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Robust Localization in Wireless Sensor Networks
through the Revocation of Malicious Anchors

Satyajayant Misra†, Guoliang Xue† and Aviral Shrivastava†

Abstract— In a wireless sensor network (WSN), the sensor
nodes (SNs) generally localize themselves with the help of
anchors that are pre-deployed in the network. Time of Arrival
(ToA) is a commonly used mechanism for SNs localization in
WSNs. In ToA, the SNs localize themselves using the positions
of the anchors and the time difference between the receipt of
a radio and ultrasound signal transmitted by each anchor. In
this setting, the localization process has a high risk of being
subverted by malicious anchors that lie about their position
and/or distance from the SNs. In this paper, we propose an
efficient scheme that helps identify and revoke these malicious
anchors. We use a mobile verifier (MV) that moves throughout
the network, in some pre-determined manner, and obtains
multiple location references from each anchor. For each anchor,
the MV tests the mean and the variance of the collected
sample to identify if the anchor is malicious. We show through
simulations that our scheme successfully identifies more than
80% of malicious anchors with less than 60 references from
each. Also, the percentage of false positives is close to 0.

I. INTRODUCTION

Large scale distributed wireless sensor networks (WSNs)
have become popular in both the military and civilian do-
mains because of their infrastructureless nature and relative
ease of deployment [1]. However, there still exist many
fundamental problems that need to be addressed [7]. The
problem of robust localization of the wireless nodes is one
such fundamental problem in a WSN. Accurate localization
is also very important because most applications require the
position of the source of the data for effective utilization.
In an infrastructureless WSN, for cost effectiveness, not
all nodes are equipped with self-localizing abilities. Most
sensor nodes (SNs) localize themselves using the position
estimates of a group of nodes in the network called the an-
chors [10], [11], [13]. The anchors are fixed wireless nodes
that know their own positions accurately, either through GPS
or from pre-programmed information.

In this paper, we assume that Time of Arrival (ToA) [15],
[13] is the underlying mechanism used for localization.
Following the ToA method, each anchor ai periodically
broadcasts its identifier (ID) and position information in
its neighborhood, as a radio signal (RS) and an ultrasound
signal (US) at the same instance of time. We denote these
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two components together as the location reference. On
receipt of the location reference li from ai, each sensor
node (SN) u, calculates the time difference in receipt of
the signals and uses the constants, speed of light (c) and
sound (s), to obtain an estimate d̂i of its distance (di) from
ai. The calculation of the estimate d̂i is given below by
Equations 1 and 2 as,

∆t = d̂i/s− d̂i/c, (1)

d̂i = ∆t · 1

1/s− 1/c
, (2)

where ∆t refers to the difference in time between the receipt
of the RS and the US. We note that the wireless medium is
inherently error-prone, hence the value of ∆t is inaccurate.
This results in a SN u being able to obtain only an estimate
of di.

When u gets a sufficient number of location references
from anchors in its vicinity it can use them to estimate
its own position. The estimation can be done using the
Minimum Squared Error (MSE) (also referred to as the
minimum mean square error) method [15], [10] given by,

f = min

n∑

i=1

(‖ û− ai ‖ − d̂i)
2 (3)

where û is an estimate of the real position u = (ux, uy)

of u, ai = (aix, aiy) is the position of anchor ai, d̂i

is the estimate of the distance of ai from u calculated
by u using the ToA method, and ‖ · ‖ is the Euclidean
norm. n is the number of anchors from whom u receives
the localization information. In the absence of measurement
errors, û is the correct estimate, that is, ‖ û − u ‖= 0.
In the presence of measurement errors, the error in û

is dependent on the measurement error. In this scenario,
accurate localization is fairly complex as it is difficult to
bound the estimation error. Given the complexity in accurate
localization, the presence of malicious lying anchors makes
accurate localization significantly more difficult to achieve.
We demonstrate this with simulation results.

