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Abstract— We study the problem of accurate localization of
static or mobile nodes in a wireless ad hoc network, using
the distance estimates of a group of untrusted anchors within
the communication range of the nodes. Some of the anchors
may be malicious and may lie independently about the distance
estimate. The malicious anchors may also collude to lie about the
distance estimates. In both cases, accurate node localization may
be seriously undermined. We propose a scheme that performs
accurate localization of the nodes in the network despite the
presence of such malicious anchors. We also show how to
identify most of these malicious anchors. In the case where
measurements are error-free, we derive a critical threshold B,
for the number of malicious anchors that can be tolerated in the
localization process without undermining accuracy. We also show
how to correctly localize a node and identify all the malicious
anchors in this setting. In the presence of measurement errors,
we propose a convex optimization based localization scheme
that can accurately localize a node, as long as the number of
malicious anchors in its communication range is no more than
B. Simulation results show that our schemes are very effective.
When the measurements are error prone and the number of
malicious anchors is no more than B, our scheme localizes a node
with an error less than 8% and is also able to identify a significant
number of the malicious anchors. Our schemes guarantee that a
true anchor is not identified as malicious.

Index Terms: Secure localization, wireless ad hoc network,
convex optimization.

I. INTRODUCTION

Large scale distributed wireless networks are becoming
common in both the military and civilian domains because
of their relative ease of deployment and minimal requirement
of infrastructure [1]. Despite significant improvements in the
miniaturization and seamless deployment of the nodes making
up the wireless network [12], there are still many fundamental
problems that need to be addressed. The problem of node
localization in the presence of malicious anchors is one such
fundamental problem.

In an infrastructureless wireless network, for cost effective-
ness, not all nodes are equipped with self-localizing abilities.
Most nodes localize themselves using their distance estimates
obtained from a group of network nodes called anchors. The
anchors are wireless nodes that are fixed and know their
own positions, either by using a GPS device or from pre-
programmed information. The problem of accurate localization
is fairly complex due to the inherent errors in measurements
resulting from barriers, such as transmission delay and interfer-
ence. The presence of malicious anchors makes this problem
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significantly more complex and also introduces the need for
secure localization.

In this paper, we study the problem of secure and accurate
localization of a mobile/static node (MN) by itself, with the
help of distance estimates, obtained from a group of untrusted
anchors within its communication range. We also study how
the malicious anchors can be identified. Secure localization
is necessitated by the untrusted environment in which most
wireless networks operate. In a significant number of works
in the literature, the anchors are assumed to be trustworthy
and non-tamperable. However, this is a strong assumption in
an untrusted environment. In the lifetime of a network, the
possibility of anchors being tampered or compromised by an
adversary is fairly high. These anchors may be re-programmed
by the adversary to provide false distance estimates to the
nodes that are localizing themselves. Moreover multiple ma-
licious anchors may collude, resulting in false localization of
a node. This is a critical setback for the localization process
as incorrect localization may have serious repercussions. The
problem of secure localization has been previously studied in
the literature (e.g., [8], [14], [15], [16], [25], [27]). To our best
knowledge, only the work done by Li et al. in [16] bears close
resemblance to the problem of secure and accurate localization
in the presence of malicious anchors that we are studying.
However, our localization scheme has better efficiency and
higher accuracy. Our localization scheme is based on an
Enhanced Mutual Authenticated Distance bounding (E-MAD)
technique, which is an enhancement of the distance bounding
(DB) techniques proposed in [3], [27].

