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Abstract—Large-scale multi-hop wireless networks have many
important applications. However, Gupta and Kumar showed that
the capacity of multi-hop wireless networks decreases as the
number of nodes in the network increases. Subsequent research
efforts to achieve linear capacity scaling have significantlimita-
tions such as long latency, high technical complexity, restricted
traffic pattern, or infrastructure requirement. We propose to
achieve close-to-linear (CTL) capacity scaling through the use of
directed energy (DE) links such as laser communications links or
highly directional pencil beam links in the EHF band in a hybrid
network that also contains traditional omni-directional (OD)
antenna links. Our approach has none of limitations mentioned
earlier. We show that when the probability distribution of DE
links follows the inverse-square law, a distributed schemewith
local routing information suffice to achieve CTL capacity scaling.

Index Terms—wireless networks, transport capacity, perfor-
mance analysis and modeling.

I. I NTRODUCTION

I N their seminal work [1], Gupta and Kumar showed that
the per-node throughput of multi-hop wireless networks

of n nodes scales asO(1/
√

n logn), which diminishes asn
increases. This finding caused great concerns for the scalability
of wireless networks. For a network to scale, linear scaling
of the capacity is desirable, which means the capacity of the
network grows linearly with the number of nodes, and the
increase of the network size does not lead to performance
degradation. Subsequent research indicated that linear capacity
scaling is feasible in certain scenarios [11]–[15]. But all
these scenarios have severe limitations and downsides suchas
unbounded delay [11], technical complexity whose feasibility
is still not clear [12], [13], traffic pattern restriction that might
be impractical [14], and infrastructure requirement that is
unrealistic in many practical settings [15].

In this paper, we propose an approach to Close-To-Linear
(CTL) capacity scaling through the use of directed energy
(DE) links, such as highly directional pencil beam links
in the EHF frequency band [21] or laser communications
links. CTL scaling means the per-node throughput scales as
Θ(1/(logn)a), with a being a constant. The factor1/(log n)a

is due to the random deployment of the nodes, which is also
present in the Gupta and Kumar’s capacity results (where
a = 1/2 ). Our approach has none of the limitations associated
with previous attempts to achieve linear capacity scaling.

In addition, our approach addresses another challenge in
large-scale networking: the high cost of distributing global
routing information. Although the capacity of large-scale
wireless networks have been much studied, not much attention
has been paid to how to implement practical routing protocols
in large-scale wireless networks. It is unrealistic to ignore
network dynamics in large-scale networks: nodes can join,
leave, or move, and channels can fade. The network links
are especially volatile when DE links are involved. However,
distribution of global routing information incurs high cost. In a
network ofn nodes, the overhead of a routing protocol such as
the link state protocol scales asn2, whereas the total network
capacity scales asn/ logn [1], which could be overwhelmed
by the routing overhead asn goes to infinity. We show that
when the probability distribution of DE links follows the
inverse-square law, global routing information is not required
to achieve CTL capacity scaling using our approach.

Radio transmission using the omni-directional (OD) anten-
nas is an immensely wasteful way of sending information in
so far as energy is concerned, since only a tiny portion of
the energy transmitted is collected by the receiver, with the
rest being worse than waste because of the interference it
causes. In contrast, with DE links, the signal-bearing power
does not spread out quickly over distance, making it an
excellent candidate for long-distance links. In fact, DE links
are significantly more focused than traditional directional-
antenna links. The range of a directed energy link can be as
high as tens of kilometers [18], which is on the same order of
magnitude as the diameter of a typical large deployment (e.g.,
battlefields or disaster areas). However, long-distance DElinks
are highly fragile: they require line of sight, precise alignment,
and good weather conditions and they can be disrupted by the
movement of nodes, rain, fog, dust, heat, natural or artificial
obstructions, etc. This poses a challenging problem of how to
utilize highly fragile DE links effectively.

In this paper, we show that a significant capacity increase
can be obtained in a large-scale network by utilizing the
DE links even when the establishments of such links are
unpredictable random events. In our approach, a packet uses
OD hops to randomly sample the DE links until it encounters
a suitable DE link and makes a long-distance jump. So, we
have a hybrid wireless network with OD links providing
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opportunities for the effective usage of DE links. Recent
advances made in network science provide the evidence of the
viability of our approach. The proposed hybrid network bears
a strong resemblance to the classical small world phenomenon
originally studied by Milgram [24], and recently followed up
by Watts and Strogatz [25], and Kleinberg [19], [20], among
others. Kleinberg showed that the nodes are connected by a
surprisingly small number of hops (”six degrees of separa-
tion”) in a large network with a mixture of short-distance and
long-distance links, which mirrors a hybrid network of OD and
DE links. Since the capacity in multi-hop wireless network is
limited by the number of hops a packet has to travel to reach
the destination [1], small number of hops translates to high
capacity.