Problem Motivation: In our simulation set-up, each mali-
cious (lying) anchor lied such that its distance from a SN in
its range is between [d, d·(1+ε)], where d is the real distance
and ε = 0.5. Figure 1(a) shows the average of the square of
the error (Serr) in localization over 20 iterations, when lying
anchors are included in the localization process. Figure 1(b)
shows Serr when the lying anchors are not included in the
localization process. We would like the reader to note the
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(a) Malicious anchors included in localization
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(b) Only true anchors used for localization

Fig. 1. Localization error in MSE method

difference in scale of the Y-axis in the two figures and
point out that the value of Serr when the number of lying
anchors is 0 is the same in both cases. It is easy to see
that the error in localization when malicious anchors are
included is an order of magnitude higher than when the
localization is done with only the true anchors. For instance,
when there are 10 anchors in the range of a SN and 5 of
them are malicious, the inclusion of malicious anchors in
localization results in a value of Serr > 50 sq.m. However,
when localization is done without the malicious anchors,
the value of Serr < 0.8 sq.m. Thus, we can conclude that
the presence of malicious anchors is detrimental to accurate
localization and their revocation is necessary in the interest
of increasing the accuracy.

In this paper, we propose a technique for identifying and
revoking the malicious anchors in a WSN. In our scheme,
we use a mobile verifier (MV), sent by the base station
(BS), that obtains location references from the anchors
and identifies the malicious ones by performing statistical
analyses of the location references. The malicious anchors,
once identified, can be revoked from the network, to prevent
subversion of localization. Using our technique we could
successfully identify and revoke more than 80% of the
malicious anchors in the network using only 60 references
from each anchor.

In Section II, we present related work. In Section III,
we present the system and threat models along with their
assumptions. Section IV presents our proposed mechanism,
while Section V presents the simulation results. We conclude

our paper in Section VI.

II. RELATED WORK

Localization schemes in WSNs may be classified as
range-based or range-free. The range-based mechanisms,
as proposed in [3], [16], [10], [5], perform localization by
measuring properties such as point-to-point distance or angle
estimates, whereas the range-free localization mechanisms
as proposed in [8], [9], [11], [6], [15] do not require
any physical measurements to perform localization. These
mechanisms may use hop count or area-based estimation to
localize a node [6]. Generally, range-based mechanisms lead
to more accurate localization; however, they tend to be re-
source intensive and may require specialized hardware [16],
[13]. The method used for position estimation is either
based on minimum mean/median square estimation [15],
[10], convex programming [4], [2], or triangulation [16].

There are many schemes, such as [5], [16], [10], [11],
[8], [9], [11] that have been proposed to increase security
and robustness of localization by either performing secure
localization, doing location anomaly detection, or through
location verification. Accurate localization in the presence
of malicious anchors transmitting erroneous estimates has
been dealt with by Li et al. [10], Liu et al. [11], and
Du et al. [5]. In [10], [5], the schemes attempt to identify
the anomaly and perform compromise resistant localization,
whereas [11] attempts to detect and remove the malicious
anchors from the network. However, the performance of the
above schemes is severely limited in the presence of a large
number of malicious anchors which may or may not be
colluding. In this paper, we propose a novel scheme that
can identify a large proportion of the malicious anchors
even when the majority of the anchors in the network
are malicious and colluding. This is possible because each
anchor is verified independently, and hence the results of the
verification of an anchor cannot be influenced by another.

III. SYSTEM MODEL AND ASSUMPTIONS

The system model used for our proposed technique is
given below:

• The network consists of a set of anchors A = {ai, i =
1, . . . , n} and a set of sensors S = {si, i = 1, . . . , n}
that are deployed randomly and are fixed after deploy-
ment.

• Each anchor ai knows its own position ai (ai =
(aix, aiy)).

• The transmission range of the SNs is r and the anchors
is R (R ≥ r > 0), while the reception range of the MV
is ≥ R.

• The anchors are equipped with radio/ultrasound trans-
mitters and can transmit both signals simultaneously.

• The anchors broadcast their location references period-
ically.
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• The SNs and the MV are equipped with both radio and
ultrasound receivers.

• The Mobile Verifier (MV) is GPS enabled and can
obtain its own position accurately.

• Localization is required throughout the network’s life-
time to localize new SNs added to the network.