Given an MN t and a set St of anchors in the communica-
tion range of t, the bound circle of an anchor Ai ∈ St, with
respect to t, is the circle with Ai’s position as the center and
the estimate of the distance between t and Ai (denoted by rti)
as the radius. We will use Cti to denote this bound circle, and
use Dti to denote the corresponding disk. In the rest of this
paper, any reference to the bound circle of an anchor implicitly
assumes that it is with respect to an MN. When there is no
measurement error and the anchors are all truthful, the location
of the MN is the point in the plane where all the bound circles
intersect. In this case, the malicious anchors in the network can
interfere with the localization process by providing incorrect
distance estimates so that all bound circles do not intersect at
a single point, thus compromising the localization process. A
natural question to ask is, “How many malicious anchors can
the localization process tolerate?” In answering this question,
we derive a critical threshold B, for the number of malicious
anchors that can be tolerated in the localization process of an
MN without undermining accuracy. We study the problem of
secure and accurate localization in two scenarios. In the first
scenario, we assume that the distance estimates are error-free.
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In this setting, we show how to localize the MN and identify
the malicious anchors. In the second scenario, we assume
that the distance estimates are error-prone. In this setting, we
propose a convex optimization based localization scheme to
localize the MN. When the number of malicious anchors is
more than B, no localization algorithm can guarantee accuracy
of localization. Thus to better demonstrate the effectiveness of
our algorithms, in the simulation studies, we assume that the
number of malicious anchors in the range of the MN is at
most B. When the number of malicious anchors is at most B,
our schemes can perform accurate localization of an MN and
also identify the malicious anchors. They also guarantee that
there exist no false positives, that is, true anchors are never
identified as malicious.

In Section II, we briefly survey related work in the area of
secure localization in wireless ad hoc networks. In Section III,
we present the system model. In Section IV, we discuss local-
ization in the absence of measurement errors. In Section V,
we present our mechanism for localization in the presence
of measurement errors. In Section VI, we present simulation
results. We conclude our paper in Section VII.

II. RELATED WORK

Lazos and Poovendran [14] proposed a range independent
localization algorithm to securely estimate the position of
nodes in a wireless sensor network using beacons transmitted
from anchors. Li et al. [16] identified a list of attacks that
are unique to localization and proposed statistical methods to
make triangulation and RF-based localization attack-tolerant.
C̆apkun et al. [25] proposed a novel approach to secure
localization based on hidden and mobile base stations. In [8],
Du et al. proposed a general scheme to detect localization
anomalies due to the presence of adversaries. In [15], La-
zos et al. proposed a range-free localization and location
verification scheme for wireless sensor networks. In [17],
Liu et al. introduced several techniques to detect and remove
compromised beacon nodes, avoid false detections, and also
detect replayed beacon signals. In [27], C̆apkun et al. ana-
lyzed the resistance of positioning techniques to position and
distance spoofing attacks and proposed a scheme that can
be used for secure positioning in wireless networks. In [11],
Hwang et al. proposed a distributed mechanism to identify
malicious anchors in the network that are faking their ranging
information. The work assumes that the ranging information
is broadcast by the anchors in the network to be used for
localization.

There have been many significant works that use optimiza-
tion for localization in wireless networks. Here we identify
a few that are pertinent. In [18], Lou and Zhang presented a
distributed range-free localization scheme for mobile sensor
networks. In [29], Vivekanandan and Wong proposed a range-
free localization technique named Concentric Anchor Beacon
(CAB). In [4], Bulusu et al. proposed distributed algorithms
for localization of low power devices based on connectivity.
In [7], Doherty et al. described a method that uses connectivity
constraints and convex optimization for localization in a wire-
less sensor network where some of the beacon nodes know
their positions. Nagpal et al. [20] and Savvides et al. [23]
proposed localization schemes using distributed propagation of

location information and multilateration. Cheng et al. in [24],
presented a time difference of arrival based position sys-
tem for efficient location detection using long-range beacons.
In [22], Savvides et al. derived the Cramér-Rao Lower Bound
(CRLB) for network localization. They proposed that the
error introduced by a localization algorithm is as important
as measurement error when assessing end-to-end localization
errors. In [21], Niculescu et al. applied the CRLB to a few
of the general classes of localization problems. Optimization
based approaches have also been used for localization in the
presence of Non-Line Of Sight (NLOS) errors [6], [5], [13],
[28]. In this paper, we present a secure localization scheme that
performs accurate localization and also effectively identifies
a large number of malicious anchors in the network. We
compare our scheme with the Least Median Square (LMS)
scheme [16] and the popular Minimum Mean Square Error
(MMSE) scheme [16], [23] for localization and demonstrate
its effectiveness.