Admittedly, our approach to the CTL capacity scaling comes
at the cost of extra spectrum of the DE links. But Gupta and
Kumar proved that it is impossible to achieve the CTL capacity
scaling without new resources or technology. Our requirement
for extra spectrum of the DE links is modest: each node has a
small probability, say0.01, to have a single DE link, and the
network formed by the DE link does not have to be connected.
In fact, as the network becomes larger, the opportunity for
a node to establish a DE link with any other node becomes
more abundant. Furthermore, our approach can effectively deal
with the highly dynamic nature of DE links by utilizing DE
links greedily whenever and wherever they appear and without
global coordination.

A. Overview of Our Results

In the following, we provide a sketch of some of our
technical findings so that the motivations and the issues can
be better understood.

The necessary condition for CTL capacity scaling: In
a network of n nodes, let the per-node throughput (bits
per second or bps) beλ, the average number of hops per
connection beh, the link capacity beB (bps), and the total
number of transmissions in the network bentx. The funda-
mental constraint is that the traffic demand can not exceed
capacity supply, i.e.nλh = ntxB or λ = ntxB/nh. Since
ntx = O(n/ log n) [1], CTL capacity scaling is possibly only
if h = O((log n)a), which we call the necessary condition
for CTL capacity scaling. Note that the existence of DE links
does not changentx order-wise [16].

The achievability for CTL capacity scaling under power-
law link distribution : As in [19], we assume that the DE link
distribution follows the power law. More precisely, letf(r) be
the probability density that a node has a DE link with another
node separated with a distancer. Power-law link distribution
means thatf(r) = C/rα, α being a nonnegative constant and
C being the normalization constant.

It is revealing to examine the case ofα = 0. In such case,
the graph formed by the nodes and DE links is the random
graph famously studied by Erdös and Rényi [26]. It is well
known that the diameter of such random graph isO(log n)
hops. For these random graphs, the necessary condition for
CTL capacity scaling is satisfied. However, we will show in
Section IV thateven though short paths exist in the random
graph (α = 0), the probability of finding them goes to zero as

n goes to infinity if global routing information is not available.
By global routing information, we mean that a node knows
about every link in the network enabling it to compute the
shortest paths to every other node in the network. We show
that without global routing information, CTL capacity scaling
is achievable only ifα = 2 exactly, even when smallerα
implies more DE links. In other words, the presence of more
long-distance DE links does not automatically guarantee high
capacity.

The availability of global routing information in a large-
scale wireless network is unlikely for the following two rea-
sons. 1) It is well known that the distribution of global routing
information in networks is very costly, especially for large-
scale networks. In fact, the number of link-update messages
scales asn2, which rapidly outpaces the total capacity supply
ntxB = O(n/ log n) as n goes to infinity. 2) More impor-
tantly, even if the distribution of global routing information is
feasible, the value of such information is doubtful because
DE links are highly dynamic and the information about a
distant link might already be outdated when the information
is received.

B. Contributions

The contributions of this paper are as follows.
• We provide an approach to CTL capacity scaling through

the combined use of DE and OD links. Our approach
has none of the limitations of the previously proposed
approaches, refer to Table I. Furthermore, our approach
can effectively deal with the high dynamics of DE links.

• We show that if global routing information is not avail-
able, the CTL capacity scaling is achievable when the DE
link probability distribution follows the inverse-square
law with respect to the distance between two nodes,
and it is not achievable if the distribution follows any
other power-law distribution. Not requiring global routing
information solves another challenging problem in large-
scale networking, i.e., the high cost of distributing routing
information.

• We provide the bounds on the capacity of the hybrid
wireless networks that contain both DE and OD links.

The paper is organized as follows. In Section II, we
describe related work. In Section III, we state our assumptions,
definitions, and background results. In Section IV, we describe
the achievability of the CTL condition under differentα
values. In Section V, we investigate the per-node throughput
capacity of the hybrid network. In Section VI, we synthesize
the results obtained in different theorems. We conclude in
Section VII.

II. RELATED WORK

The study of the capacity of large-scale wireless networks
started in the seminal paper [1]. Many subsequent studies
have followed their leads. Upper bounds to the capacity
were provided in relation to geographic locations and power
constraints [2]. Information theoretical analyses were provided
in [3], [4], which is different from the previous models that
are based on geometry or signal-to-noise ratio (SNR). The
capacity of wireless networks was studied over fading channels
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TABLE I: COMPARISONS BETWEEN OUR APPROACH AND PREVIOUS APPROACHES TO ACHIEVE LINEAR OR CTL
CAPACITY SCALING IN WIRELESS NETWORKS

Approaches
Limitations

Long Delay Complex Technology Restricted Traffic Pattern Infrastructure Requirement
Node Mobility [11] Yes No No No
Network-wide MIMO [12], [13] No Yes No No
Local Traffic [14] No No Yes No
Hybrid Wireless Networks with Base Stations [15] No No No Yes
Our Approach No No No No

[5], in various path-loss attenuation regimes [6], [7], andin the
fixed SNR regime [8]. The gap between the upper bound and
the achievable capacity was closed using an analysis based
on percolation theory in [9]. Capacity regimes of wireless
networks with arbitrary size and densities were studied in [10].

