in PSD being larger than that in SD
(> 50% for t = 40K). However, the corresponding reduction
in extraction time at the client is significantly lower (refer
Fig. 3(c)). In the worst case, the size of the enabling block
in PSD is around 900kB for t = 40K. A standard two-hour
Netflix movie for mobile devices has a size of around 300
MB [13]; the enabling block adds less than 0.3% overhead.

Fig. 3(c) presents a comparative analysis of the secret key
extraction time in PSD and SD. The key extraction time in
SD grows super-linearly with increasing t, in comparison,
PSD is impressive, needing less than one second for all val-
ues of t. To demonstrate the scalability of our approach, we
obtained statistics for higher values of t as well (t ∈ {0.1M,
0.3M, 0.5M, 0.7M, 1.0M}). Even when t is 1 million, the
size of the enabling block is 24.2 MB (8% of a standard
movie [16]) and it takes 4.17 seconds (0.06% of the movie
time) to extract τ using one 2.4 GHz processor. For perspec-
tive, the Samsung Galaxy Note 2, a possible end-device, has
2 GB RAM and a 1.6 GHz quad-core processor.

Revocation threshold of 1 million is a large number as can
be seen from recent Netflix statistics [16] and may happen
over a long time period. This would allow time for refreshing
the enabling blocks to handle user revocation.

6. CONCLUSIONS
In this paper, we present an efficient framework for se-

cure and high availability content delivery in ICNs. We
sketch the protocols, present the architecture details and
experimental results demonstrating the framework’s prac-
ticality. In the future, we will study in-depth application
of our framework to other ICN architectures and optimize
and implement our protocols on smartphones and a larger
testbed.

7. REFERENCES

[1] Akamai. http://www.akamai.com/.

[2] A. Chaabane, E. De Cristofaro, M. Kaafar, and
E. Uzun. Privacy in content-oriented networking:
Threats and countermeasures. arXiv:1211.5183, 2012.

[3] Cisco. Cisco visual networking index, 2012. http://
www.cisco.com/en/US/netsol/ns827/networking_

solutions_sub_solution.html.

[4] C. Dannewitz. NetInf: An information-centric design
for the future Internet. In 3rd GI/ITG KuVS
Workshop on The Future Internet, 2009.

[5] J. Douceur. The sybil attack. Peer-to-peer Systems,
pages 251–260, 2002.

[6] Y. Duan and J. Canny. Scalable secure bidirectional
group communication. In IEEE INFOCOM, pages
875–883. IEEE, 2007.

[7] A. Fiat and M. Naor. Broadcast encryption. In
CRYPTO, pages 480–491, 1994.

[8] N. Fotiou, P. Nikander, D. Trossen, and G.C. Polyzos.
Developing information networking further: From
PSIRP to PURSUIT. In Proc. 7th International ICST
Conference on Broadband Communications, Networks,
and Systems, pages 1–13, 2010.

[9] The GMP Library, 2012. http://www.gmplib.org.

[10] V. Jacobson, D.K. Smetters, J.D. Thornton, M.F.
Plass, N.H. Briggs, and R.L. Braynard. Networking
named content. In Proceedings of the 5th international
conference on Emerging networking experiments and
technologies, pages 1–12. ACM, 2009.

[11] T. Koponen, M. Chawla, B.G. Chun, and et al. A
data-oriented (and beyond) network architecture.
ACM SIGCOMM CCR, 37(4):181–192, 2007.

[12] T. Lauinger, N. Laoutaris, P. Rodriguez, and et al.
Privacy implications of ubiquitous caching in named
data networking architectures. Technical report,
TR-iSecLab-0812-001, iSecLab, 2012.

[13] App Makers Worry as Data Plans Are Capped, June
6, 2010. http://www.nytimes.com/2010/06/07/
technology/07data.html?_r=0.

[14] A.J. Menezes, P.C. Van Oorschot, and S.A. Vanstone.
Handbook of applied cryptography. CRC, 1997.

[15] D. Naor, M. Naor, and J. Lotspiech. Revocation and
tracing schemes for stateless receivers. In CRYPTO,
pages 41–62, 2001.

[16] Netflix: 10 years in 3 charts, October 25, 2011.
http://www.splatf.com/2011/10/

netflix-10-years/.

[17] PARC. Ccnx. http://www.ccnx.org/.

[18] Storm Crushes ... Netflix, Pinterest, Instagram, 2012.
http://www.wired.com/wiredenterprise/2012/06/

real-clouds-crush-amazon/.

[19] S. Tarkoma, M. Ain, and K. Visala. The
publish/subscribe internet routing paradigm (psirp):
Designing the future internet architecture. Towards
the Future Internet, page 102, 2009.

[20] Tor Project: Anonymity Online. http://www.
torproject.org/.

[21] W. Tzeng and Z. Tzeng. A public-key traitor tracing
scheme with revocation using dynamic shares. In
Public Key Cryptography, pages 207–224, 2001.

[22] S. Wang, J. Bi, J. Wu, Z. Li, W. Zhang, and X. Yang.
Could in-network caching benefit information-centric
networking? In 7th Asian Internet Engineering
Conference, pages 112–115, 2011.

[23] C.K. Wong, M. Gouda, and S.S. Lam. Secure group
communications using key graphs. IEEE/ACM
Transactions on Networking, 8(1):16–30, 2000.

[24] M. Xie, I. Widjaja, and H. Wang. Enhancing cache
robustness for content-centric networking. In IEEE
INFOCOM, pages 2426–2434. IEEE, 2012.

78

http://www.cisco.com/en/US/netsol/ns827/networking_solutions_sub_ solution.html
http://www.cisco.com/en/US/netsol/ns827/networking_solutions_sub_ solution.html
http://www.cisco.com/en/US/netsol/ns827/networking_solutions_sub_ solution.html
http://www.gmplib.org
http://www.nytimes.com/2010/06/07/technology/07data.html?_r=0
http://www.nytimes.com/2010/06/07/technology/07data.html?_r=0
http://www.splatf.com/2011/10/netflix-10-years/
http://www.splatf.com/2011/10/netflix-10-years/
http://www.ccnx.org/
http://www.wired.com/wiredenterprise/2012/06/real-clouds-crush-amazon/
http://www.wired.com/wiredenterprise/2012/06/real-clouds-crush-amazon/
http://www.torproject.org/
http://www.torproject.org/

	Introduction
	Related Work
	Models and Assumptions
	System Model
	Set-up and Security Assumptions
	Threat Model

	Design Of Our Framework
	Design Overview of the Framework
	Basic Protocols
	Polynomial and Shares Generation
	Generation and Encryption of Enabling Block
	Secret Extraction at the User

	CCN/NDN Architecture Specific Details
	System Dynamics: A Discussion
	Security Analysis

	Implementation Results in CCNx
	Conclusions
	References