III. SYSTEM MODEL

Our localization framework is based on the following as-
sumptions. The network consists of a set of anchors A =
{Ai, i = 1, . . . , n} that are fixed after deployment. Each an-
chor Ai knows its own position (also denoted as Ai). All com-
munications between the anchors and an MN are bidirectional.
Error resilient encoding is used at the physical layer to make
the wireless communication error-free. For distance estimation
between an anchor Ai and an MN t, the measurement error
proportion is given as εti, where εti ∈ [−εmax, εmax], εmax

being a known system parameter such that 0 ≤ εmax < 1. For
instance, if an MN t obtains a distance estimate d′

ti from a true
anchor Ai, given that dti is the true distance between Ai and
t, then d′

ti ∈ [dti · (1− εmax), dti · (1+ εmax)]. The inequality
bounding εmax ensures that its value does not become greater
than or equal to 1, resulting in a possible distance estimate
that is zero or negative, which is infeasible. We note that
measurement errors generally consist of processing delay and
propagation delay and it is possible to obtain the worst case
upper bounds for both of them using statistical analyses [9],
[10], [27]. Anchor Ai may also lie to MN t about the distance
estimate, with the lying proportion given by θti. Hence if we
denote the Euclidean distance between Ai and t as dti, the
distance estimate with measurement errors and considering
malicious anchors is

rti = dti · (1 + εti) · (1 + θti). (1)

If anchor Ai is truthful, then θti = 0, otherwise θti > 0
(see discussions in Section III-B). When the measurements are
error-free, we have εti = 0. We have positive measurements
errors when εti > 0 and negative measurements errors when
εti < 0. Recall that when the measurements have errors, all
the bound circles Cti may not intersect at a single point. In
the presence of positive measurement errors, the intersection
of the disks Dti results in a compact convex region Rt, which
contains the MN t. In the presence of negative measurement
errors, this intersection may be empty. In this case, our scheme
enlarges the radii of all the disks by a factor of 1/(1− εmax),
guaranteeing a non-empty intersection region R′

t ⊇ Rt, which
contains t. As in [14], [16], [27], we assume that the MN
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is pseudo-static, that is, it is static during the localization
process which is of a short duration. We assume that the
nodes are in the 2-dimensional Euclidean plane E

2, where ‖x‖
denotes the Euclidean norm of the vector/point x. However,
our techniques apply to 3-dimensional space as well. We
note that the distance estimates from at least three non-
collinear anchors are necessary for localization of a node in
2-dimensions. We also assume that the density of the anchors
in the network is uniform. In such a setting, the mobility of
the MN in the network does not affect its average location
accuracy.
A. Network Model and Assumptions

We assume that the anchors and the MNs are equipped
with omnidirectional antennas. The MN and the anchors can
generate and share symmetric keys for secure and authentic
communication. The positions of no three anchors in the
network are collinear. The MNs know the positions of all the
anchors in the network. Given that the number of anchors
in the network is not large, this requirement can be easily
satisfied. The localization technique is assumed to use single-
hop based communication between the anchors and the MNs.
Multi-hop based communication, which is the execution of
high speed distance bounding between an anchor and an MN,
using multiple intermediate MNs, is prone to high errors
and large distance enlargements. Hence it is inappropriate for
high speed distance bounding. As a result, we study only
the case where single-hop communication is used for high
speed distance bounding. We assume that the anchors and
the MNs use Ultra-Wide Band (UWB) radio for commu-
nication [10]. UWB radio is suitable for accurate wireless
localization because of its high resolution and robustness in the
presence of multipath components [10]. For localization, we
use an Enhanced Mutual Authenticated Distance bounding (E-
MAD) protocol, an enhancement of the technique proposed by
Čapkun et al. [26], which uses high speed distance bounding
(DB). We assume that the anchors and the MNs are capable
of executing this protocol. Note that the E-MAD protocol
ensures that both the anchors and the MNs can estimate their
distance from each other [27], [26], as detailed in the next
subsection. Although the error in high speed DB is of the
order of 0.08% [27], our schemes are robust enough to handle
bigger errors ranging between [0, 10%] of the measured value
as will be demonstrated using the simulations results.
B. Threat Model and Security Assumptions