Previous work showed that linear capacity scaling is fea-
sible in four scenarios. The first scenario is where node
mobility assists the transport of packets [11]. The downside
of the proposed approach is that it can incur unbounded
delays. The second scenario is where network-wide MIMO
transmission is orchestrated [12], [13]. The problem is the
high implementation complexity involved, whose feasibility
is not yet clear. The third scenario is where traffic demand
is localized [14]. The problem is that real-world traffic is
often not localized. The fourth scenario is where the wireless
network is augmented with a wire-line infrastructure [15].
The limitation is that there is no such infrastructure in many
important application scenarios.

The most relevant previous works to ours are [16], [17],
[23]. In [16], the capacity of wireless networks with directional
antennas was studied. The papers results indicate that a gain
of 2π/θ (θ being the beam-width) in throughput per node can
be achieved by using directional antennas over that of omni-
directional antennas. Such constant gain still does not make the
capacity scalable. In [16], the capacity gain is achieved mostly
from interference avoidance. Our results indicate that much
larger gain in capacity can be obtained by range-extension
than interference-avoidance. In [17], a network ofn nodes
was considered, in which all the nodes are equipped with
RF transceivers and a fraction of nodes (m nodes) are also
equipped with FSO transceivers. The capacity of such network
is given asW1(n log n)−1/2 +W2(m log m)1/2/n, whereW1

andW2 are the bandwidths of RF and FSO links. The capacity
scaling is roughlyn−1/2, not even close to linear scaling. Such
pessimistic result stems from the authors assumption that the
range of FSO links is constrained to be the minimum to form
a connected topology. Such assumption is unnecessary and
overly conservative, and leads to pessimistic capacity scaling.
In [23], the maximum throughput problem is studied under
three scenarios: 1) omnidirectional transmission, 2) simple
directional transmissions, and 3) complex directional transmis-
sions, in which the sender can generate multiple beams aimed
at multiple receives. The authors show that an increase of
Θ((log n)2) in maximum throughput can be achieved by using
complex transmissions. None of the previous work addressed
the issue of the high cost of distributing global information
nor the issue of handling highly dynamic DE links.

Other related works include the following. In [29], the

capacity of hybrid wireless networks with omnidirectionaland
directional antennas was studied. This work was later extended
to investigating the multicast capacity in a similar setting [31].
In [28], collaborative data dissemination in cognitive vehicular
networks was studied with the focus on investigating the
sensing-throughput tradeoff. In [30], social ties were exploited
to enhance device-to-device communications in wireless net-
works.
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Fig. 1: A hybrid networks composed of OD (solid) and DE
(dashed) links.

III. ASSUMPTIONS, DEFINITIONS, AND
BACKGROUND RESULTS

A. Assumptions

1) Node deployment: The network hasn nodes uniformly
randomly deployed in a disc of arean, which is called
the extended model in the literature. In the literature there
is also the dense model where nodes are deployed in
a disc of unit area. Since the capacity results from the
two models are basically the same, we choose to use the
extended model.

2) Traffic pattern: Each node randomly selects a destination
node and sends data packet at the rate ofλ bits per
second.

3) Network links: The nodes can have two kinds of links:
short range omni-directional (OD) wireless links and long
range directed energy (DE) links, referring to Fig. 1. An
OD link with capacityB1 exists between two nodes if the
distance of the nodes is no more than a threshold distance
r1. A DE link has a capacityB2 and an average distance
of r2. The DE link probability distribution is described
by the next assumption.

4) DE link distribution: Each node has a small probabilityp,
sayp = 0.01, of establishing a single DE link. Letf(r)
be the probability density that a node has a DE link with
another node separated with a distancer. As in [19],
we assume thatf(r) = C/rα, α being a nonnegative
constant calledclustering exponent. The integration of
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f(r) over the network area isp. The model can capture
a wide range of distance relationships. We also assume
that the events that a node has a DE link are independent.

5) Routing information: We assume that global information
about the network is not available, that is, only local
information is available to the nodes. Local information
for a node is defined as information about itself and its
one-hop neighbors.

6) Distance measure: We assume the physical distance
measure is available, which is provided by geographical
routing [22].

We use the following notations:f(n) = Θ(g(n)) means
there exist some constantsc1, c2, such thatc1g(n) ≤ f(n) ≤
c2g(n) asn goes to infinity; andf(n) = O(g(n)) means there
exists some constantc3, such thatf(n) ≤ c3g(n) as n goes
to infinity.
B. Definitions

Definition 1: We say that theper-node throughput capacity
is λ if there exists a communication scheme that can provide
every node in the network with a throughput of at leastλ bits
per second.

Definition 2: By global routing information, we mean the
information necessary to compute the shortest paths in the
network. In other words, global information is the link state
information of all the links in the network, which is the input to
the algorithm to compute the shortest paths such as Dijkstra’s
algorithm.