• ñ, the measurement error, is distributed normally, ñ v

N(0, σ2
0), with domain x ∈ [−δmax, δmax]. Thus, the

probability Pr[n < −δmax] = Pr[n > δmax] = 0. If
f(x) is the probability density function for a random
variable x ∼ N(0, 1) then σ2

0 is given by,

σ2
0 =

∫
−δmax

δmax
x2f(x)dx

1−
∫
−δmax

−∞
f(x)dx −

∫
∞

δmax
f(x)dx

(4)

• The anchors transmit their references encrypted using
a key from a hash chain. The key is released at a later
time instant (delayed key disclosure mechanism). This
is similar to the mechanism of µTESLA [14].

• All devices have omnidirectional antennas.

A. Assumptions

• We assume that the anchors lie such that the resulting
distance estimate is proportional to their actual distance
from a SN. The proportion is a uniform random vari-
able ∼ U [−εmax, εmax], where εmax is a constant.

• No two anchors have the same position in the network.
• The anchors have enough memory and computation

abilities to generate and store hash chains of the keys.

B. Threat Model and Security Assumptions

We assume that the malicious anchors may be com-
promised by a powerful external adversary to lie about
their distance references. Also, the MV is assumed to be
uncompromisable by an adversary. The MV could be a
mobile vehicle or a human operator. In this subsection, we
use ai to illustrate a malicious anchor.

The use of delayed key disclosure by the anchors for
transmitting their location references ensures that malicious
anchors in the neighborhood cannot change or replay the ref-
erences. In addition, a malicious anchor ai cannot revoke a
true anchor aj by masquerading as aj and broadcasting false
location references. Our scheme is not affected by wormhole
attacks. The MV can successfully identify wormhole attacks.
For instance, if ai replays the location information of some
other anchor aj not in the neighborhood, the MV can
identify that aj does not belong to the neighborhood by
analyzing the location references of aj . In addition, ai can
also be identified as the source of the message, since the MV
can estimate the position ai from any 4 location references.
We would like to note here that in ToA 4 references are
required to estimate the position of a node [15].

In this setup, there are only three possible mechanisms by
which a malicious anchor can subvert accurate localization,

namely by lying about its position, its distance (by not
transmitting the RS and the US simultaneously), or by lying
both ways. If malicious anchor ai lies about its position so
that the position changes but its ID remains same, then it can
be easily caught by the SNs themselves. However, if ai uses
a set of IDs, then the SNs will not be able to identify such
an attack. This kind of attack can be identified by the MV.
If the MV obtains 4 readings for each of the IDs used by
ai, it can easily estimate the location of the source (ai) and
thus identify that the source of all the localization messages
with different IDs to be ai. Once ai is identified it may be
revoked.

If ai lies by sending the RS and US at different times
it could successfully cause distance reduction (US is sent
earlier than the RS) or enlargement (US is sent later than the
RS) attacks. Owing to the uncertainties due to measurement
errors, this attack is difficult to identify by simply checking
a few location references from a malicious anchor. Our
technique identifies the malicious anchors in this scenario.
The technique can also identify ai, if it lies about its position
and distance simultaneously (or even its position only). The
reasons for the applicability of our scheme for all three
scenarios is presented in the next section. We note here that
distance enlargement/reduction attacks may also be caused
by denial of service attacks. This kind of attack may be
prevented by using error correcting codes or spread spectrum
techniques described in literature [17]. We do not consider
this attack in our threat model.

IV. DESCRIPTION OF THE SCHEME

The MV is sent into the network by the Base Station
(BS). The MV can be sent into the network any number
of times. Each instance that the MV enters the network and
returns to the BS is termed an iteration. In each iteration the
MV obtains a constant number of location references (K)
from each anchor. K is a tunable system parameter which
is dependent on the amount of energy required by the MV
to obtain K references from each anchor, the amount of
energy at the disposal of the MV, and also the desired level
of accuracy. The MV may be recharged on getting back to
the BS. In order to identify malicious anchors with high
confidence, a MV has to obtain at least a certain number
of location references from each anchor (derived later). The
number of iterations is dependent on the total number of
references required and the value of K.