In a wireless ad hoc network, the adversary may be classi-
fied as either an outside adversary or an inside adversary. An
outside adversary is an entity that is not part of the network
and is generally assumed to have computation ability and
communication range that are orders of magnitude higher than
the nodes in the network. However, these abilities are not
unbounded. An outside adversary can jam or eavesdrop on
communication, compromise legitimate nodes, and inject false
nodes in the network. An inside adversary, on the other hand,
refers to a node in the network that has been compromised,
in most cases by an outside adversary. The inside adversary
is also a potent attacker as it forms a part of the system and
hence is privy to the shared secrets required for secure mutual
and group communications.

In this paper, we address the issues of secure localization
of an MN in the presence of inside attackers (malicious
anchors) and also identification of these attackers. These inside
attackers are compromised anchors that lie about their distance
estimates and may also collude to localize the MN incorrectly.
Lying anchors can compromise the location discovery process,
in turn affecting neighbor discovery and routing. This may
seriously malign the usefulness of the network. We do not
consider the problem of the MN attempting to lie about its
position. Previous works, such as [14], [27], already exist in
the literature addressing this issue in some detail.

We assume that the communication in the MN localization
process is secure and authentic. Use of E-MAD, which is
based on high speed DB, prevents wormhole attacks [12],
which are a potent attack against localization [27]. The fact
that the message exchanges in DB happen at the speed of light,
the practical upper limit of the speed of radio waves, ensures
that two malicious anchors cannot create a low latency link
(wormhole) as it requires a speed higher than that of light.
In addition, the fact that the MNs know the positions of the
anchors helps prevent sybil attacks [12], because a malicious
anchor that uses multiple false positions will be immediately
identified by an MN. The only other possible attacks are
Denial of Service (DoS) attacks and distance enlargement or
reduction attacks by the malicious anchors. Protection against
DoS attacks are outside the scope of this paper. However, we
note that there are mechanisms in the literature that address
DoS attacks in wireless networks to varying degrees [30].
Another possible attack, which is not part of our threat model
is the one in which the malicious anchors can collude with
some compromised MNs to incorrectly localize the other MNs.
We do not study this attack scenario, although our algorithms
can be modified to handle these attacks to a significant extent.

Before discussing the distance enlargement/reduction at-
tacks, we first describe the E-MAD protocol. Fig. 1 shows
the E-MAD protocol executed by two nodes u and v. Without
loss of generality, we assume that u is an anchor and v is an
MN. The general mechanism of this protocol is the same as
that proposed by Čapkun et al. [26]. However, instead of using
message authentication codes (MACs) for authentication, we
use a one way cryptographic keyed hash function (CKHF)
to encrypt the bit-commitment as shown in the initialization
phase. The prover sends the bit-commitment and the cor-
responding key for the CKHF. The verifier opens the bit-
commitment in the authentication phase, after receiving the
required random number, and verifies the prover. This results
in the exchange of a smaller message in the authentication
phase and in addition saves two operations at each node,
namely a MAC generation and the verification of the MAC
of the node at the other end. Thus, E-MAD requires fewer
message exchanges and less computation at the anchors and
the MN in comparison to the DB technique proposed by
Čapkun et al. [27]. We note that the algorithms used for
MAC generation can be used as CKHF as well, hence our
savings are not because of the use of different algorithms. The
use of CKHF for sending bit-commitment allows for implicit
authentication and hence the use of the explicit MAC based
authentication is not necessary. This results in the savings in
our scheme. The distance bounding phase helps both entities
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Fig. 1. Enhanced Mutually Authenticated Distance Bounding (E-MAD) using Cryptographic Keyed Hash Function (CKHF).

involved in the E-MAD protocol to calculate an upper bound
on their mutual distance. To calculate the upper bound of its
distance from v, u calculates the average time taken in sending
a bit and receiving a reply from v. The speed of light times
half of this average time gives the upper bound on the distance
between u and v. Similarly, v can calculate its distance from
u.