Definition 3: We say that thenecessary conditionfor CTL
capacity scaling is met if the average number of hops (in any
combinations of OD and DE hops) that a packet travels in the
network isO((log n)a), wherea is a constant.
C. Background Results

Lemma 1 (refer to [1]): For some constantε, if r1 =
(1 + ε)

√

log n/π , the probability of the network being
connected (no isolated node) goes to1 asn goes to infinity. If
r1 = (1 − ε)

√

log n/π , the probability of the network being
disconnected goes to1 asn goes to infinity.

Note that throughout this worklog is based on2. To ensure
the connectivity of the network, we set the radio range of OD
links to be:

r1 = (1 + ε)

√

log n

π
(1)

IV. THE ACHIEVABILITY OF THE NECESSARY
CONDITION FOR CTL CAPACITY SCALING

In this section, we examine the achievability of the neces-
sary condition for CTL capacity scaling across the full spec-
trum ofα values (the exponent in link probability distribution).

A. The case ofα = 0

In this subsection, we show that it is impossible to meet the
necessary condition for CTL capacity scaling without global
information in the Erdös-Rényi random graph(α = 0).

Theorem 1:If α = 0 and global information is not avail-
able, the number of hops between a random pair of nodes is
no smaller thanΘ(n1/3/

√
log n) with high probability, i.e.,

the probability goes to 1 as n goes to infinity. Therefore, the
necessary condition for CTL capacity scaling is not met.

Proof: Let nodesA and B be a random pair of nodes.
In a network of arean, consider a discD centered at nodeA
with a radius ofn1/3. With high probability(1− Θ(n−2/3)),
nodeB is outsideD. There are two cases: A) only OD links
are used, and B) a combination of OD links and DE links are
used. The case of using only DE links is not feasible, because
some nodes may not have DE links or have only unsuitable
DE links. In Case A, the number of hops betweenA and B
is at leastn1/3/

√
log n since the OD radio range is

√
log n

(Lemma 1). In Case B, a packet uses OD hops to move to
different nodes and sample different DE links. The probability
of encountering a DE link to go from outside to inside D area
is at mostPD = Θ(n−1/3), given the uniform distribution of
DE links. Each hop taken by the packet can be considered as
an independent Bernoulli trial to get inside of D through a
DE link. The number of trials, thus the number of hops, is no
smaller than1/PD = Θ(n1/3).

We know that the Erdös-Rényi random graph model(α = 0)
has a diameter ofO(log n) hops. Theorem 1 indicates that
without global information and only through random trials it
is impossible to find the short paths ofO(log n) hops. Note
that a greedy approach is used in that a link is taken to reduce
the distance to the destination as much as possible. But without
global information, encountering DE link is a random event.
B. The case ofα = 2

In this subsection, we show that the necessary condition
for CTL capacity scaling can be met without global routing
information whenα = 2. The communication scheme, which
we callOpportunistic Communication using DE links (OCDE),
that meets the necessary condition for CTL capacity scalingis
as follows. The packet travels from its source to its destination
through O(log n) phases. In each phase, the packet does a
random walk through OD linksuntil it encounters a DE link
that can halve the packets current distance to the destination
(according to the assumption III-A.6, nodes know about the
distances). The packet travels through the DE link and the
current phase ends. We require the packet not to revisit the
nodes visited in a short interval ago by keeping a short list of
nodes just visited in the packet header. Revisiting a node after
the short interval is equivalent to a new random sampling of
DE links since DE links are highly dynamic. Thus, each phase,
the distance of the packet to the destination is reduced by half.
After O(log n) phases, the packet is within a few OD hops of
the destination, where the packet is delivered to the destination
through OD hops. In OCDE, progress is mostly made by DE
links (halving the distance to destination in each phase), and
OD links provide the opportunity to sample different DE links.

Of course, a couple of optimizations can be made on the
above simple scheme. First, instead of doing random walks
through OD links, the packet can be forwarded through an
OD link to the neighbor that is the closest to the destination.
Second, instead of waiting for a DE link that can reduce the
distance by half, the packet can use a DE link as long as the
DE hop can reduce the distance more than any potential OD
hops.

We formalized our results in Theorem 2.
Theorem 2:If α = 2 and global routing information is not

available, there exists, with high probability, a communica-
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tion scheme that can deliver a packet between any source-
destination pair usingO((log n)2) OD hops andO(log n) DE
hops. Thus, the necessary condition for CTL capacity scaling
is met.
The proof of Theorem 2 is in Appendix A. Here we provide a
brief outline. The packet from the source reaches its destina-
tion in O(log n) phases. In each phase, the packet’s distance
to the destination is reduced by half. It can be shown (see
Appendix A) that ifα = 2, it takesO(log n) trials (OD hops)
to encounter a DE link that can reduce the distance of the
packet to the destination by half. Theorem 2 is the result of
the fact that there areO(log n) phases, and each phase consists
of one DE hop andO(log n) OD hops.