For our technique to be robust and efficient we need to
address the following four questions, namely:

• How to ensure that all anchors are covered by the MV?
• How to make the route of the MV in the network appear

random to an outside observer?
• How to perform statistical testing on the location ref-

erences obtained from each anchor?
• How to revoke the anchors identified as malicious?
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We overlay the network with a virtual grid (Gr) of squares
of side R/

√
2, where R is the reception range of the MV.

Each square in the grid is defined as Sxy where x and y are
the X-coordinate and Y-coordinate of the lower left corner
of the square. The network may be represented by a graph
G(V, E), where V = {Sij : Sij is a square in Gr} ∪ BS,
BS is the position of the BS, and E = {(Sij , Skl) :
Sij and Skl are adjacent}. We note here that two vertices
Sxy and Sab are adjacent iff Sxy

⋂
Sab 6= φ, for the squares

Sxy and Sab. In each iteration, the MV visits all the squares
before returning to the BS, thus covering all the anchors.

A. Setup of the paths of the MV

The MV collects data passively in the network, thus its
chance of getting detected is small. However, it is still
possible for a strong external adversary to identify the
presence of the MV in the network and learn its path. If the
MV follows the same path in the network for each iteration,
from the current position of the MV in a square Sij , the
adversary can identify the subsequent squares the MV will
visit. It can then direct the malicious anchors in those
squares to transmit correct location references during the
time period that the MV is in range, thus making malicious
anchors identification ineffective. So, it is desirable that for
each iteration the MV follows a different path from the
previous iterations. But, due to the limited number of paths
repetitions are unavoidable. However, we note that repetition
of a path should be infrequent and also the paths used for
a given number of successive iterations should differ as
much as possible. This makes it difficult for the adversary
to predict the position of the MV.

In our scheme, for each iteration, the MV chooses a path
from an ordered sequence of paths

∏
= {π1, π2, . . . , πm}

that is pre-computed at the BS and stored in the MV.
Each path πi, i = 1, . . .m, is defined as a sequence πi =
{BS, Skl, Sqr, . . . , BS} of vertices of G(V, E) where any
two adjacent vertices in the sequence form an edge. For
the first iteration, the MV chooses π1, for the second π2,
and so on. When all the paths are used up, they are all
available for selection again, and the procedure is repeated.
For any two paths πi and πj in

∏
we define a score function,

F(πi, πj) = |{(Skl, Sqr)|(Skl, Sqr) ∈ πi and πj}|. A
smaller value of F(πi, πj) is desirable as it means that
the difference between πi and πj is greater. The ordered
sequence of paths

∏
= {π1, π2, . . . , πm} is chosen by the

BS such that for some given p < m the function,

m−p∑

i=1

i+p∑

j=i+1

F(πi, πj) (5)

is minimized. That is, for a path πi ∈ Π the sum of the
score functions corresponding to the next p paths in Π is
minimized, hence these p paths satisfy the desirable property
of being as different from πi as possible, given a maximum

possible choice of m−1 paths. This procedure is performed
at the BS offline.

B. Setup for Hypothesis Testing

To test if an anchor is malicious, the MV performs hy-
pothesis testing for the mean (µ) and the variance (σ2) of the
location references. As described before, the measurement
error is given by ñ ∼ N(0, σ2

0), where σ2
0 is given by

Equation 4. The estimate of the distance of an anchor ai

from the MV can be modeled as d̂i = di · (1 + δi), where
δi is the measurement error coefficient (∼ N(0, σ2

0)). In the
event that ai is true, the calculated distance dcalc

i satisfies
Equation 6,

dcalc
i =‖m− ai ‖= di, (6)

where m is the position of the MV. Hence the expression,

d̂i/dcalc
i − 1 = δi, (7)

which is the coefficient for the measurement error. From the
statistical perspective, given a sample of location references
of an anchor ai, if ai is true, the mean and the variance of
the error should be close to the values 0 and σ2

0 respectively.
For a malicious anchor ai, Equation 7 will not hold, as it
may lie either about its distance or its position. As a result
there would be a greater variance in the error coefficient δi

and also a deviation in the mean µi. We note that a sample
variance greater than σ2

0 , or a shift in the sample mean,
or both may be observed if ai lies. This is irrespective
of how ai lies (position only, distance only, or both), as
either d̂i, or dcalc

i , or both shall be affected by the lie. The
tests we propose would be able to identify the malicious
anchors using the above facts. For brevity, we illustrate the
statistical tests for only the case where the anchors lie about
the distance. However, the tests are applicable to identify
anchors that are lying in the other ways mentioned.