The use of the E-MAD protocol prevents distance reduction
attacks. Given that the message exchange happens at the speed
of light there is no way that an anchor or the MN can speed
up the transmission of the exchanged bits. Hence neither the
anchor nor the MN can reduce the estimate of their distance
from each other. However, distance enlargement is still possi-
ble because the anchor/MN can enlarge the distance estimate
during the MAD protocol by delaying message transmissions.
This cannot be identified by the entity at the other end. In this
paper, we assume that some of the anchors may be malicious,
but all the MNs are truthful. There exist schemes in the
literature that use co-operating anchors to identify malicious
MNs [25], [27], [26]. Our schemes can be easily modified to
do the same. For brevity we do not discuss it here. Note that
due to the infeasibility of distance reduction attacks, when the
malicious anchors collude to confuse the localization process
of the MN, they can only do so by causing an enlargement of
the distance estimates.

In a network with malicious anchors, the region Rt could
be considerably large since there is no limit on the amount by
which a malicious anchor lies. This introduces a significant
amount of uncertainty in the MN’s location. In Section IV, we
show that when the measurements are error-free, it is possible
to obtain a critical threshold B, for the number of malicious
anchors out of N anchors in the range of the MN, whose
presence does not undermine the exact localization process. In

this situation, we show how to precisely localize the MN and
also identify the malicious anchors. In Section V, we relax
the assumption of non-zero measurement errors to study a
more realistic problem. For this problem, we propose a scheme
for accurate MN localization. Our results indicate that if the
number of malicious anchors is no more than B, our technique
can still localize the MN with a high accuracy and identify a
significant number of malicious anchors.

IV. LOCALIZATION IN THE ABSENCE OF MEASUREMENT
ERRORS

If the distance estimates are error-free and the anchors are
truthful, then the position of an MN t is the common point
of intersection of the bound circles, provided that there are
at least three non-collinear anchors within its communication
range, as shown in Fig. 2(a).

Given that the only possible attacks are distance enlarge-
ment attacks, if some of the anchors in the range of t are lying
by enlarging their corresponding distance estimates, then t
will be located inside their corresponding disks. Hence, it may
appear that if some of the anchors are lying but the majority
(more than half) is truthful, then we can still correctly localize
t as the point where the majority of the bound circles intersect.
However, in the following example, we show that even if the
majority of anchors are truthful, there is still a possibility that
the malicious anchors can collude so that the majority of the
bound circles intersect at a point which is different from the
true location of t.
A. Motivating Example

Figure 2(b) shows a scenario with an MN and 9 anchors
in its range labeled as {1, 2, . . . , 9}. The truthful anchors
(whose bound circles are shown in solid) are given by the
set T = {1, 2, 3, 4, 5} and the malicious anchors (whose
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Fig. 2. (a) Correct localization in the absence of measurement errors and
malicious anchors; (b) Incorrect localization in the presence of malicious
anchors.

bound circles are shown in dashed) are given by the set
F = {6, 7, 8, 9}. The correct position of the MN is the point
of intersection B of the bound circles of anchors in T . The
malicious anchors lie by enlarging their distance estimates,
such that the point B does not lie on the circumference of
their bound circles, but is contained inside them. In addition,
the malicious anchors ({6, 7, 8, 9}) collude in an intelligent
way to have their bound circles intersect at another point A
where two truthful anchors 4 and 5 also intersect. Hence, the
number of anchors that intersect at the true location of the
MN (point B) is 5 ({1, 2, 3, 4, 5}) and the number of anchors
that intersect at the false location of the MN (point A) is
6 ({4, 5, 6, 7, 8, 9}). This misleads the localization process,
resulting in the localization of the MN at a false position A,
where most of the bound circles intersect.
B. Conditions for Exact Localization

As shown in the previous example, even if the majority of
the anchors in the range of the MN are truthful, it still does
not guarantee exact localization of the MN. Hence, in what
follows, we derive a critical threshold B, for the number of
malicious anchors out of N anchors in the communication
range of an MN that can be tolerated by the localization
process without undermining accuracy.