C. The case ofα 6= 0, 2

In this subsection, we show that it is impossible to meet the
necessary condition for CTL capacity scaling without global
routing information in the case ofα 6= 2.

Theorem 3:Under the condition that global information
is not available, the expected number of hops, using any
combinations of OD and DE links, of any communication
scheme are 1)Θ(n(2−α)/6/

√
log n) hops, if 0 ≤ α < 2; and

2) Θ(n(α−2)/(2α−2)/
√

log n) hops, if α > 2. In both cases,
the necessary condition for CTL capacity scaling is not met.

The proof of Theorem 3 is in Appendix B. We provide
a sketch here. For0 ≤ α < 2, consider such a small
disc D of radius nβ(log n)1/4 centered at the destination,
with the constantβ = ((2 − α)/6) < 1/3. A random
source is initially outsideD with high probability. It can be
shown (see Appendix B) that it takesΘ(nβ/

√
log n) trials

(OD hops) to encounter a DE link that can jump insideD
from the outside. Therefore, to reach the destination the total
number of hops, counting both OD and DE hops, is at least
Θ(nβ/

√
log n) = Θ(n(2−α)/6/

√
log n).

For α > 2, we denoteE as the event that the source
node of a packet has a distance larger than(n/3π)1/2 to the
destination, which occurs with the probabilityPr[E] = 2/3.
Let β

′

= (α− 2)/(2α− 2), γ = 1/(2α− 2). It can be shown
(see Appendix B) that we can bound the distance traveled
by the packet innβ

′

DE hops to be less than(n/3π)1/2.
Furthermore, we can bound the distance traveled by the packet
in nβ

′

/
√

log n OD hops to be also less than(n/3π)1/2.
Therefore, the expected number of hopsE[h] > E[h|E] =
Θ(n(α−2)/(2α−2)/

√
log n).

D. The Scale Invariance Property

It is interesting to note that the polylogarithmic scaling of
the number of hops is achieved whenα = 2, and not whenα
takes any other value. The proofs of Theorems 2 and 3 provide
some insight. It turns out that there is an important property
that is true only in the case ofα = 2. Consider a sequence
of concentric discs centered at a destination:D1, D2, D3, · · · ,
whereD1 covers the entire network,D2’s radius is half of that
of D1, D3’s radius is half of that ofD2, and so on. Suppose
the packet is currently located insideDi but outsideDi+1 in a
single trial. LetPi be the probability that the packet encounters
a DE link that can jump insideDi+1 in a single trial.The scale
invariance property is that allPi’s are on the same order of
magnitude with respect ton. The scale invariance property

turns out to be the main reason why necessary condition for
CTL capacity scaling is met only whenα = 2. For0 ≤ α < 2,
Pi diminishes asi gets larger, since the DE link probability
distribution tends to spread out in space and does not favor
smaller discs. Forα > 2, Pi diminishes wheni is small,
since the DE link probability decays sharply with increasing
distances. Atα = 2, Pi holds out steady atO(1/ log n), the
inverse of which is the number of hops required to reduce the
distance by half, thus achieving CTL capacity scaling.

V. THE PER-NODE THROUGHPUT CAPACITY

In this section, we investigate the per-node throughput
capacity of the hybrid network consisting of OD and DE links.
Refer to Section III-A for the definitions of the variables that
will be used below.

A. Upper Bound on Capacity

In this subsection, we provide an upper bound on the per-
node throughput capacity as stated in Theorem 4.

Theorem 4:For some constantsk2 and k3, the per-node
throughput capacityλ is upper-bounded by

λ ≤ k2√
n logn

+
k3pr2√

n
(2)

Note that the first term on the right hand side of (2) comes
from the contributions of OD links and is the same as that in
[1]; the second term comes from the contributions of the DE
links, wherep is the probability of having a DE link for the
node. The proof can be found in the technical report [27].

From Theorem 4, it is straightforward to obtain the follow-
ing corollary.

Corollary 1: The necessary condition for CTL capacity
scaling isr2 = Θ(

√
n/(log n)b), whereb is some constant.

Recall thatr2 is the average distance spanned by a DE link.
The above necessary condition, however, is by no means suf-
ficient, especially if global routing information is not available
as is shown in Section IV.

B. The CTL Capacity Scaling Can Be Achieved Whenα = 2

In this subsection, we show that under the condition that
global routing information is not available andα = 2, the
communication scheme OCDE described in Section IV can
achieve the capacity upper bound within a polylogarithmic
factor.

Theorem 5:The OCDE scheme can provide a per-node
throughput capacity ofΘ(1/(logn)3).
The above per-node throughput is within a polylogarithmic
factor of magnitude of the capacity upper-bound in (2). Thus,
the CTL capacity scaling is achieved. The proof of Theorem
5 uses the result on the expected number of hops in Theorem
2 and applies a similar approach as [1]. The details can be
found in the technical report [27].
C. The CTL Capacity Scaling Can Not Be Achieved When
α 6= 2

In this subsection, we show that under the condition that
global routing information is not available andα 6= 2, it is
impossible to achieve CTL capacity scaling.