From the location references obtained for each anchor
ai, we perform statistical hypothesis tests for the mean and
the variance of the error coefficients. For more information
about the theory of hypothesis testing we refer the reader
to [12].

1) Hypothesis testing for mean: The hypothesis test for
the sample mean µ is given by,

H0 : µ = 0 versus H1 : µ 6= 0. (8)

We know that the mean of the distribution is µ = 0.
A malicious anchor ai may lie such that the mean (µi) of
the resultant error coefficients is non-zero. This malicious
anchor can be identified if the null hypothesis of the above
test is rejected. For the tests, we denote the probabilities for
Type I error and Type II error by the standard variables α
and β [12]. The power of the test, defined as the probability
of rejecting the null hypothesis H0 when H1 is true, is given
by 1−β. Hence, lower the value of β higher is the power of
the test. Given the sample mean X̄, we can obtain the value
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of the test statistic, Z0 = X̄−0

σ/
√

(N)
, which is ∼ N(0, 1).

We would reject H0 if Z0 < −zα/2 or Z0 > zα/2, where
zα/2 is the 100α/2 percentage point of ∼ N(0, 1). And we
would fail to reject H0 otherwise. If H0 is rejected it implies
that the mean of the error coefficients of ai is in the critical
region, which implies that ai is lying.

It is easy to see that with an increase in the sample size
N the accuracy of the test increases. However, this requires
the MV to spend more time in each square Sxy. Hence,
there exist trade-offs between the accuracy we require and
the amount of time and energy required to attain such an
accuracy. For given values of α, β, and δ = X̄−µ, the size
of the sample (N ) required to produce the desired Type
I and Type II errors is given by N =

(zα+zβ)2·σ2

δ2 [12].
The value of β defines the probability of a false negative,
higher the value of β less powerful is the test, hence lower
is the probability of rejecting H0. For higher values of β,
the tests can be performed for smaller values of N , but
with the chance of increase in false negatives. However, we
believe that false negative is not as serious as having false
positive. A lying anchor that is not caught because of the
lower power of the test owing to a small sample size can
be caught subsequently with increasing sample size. On the
other hand, false positive is highly undesirable as it may
result in the anchor being incorrectly identified as malicious,
hence resulting in its revocation. Thus in our tests we limit
the Type I errors by using a high value for α.

Algorithm 1 Algorithm followed by MV in an iteration
1: INPUTS: Path πp ∈ Π for iteration p and Kp (no. of

references required per anchor);
2: OUTPUTS: List of malicious anchors in network;
3: Start at the BS;
4: repeat
5: numRefs ← 0;
6: Move to the next vertex Sij ∈ πp;
7: while numRefs != Kp do
8: Choose at random position Px,y ∈ Sij ;
9: Get a reference for each anchor al ∈ Sij ;

10: numRefs++;
11: mark Sij visited;
12: end while
13: until all Sij ∈ πp are visited.
14: for all anchors al do
15: totalRefsp ← totalRefsp−1 + Kp; {add the Kp refer-

ences of al to ones from previous iterations}
16: Do hypothesis testing on µ and σ2 (Section IV-B);
17: if al fails either tests then
18: Add al to malicious list;
19: end if
20: end for
21: Transmit malicious list to BS;

2) Hypothesis testing for the variance: At first, we
present the motivation for performing hypothesis testing for
the variance. Consider a malicious anchor ai, let the distance
estimate of ai from the MV be given as d

′

k for the kth
reference in an iteration, and let the real distance be dk. Let
us consider that ai lies such that d

′

k = dk ·(1+(−1)k ·ε) for
reference k = 1, . . . , K, where ε (> 2 · δmax) is a constant
error coefficient. In this case, despite ai lying by a significant
amount, X̄ ≈ 0, since the measurements alternate between
two high extremes about µ = 0. Thus ai would not be
caught despite lying significantly. This shortcoming can be
remedied by testing the sample variance. The hypothesis
testing on the sample variance σ2 is given by,

H0 : σ2 = σ2
0 versus H1 : σ2 > σ2

0 . (9)

In the above example, if we perform a hypothesis test for
the variance, ai would be caught. The null hypothesis H0

would be rejected as the variance of the sample obtained
from ai would be >> σ0.