Lemma 1: Let A and B be two distinct points in the
Euclidean plane E

2. If three circles C1, C2, and C3 all pass
through both A and B, then the three circles are collinear. 2

Corollary 1: Assume that no three anchors in the network
are collinear. Then at most one point in the Euclidean plane
E

2 can have three or more bound circles passing through it.
2

Theorem 1: Given that the number of anchors in the range
of an MN t is N and that some of them are malicious and col-
luding, the minimum number of truthful anchors required for
exact localization of t in the presence of colluding malicious
anchors is given by dN/2e + 2. 2

Proof: By deleting anchor 9 in our motivating example,
we will have a scenario where five bound circles ({1,2,3,4,5})

intersect at point B and five bound circles ({4,5,6,7,8}) inter-
sect at point A. Therefore the presence of dN/2e+1 (N = 8)
truthful anchors still does not guarantee the exact localization
of an MN. Next, we shall show that the presence of at least
dN/2e + 2 truthful anchors guarantees the exact localization
of the MN. Recall that t also denotes the true location of the
MN t. Therefore the bound circles of all the truthful anchors
intersect at point t. For any other point t′ to be a possible
candidate location for the MN, another set of dN/2e+2 bound
circles would have to intersect at t′. From Corollary 1, the
maximum number of truthful anchors that can intersect at t′

is 2 (because they already intersect at t). In addition, if the
remaining bN/2c − 2 malicious anchors collude, t′ can also
be the point of intersection of those bN/2c − 2 malicious
anchors. Thus making the number of intersecting circles at
t′ to be bN/2c − 2 + 2 = bN/2c. Hence, any point (except
t) in the plane cannot have more than bN/2c bound circles
intersecting at it. Thus, the MN is exactly localized at point t.
This proves the theorem.

The above theorem shows that if there are N anchors in
the range of an MN, then the maximum number of malicious
anchors that can be tolerated by the localization process
without undermining accuracy is bN/2c−2. We call this value
the critical threshold and denote it by B.
C. Identification of Malicious Anchors

Under the conditions described above for exact localization
of an MN t, it is easy to catch the malicious anchors once the
MN has been localized. For each anchor Ai, the Euclidean
distance dti is computed. Since each malicious anchor lies by
giving a wrong estimate of the distance between its position
and t, an anchor Ai will be malicious if dti 6= rti, It should be
noted that all malicious anchors can be identified irrespective
of the amount of their distance enlargements.

In the next section, we will address the problem of MN
localization in the presence of measurement errors.

V. LOCALIZATION IN THE PRESENCE OF MEASUREMENT
ERRORS

Distance measurements in a wireless network are generally
prone to errors due to the noisy and delay prone wireless
medium. Hence, the distance estimates of an MN are error-
ridden. Using a specialized hardware and UWB radio, the
measurement errors in DB can be as low as 15 cms at
a distance of 2 kms when performed outdoors (0.0075%)
and 14 cms at a distance of 7 m (2.0%) when performed
indoors [9], [27]. We present a localization scheme to be used
in this scenario and demonstrate using simulations that our
scheme is robust even when the measurement errors are as
high as 10% of the true value. This shows the suitability of
our scheme in more error prone and hostile environments.

Our localization technique uses convex optimization to
estimate the position of an MN. As discussed before, in the
event of negative measurement errors, the intersection region
Rt of the disks Dti may be empty. In this case, we let
the MN t increase the distance estimates rti by a factor of
1/(1 − εmax), resulting in the increased distance estimate
r′ti = rti/(1 − εmax). Denote the corresponding increased
bound circles and disks by C ′

ti and D′
ti, respectively. The
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intersection of the D′
ti results in a non-empty region R′

t in
which the MN is guaranteed to exist.

Since we make no assumption regarding the distribution of
the distance estimates of the MN from an anchor, all points
inside the region R′

t are likely to be the position of the MN.
The worst case error in estimation would be minimized if
we use the geometric center xc of R′

t as the location of
the MN, where xc is the point such that maxx∈R′

t
‖x −

xc‖ ≤ maxx∈R′

t
‖x − y‖, for any y 6= xc. However,

the geometric center is difficult to compute. Therefore, we
solve the following convex optimization problem to obtain an
approximation to the geometric center.

max
x,δ

δ

subject to ‖x − Ai‖
2 ≤

[

r′ti · (1 − δ)
]2

, i = 1, . . . , N,
x ∈ E

2, δ ≥ 0.
(2)