Theorem 6:The per-node throughput capacityλ is upper
bounded by 1)Θ(n(α−2)/6/

√
log n), if 0 ≤ α < 2; and 2)
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Θ(n(2−α)/(2α−2)/
√

log n), if α > 2. In both cases, the CTL
capacity scaling is not achievable.
The proof of Theorem 6 can be found in the technical report
[27]. From Theorem 6, we see that the capacity scaling is
strictly sublinear whenα 6= 2. The network capacity achieves
its maximum of polylogarithmic scaling atα = 2, and falls
off on either sides, that is,α < 2 or α > 2, achieving the
minimum values ofΘ(1/(n1/3

√
log n)) when α = 0, and

Θ(1/
√

n log n) when α goes to infinity (which corresponds
to the scaling behavior of the traditional multi-hop wireless
networks without DE links).

VI. SYNTHESIS OF RESULTS OF THEOREMS 4, 5,
AND 6

Since Theorem 4 is obtained using Gupta and Kumar’s
methodology [1], and Theorems 5 and 6 are based on The-
orems 2 and 3, we provide a synthesis between the capacity
upper bound given in Theorems 4, and per-node throughput
capacity given by Theorems 5 and 6. There are three cases:
1) α = 2; 2) 0 ≤ α < 2; and 3)α > 2.

A. The case ofα = 2

Using the normalization constant in (7) (in Appendix A),
we can calculater2, which is the average distance of a DE
link.

r2 =

∫

√
n

π

r0

rf(r)2πrdr =

∫

√
n

π

r0

Θ((log n)−1)

r2
2πr2dr

= Θ(

√
n

log n
) (3)

Pluggingr2 into (2), we get

λ ≤ k2
√

n log(n)
+

k3pr2√
n

= Θ((log n)−1) (4)

Thus, the achievable throughput obtained in Theorem 5
((log n)−3) is within a polylogarithmic factor of the capacity
upper bound given in (4).

B. The case of0 ≤ α < 2

Using the normalization constant in (9) (in Appendix B),
we have

r2 =

∫

√
n

π

r0

rf(r)2πrdr =

∫

√
n

π

r0

n−(2−α)/2

rα
2πr2dr

= Θ(n1/2)

Pluggingr2 into (2), we get

λ ≤ k2√
n log n

+
k3pr2√

n
= Θ(1) (5)

In this case, even though the necessary condition for CTL
capacity scaling in Corollary 1 is satisfied(r2 = Θ(n1/2)),
and Theorem 4 provides capacity upper bound ofΘ(1), the
actual achievable capacity, as given in Theorem 6, is much
less.

C. The case ofα > 2

Using the normalization constant in (13) (in Appendix B),
we have

r2 =

∫

√
n

π

r0

rf(r)2πrdr =

∫

√
n

π

r0

C

rα
2πr2dr

=

{

Θ(n(3−α)/2) 2 < α ≤ 3,

Θ(1) α > 3,

Pluggingr2 into Equation (2), we get

λ ≤ k2√
n log n

+
k3pr2√

n
=

{

Θ(n−(2−α)/2) 2 < α ≤ 3,

Θ(n−1/2) α > 3,
(6)

Comparing the above upper bound with that given in Theorem
6, which can be rewritten asΘ(n−(α−2)/(2α−2)/

√
log n) =

Θ(n−1/2+1/(2α−2)/
√

log n), we can see that Theorem 4 ac-
tually provides a tighter upper bound than Theorem 6.

We summarize the capacity upper bounds in Figure 2. Note
that the CTL scaling is achieved only whenα = 2, not with
any otherα values. One would imagine that smallerα values
would favor longer DE links and thus provide higher capacity.
That, however, does not happen. There are two reasons for this:
1) r2 essentially saturates atα = 2, (r2 = Θ(

√
n/ log n)) for

α = 2 andr2 = Θ(n1/2) for (0 ≤ α < 2), so smallerα values
do not bring much benefits in terms of the average span of
a DE link; 2) as Kleinberg pointed out [19], since only local
information is available, a DE link distribution with a stronger
local bias (α = 2) is better positioned to use such information
than those with weaker local bias(0 ≤ α < 2).
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Fig. 2: Comparison of capacity upper bounds given by Theorem4
(dashed line) and Theorem 6 (solid line).