For a sample of size N , we can define the test statistic
X2

0 = (N−1)·ŝ2

σ2

0

, where ŝ2 is the sample variance. X2
0

follows the chi-square distribution χ2 with N − 1 degrees
of freedom denoted by χ2

0,n−1. Hence, the null hypothesis
H0 is rejected if χ2

0,n−1 > χ2
α,n−1 where χ2

α,n−1 is the
upper 100α percentage points of the χ2

n−1 distribution. If
H0 is rejected then ŝ2 is in the critical region, hence the
corresponding anchor is identified as malicious.

Algorithm 1 presents the operation of the MV in the
network during a typical iteration. Once the MV gets the
references from all the anchors, it performs the hypothesis
test on the combined sample (from previous iterations and
current iteration) to identify the malicious anchors.

The list of malicious anchors and their positions is broad-
cast by the BS as a revocation message in the network. The
revocation process may also be initiated by the MV locally
as soon as it identifies the malicious anchors in a square.
The revocation messages for the SNs is authenticated by the
BS using the µTESLA mechanism.

V. SIMULATION RESULTS

The WSN is deployed in a square field of dimensions
100 × 100 sq. units. This field is overlaid with a grid of
squares of 20× 20 sq. units. In each square, 10 anchors are
deployed randomly. The transmission range of the anchors
is set to 30m and the location reference broadcast period is
set to 1 second. The maximum error coefficient was chosen
to be |δmax| = 0.2, the corresponding σ2

0 = 0.033 and
σ = 0.182; α = 0.01 and β = 0.1. Figure 2(a) shows
the percentage of malicious and true anchors caught by the
hypothesis test for µ, given 3, 5, or 7 malicious anchors per
square. The proportion of lie in the localization reference for
each malicious anchor ai was chosen to be ∼ U [−0.2, 0.4]
thus having mean µm = 0.1. The first three curves represent
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Fig. 2. Simulation results. 2(a) and 2(c): Tests for µ and σ
2 with 3, 5,

or 7 malicious anchors per square. 2(b) and 2(d): Percentage of malicious
anchors caught for different proportions of lie.

the number of malicious anchors caught, while the bottom
three curves represent the number of true anchors caught
(false positives). Even with as few as 20 location references
more than 70% of the malicious anchors are caught. As
expected, with the increase in number of references more
malicious anchors are caught. More than 90% malicious
anchors were caught when the number of references were
60 or more. Also, the percentage of anchors caught is
independent of the number of anchors in a square. We wish
to point out that the percentage of false positives is close
to 0 in our scheme. Figure 2(b) shows the percentage of
malicious anchors caught for different values of the mean
µm of the malicious anchors. As the anchors lie more, a
greater number of the malicious anchors are caught with
a lesser number of references. Even for a low value of
µm = 0.15, our technique can catch more than 80% of
the malicious anchors with as low as 40 location references.
This shows that even with a small number of references the
malicious anchors can be easily identified.

Figure 2(c) shows the results for the test for σ2. Similar to
the test for µ, the false positives are low and the the number
of malicious anchors caught increases with an increase in the
number of references, with greater than 80% caught for the
60 or more references. Figure 2(d) shows the percentage
of anchors caught with increasing lie coefficients. As the
anchors lie more, more of them are caught. This is desirable
for both the test for mean and variance, as anchors that lie
more are more harmful for the localization process. Our
scheme catches such anchors with high accuracy.

Hence our proposed technique can identify a large per-
centage of the malicious anchors in the network, thus
improving the accuracy of SN localization.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we propose a scheme that successfully
identifies a large number of malicious anchors that may
subvert the localization process in a WSN. In the future, we
would like to find improved solutions for finding untraceable
paths in the network and also study improvements in the
energy requirements of the technique.
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