Essentially, we are shrinking all disks (D′
ti) simultaneously

using a common factor (1− δ), as much as we can, provided
that they still have a non-empty intersection. The first N con-
straints in (2) ensure that the intersection of the disks is non-
empty. The objective function is to maximize δ, consequently
minimizing the shrinking factor (1 − δ). Clearly, this convex
optimization problem has a unique optimal solution (x∗, δ∗).
We call x∗ the algebraic center of R′

t. We transform the
constrained optimization problem in (2) into the following
unconstrained optimization problem,

min
x,δ

−λ · δ−

N
∑

i=1

log
[

(r′ti · (1− δ))2 −‖x − ai‖
2]

− log(δ),

(3)
where λ is the Lagrangian multiplier [2]. This problem can be
solved efficiently using the barrier method [2] as presented in
Algorithm 1. In Algorithm 1, the minimization in the centering
step uses Newton’s method [2] with a tolerance η = 1×10−6.

Algorithm 1 Illustration of Barrier Method
1: Given a strictly feasible x, λ = λ(0) > 0, µ > 1, tolerance

ε > 0. {λ(0) = 1.0, µ = 10.0}
2: repeat
3: Centering Step: Starting at x, compute x∗(λ) by mini-

mizing the objective in (3).
4: Update x := x∗(λ); λ = µ × λ.
5: until N/λ ≤ ε {ε = 1 × 10−6}

As the barrier method progresses, the value of δ keeps
increasing. This emulates the reduction of the disks D′

ti. After
a number of iterations, when the size of R′

t has been reduced
significantly, the algorithm stops and outputs a point x∗ which
is the algebraic center of R′

t. We use the point x∗ as the
estimate of the location of the MN.

In this paper, we assume that the MN t has adequate
resources to perform Algorithm 1 for localization. On the other
hand, if it does not, then the localization may be performed by
the anchors and the position information can be subsequently
conveyed to the MN.

A. Identification of malicious anchors

It could happen that a malicious anchor Ai lies by enlarging
its distance estimate, but

rti = dti · (1 + εti) · (1 + θti) ≤ dti · (1 + εmax), (4)

either due to a small or negative value of εti or due to a
small value of θti. In this case, we would consider Ai truthful
because the aggregated enlargement of the distance estimate
cannot be differentiated from the case with measurement error
only. On the other hand, if Ai is a truthful anchor (i.e. θti = 0),
then rti = dti · (1 + εti) ≤ dti · (1 + εmax). Therefore, for
our purpose, Ai is a malicious anchor if and only if r′′ti > dti.
However, in the presence of measurement errors, the position
of the MN cannot be computed precisely. Hence dti cannot be
calculated exactly. In our scheme, we use an upper bound of
dti, denoted by d̂ti, which can be computed easily. According
to our analysis, if r′′ti > d̂ti, anchor Ai must be a malicious
anchor.

Algorithm 2 Algorithm for Identifying Malicious Anchors
1: GIVEN: The algebraic center x∗ of R′

t and
2: VERTICES := {x| x is a vertex (defined in the text) of

R′
t}

3: V ′ := {y| y is the mid-point of the major arc of the bound
circle constituting the boundary of R′

t}
4: VERTICES :=VERTICES ∪V ′.
5: r∗ := 0. /∗ Defines the radius of the intersection region

R′
t ∗/

6: for all y ∈ VERTICES do
7: if ‖y − x∗‖ > r∗ then
8: r∗ := ‖y − x∗‖.
9: end if

10: end for
11: for all anchors Ai, 1 ≤ i ≤ n do
12: r′′ti := rti/(1 + εmax). /∗ rti is reduced ∗/
13: if r′′ti > ‖x∗ − Ai‖ + r∗ then
14: Anchor Ai is malicious.
15: else
16: Anchor Ai is not malicious.
17: end if
18: end for