VII. CONCLUSION

In this paper, we provide an approach to CTL capacity
scaling through the use of DE links. Our approach has none
of the limitations of the previously proposed approaches. We
provide the upper-bound on the capacity of the hybrid wireless
networks that contain both DE and OD links. We show that
when the probability distribution of DE links follows the
inverse-square law, global routing information is not required
to achieve CTL capacity scaling, which is impossible for any
other power-law distributions. Our findings will benefit the
practical design of large-scale wireless networks.
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APPENDIX A
THE PROOF OFTHEOREM 2

We first compute the normalization constantC of the
probability distribution of the DE links. We consider a node
at the center of the disc, which is similar to the treatment
in [19], with the difference being the node is placed in the
center of a square grid in [19]. Placing the node at another
place makes the calculation complicated and ugly, but it does
not change the scaling behavior with respect ton. The constant
C is derived by the normalization condition as follows

∫

√
n/π

r0

f(r)2πr dr =

∫

√
n/π

r0

C

rα
2πr dr = p

C =
p

π log( n
πr2

0

)
= Θ(

1

log n
) (7)

In the above, the upper integration limit is set based on the fact
that the area isn. The lower limit r0 is introduced to avoid
divergence. Since our model is a continuous approximation
of a discrete network whenn is large, r0 is on the order
of the typical distance between two nearest neighbors, i.e.,
r0 = Θ(1).

Now we describe a communication scheme to achieve
the hop counts prescribed by Theorem 2, using only local
information. Let us fix a destination node and randomly select
a source node, with high probability the distance between the
source and the destination isΘ(

√
n). The packet from the

source reaches its destination inO(log n) phases. Each phase
consists ofO(log n) steps. In each step, the packet travels
from one node to its neighboring node using an OD link. After
arriving at a new node, the new node checks if it has a DE
link that can reduce the current distance to the destination
by half. If it has the DE link, the packet is sent through this
link; otherwise the packet continues on to the next neighboring
node using an OD link. In the last phase, the packet is within
a distance ofO(1) to the destination node and can reach the
destination node using a few OD links.

Since the diameter of the network isΘ(
√

n), and each phase
reduces the distance to the destination by a factor of2, so the
packet can reach the destination inO(log n) phases.

The reason that each phase can be completed within
O(log n) steps is as follows. Suppose the packet starts a phase
at a node with a distanced to the destination. We want to know
the probability that the packet encounters a DE link whose
other end node has a distanced/2 to the destination in the
subsequent steps. Since the events that nodes have DE links
are independent, each step the packet takes is a Bernoulli trial.
The event that the trial is successful is equivalent to that the
current node has a DE link to any of the nodes in the discD
of radiusd/2 centered at the destination, referring to Figure
3. Such an event has a probability given by integrating the
probability density over the area ofD, i.e.,

PDE =

∫

D

C

r2
dA >

∫

D

C

r2
max

dA =
C|D|
r2
max

=
Cπ(d/2)2

(3d/2)2
= Θ(

1

log n
) (8)

Note thatr is the distance between the current node
(not the destination) and an arbitrary node inD; and rmax

is the maximum distance between the current node and any
node inD, which occurs when there is a node sitting at the
edge ofD that is diametrically opposite to the current node.
The expected number of the Bernoulli trial until success is
1/PDE = O(log n). Therefore the phase will be completed in
O(log n) steps with high probability.

Since there areO(log n) phases, and each phase incurs
O(log n) OD hops and1 DE hop, we obtain the results in
Theorem 2.

d/2

s

r

D

rmaxdestination
Current

node

Fig. 3: The setup to compute the probability of encounteringa DE
link that brings the packet within the disc D

APPENDIX B
THE PROOF OFTHEOREM 3

The case of0 < α < 2: We place the node at the center of
the disc. We discussed the reasoning for such placement in the
first paragraph in the proof of Theorem 2. The normalization
constantC is derived by the following equations

∫

√
n/π

r0

f(r)2πrdr =

∫

√
n/π

r0

C

rα
2πrdr = p

=
2πC

(

(n
π )

(2−α)/2 − r
(2−α)
0

)

(2 − α)
= p

C =
(2 − α)p

2π

(π

n

)(2−α)/2

= Θ

(

1

n(2−α)/2

)

(9)

In the above, we have omitted the termr(2−α)
0 in the second

line since it is dominated by the term(n/π)(2−α)/2 asn goes
to infinity.

Let E denotes the event that the source node of a packet
has a distance larger than(n/3π)

1/2 to the destination. Given
the nodes are uniformly randomly distributed in the disc of
arean, the probability of E occurring can be calculated as

Pr[E] = 1 − π((n/3π)
1/2

)
2
/n = 2/3. Consider the discD

of radius nβ(log n)1/4 centered at the destination, with the
constantβ = (2 − α)/6 < 1/3. Thus, the source node is
currently outside the disc when eventE occurs. We calculate
the probability that the node has a DE link to a node withinD
other than the destination by integrating the probability density
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over the area ofD as follows, refer to Figure 4.

PDE =

∫

D

C

rα
dA <

∫

D

C

rα
0

dA =
C|D|
rα
0

=
Cπ

(

nβ(log n)1/4
)2

rα
0

= Θ

(

n2β(log n)1/2

n(2−α)/2

)

= Θ

(√
log n

nβ

)

(10)

In the above,r0 is the minimum distance between nodes
introduced in the proof of Theorem 2, and we have used the
equalityα = (2 − α)/6.

n
β 
(log(n))

1/4

s

r

D

rmaxdestination
Current

node

Fig. 4: The setup to compute the probability of encounteringa DE
link that brings the packet within the disc D

Let F denotes the event that the packet jumps from the out-
side to the inside of the discD usingδ/PDE = δnβ/

√
log n

DE hops, whereδ is a positive constant. Since each DE hop
can be considered as an independent Bernoulli trial with the
probability no more thanPDE , The probability ofF occurring
can be made smaller than1/3 by appropriately choosingδ. We
can compute the joint probability of eitherE not occurring or
F occurring as

Pr[E ∪ F ] ≤ Pr[E] + Pr[F ] = 1/3 + 1/3 = 2/3

For sufficiently largen, the joint probability of bothE
occurring andF not occurring is given by

Pr[E ∩ F ] = 1 − Pr[E ∪ F ] ≥ 1 − 2/3 = 1/3 (11)

Let G denotes the event that the packet can reach the des-
tination within δnβ/

√
log n hops, in any OD and DE link

combinations. We assert thatG can not happen ifE occurs
but F does not occur. We use the method of contradiction to
prove the previous statement. SupposeG happens. Given that
each OD link covers a distance of

√
log n, usingO(nβ) hops,

it is impossible to travel the distance from the source to the
destination, which is(n/3π)1/2, using OD links alone. So, at
least one hop must use a DE link. Further, the last time a DE
link is used, the packet must jump inside the discD (otherwise
using OD links alone is not enough to reach the destination),
which contradict the assumptionF does not occur. Therefore
we have

Pr[G|E ∩ F ] = 0 (12)

Let h be the random variable indicating the number of hops
traveled by the packet to reach the destination, as a conse-
quence of Equation (12), we have

E[h|E ∩ F ] > δnβ/
√

log n

Finally, we have

E[h] > E[h|E ∩ F ]Pr[E ∩ F ] >
1

3
δnβ/

√

log n

which is the result of the first part of the theorem.
The case ofα > 2: The normalization constantC is derived

by the following equations
∫

√
n/π

r0

f(r)2πrdr =

∫

√
n/π

r0

C

rα
2πrdr = p

=
2πC

(

r
(2−α)
0 − (n

π )(2−α)/2
)

(α − 2)
= p

C =
(α − 2)p

2π
r
(α−2)
0 (13)

In the above, we have omitted the term(n/π)(2−α)/2 in the
second line since it is dominated by the termr

(2−α)
0 asn goes

to infinity.
Again, we denoteE as the event that the source node

of a packet has a distance larger than(n/3π)1/2 to the
destination, which has the probabilityPr[E] = 2/3. Let
β

′

= (α − 2)/(2α − 2), γ = 1/(2α − 2). We calculate the
probability that a packet has a DE link that covers a distance
larger thannγ as

Pn,γ = p −
∫ nr

r0

C

rα
2πrdr =

prα−2
0

nγ(α−2)
= Θ(n−β

′

) (14)

We denoteF
′

as the event that the packet encounters a DE
link that covers a distance larger thannγ in δ

′

nβ
′

hops, where
δ
′

is a positive constant satisfyingδ
′

< (3π)
−1/2. Again, each

hop can be considered as an independent Bernoulli trial with
the probability ofPn,γ . By choosing a sufficient small value
for γ

′

, we can make the probability ofF
′

occurring no larger
than1/3. We can compute the joint probability of either E not
occurring orF

′

occurring as

Pr[E ∪ F
′

] ≤ Pr[E] + Pr[F
′

] = 1/3 + 1/3 = 2/3

The joint probability of both E occurring and F not occurring
is given by

Pr[E ∩ F ′ ] = 1 − Pr[E ∪ F
′

] ≥ 1 − 2/3 = 1/3 (15)

We denoteG
′

as the event that the packet can reach
the destination withinδ

′

nβ
′

hops. We assert thatG
′

can
not happen ifE occurs butF

′

does not occur. SupposeG
′

happens. SinceF
′

does not occur, each hop covers a distance
no larger thannγ . Then, the maximum distance covered by
the packet inδ

′

nβ
′

hops is given by

δ
′

nβ
′

nr = δ
′

n1/2 < (
n

3π
)
1/2

Therefore, the packet can not reach the destination (a contra-
diction). So we have

Pr[G|E ∩ F ′ ] = 0 (16)

Let h
′

be the random variable indicating the number of
hops traveled by the packet to reach the destination, as a
consequence of Equation (16), we have

E[h
′ |E ∩ F ′ ] > δ

′

nβ
′
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Finally, we have

E[h
′

] > E[h
′ |E ∩ F ′ ]Pr[E ∩ F ′ ] >

1

3
δ
′

nβ
′

Now supposeγ = 0, then α = ∞ and β
′

= 1/2. In such
case an OD hop covers a larger distance

√
log n thannγ = 1.

It takesO(nβ
′

/
√

log n) = O(
√

n/ logn) hops to reach the
destination that has a distance of(n/3π)1/2.
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