Algorithm 2 presents our scheme to identify malicious
anchors. Lines 2 through 10 compute r∗, which is the radius of
the smallest circle centered at x∗ that covers all points in R′

t.
Therefore, d̂ti , ‖Ai−x∗‖+r∗ is an upper bound of dti. The
vertices of region R′

t in Line 2 of Algorithm 2 are obtained
by calculating the points of intersection of all possible pairs of
distance bound circles C ′

ti and choosing only the points that
lie inside or on all the circles. The boundary of R′

t consists
of major or minor arcs of some of the bound circles. For each
major arc on the boundary. We also add its mid-point as the
vertex. Following Lemma 2, the largest distance from x∗ to a
point in R′

t occurs at a vertex. This guarantees that d̂ti is an
upper bound of dti, because

dti = ‖Ai−t‖ ≤ ‖Ai−x∗‖+‖x∗−t‖ ≤ ‖Ai−x∗‖+r∗. (5)

Lines 11 to 18 use the condition r′′ti > d̂ti ≥ dti to catch some
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of the malicious anchors.
Lemma 2: Let two circles C1 and C2 with radius r1 and

r2 respectively, intersect at two points p and q. Let the minor
arc corresponding to C1 be pq_

1 and that corresponding to C2

be pq_
2. If pq_

1 ≥ pq_
2, then r1 ≤ r2. Also if r1 ≥ r2, then

pq_
1 ≤ pq_

2. 2

Proof: We will prove this by contradiction. Let us assume
that r1 > r2, then the line C1C2 joining the centers of C1 and
C2 and bisecting chord pq intersects C2 at two points, say l
and m, where m is the point on the major arc pq_

2. m should
be inside C1 as r1 > r2. This implies that C2 intersects C1 at
4 non-collinear points (p and q being 2 of them). According
to the properties of circles, only one unique circle can pass
through three or more non-collinear points. Thus C1 and C2

are the same circle, this implies that r1 = r2, which is a
contradiction. Thus we prove that r1 ≤ r2. Since pq_

1 ≥ pq_
2,

thus pq_
2 ∈ C1. Using negation, ∼ (pq_

1 ≥ pq_
2 =⇒ r1 ≤ r2),

we have, r1 ≥ r2 =⇒ pq_
1 ≤ pq_

2.
We note that Algorithm 2 does not guarantee catching all

malicious anchors. Our simulation results to be presented in
the next section show that our scheme is very effective. As
discussed above, our scheme does not have false positives,
that is, it never identifies a truthful anchor as malicious.

VI. SIMULATION RESULTS

We have implemented the proposed schemes in Matlab
7.0.4. The simulation region was assumed to be a field of
dimensions 100m × 100m. The communication range of the
anchors and the MN was chosen to be 35m. The position
of the MN t was chosen randomly in the field. To simulate
a certain number of anchors in the range of the MN t,
we randomly deployed anchors inside the range of t. The
maximum value of the measurement error proportion was
chosen to be εmax = 0.1. The maximum value for the
proportion of lie was chosen as θmax = 1.0. So, a malicious
anchor Ai with rti as its distance estimate (with or without
measurement error) from t, set its distance estimate to be a
random value in [rti, rti · (1 + θmax)]. We also studied the
effectiveness of our scheme with different values of θ. For the
case without measurement errors, the results were averaged
over 100 iterations for a given total number of anchors in the
range of the MN. For all the runs, the number of malicious
anchors is no more than B as defined in Section IV. Our
scheme localized the MN correctly in 100% of the cases and
also caught the malicious anchors with a success rate of 100%.
We do not present the result here because it is guaranteed by
theory as well.

For the case with error prone measurements, to demonstrate
the effectiveness of our scheme we compare the error in
localization in our scheme with that in the LMS scheme [16]
and the MMSE technique [23]. It is well-known that the
MMSE technique is prone to large errors when the anchors
are lying [19]. Our simulation results, which are averaged over
50 runs, are presented in Figs. 3, 4, and 5. If the number
of anchors in the range of t is given by N , the number
of malicious anchors M belongs to {1, . . . , bN/2c − 2}. In
the simulation, the number of anchors N in the range of
an MN belonged to {7, . . . , 12}. Fig. 3 shows the average,
maximum, and minimum fraction of malicious anchors that

were caught by our scheme over 50 runs. Fig. 3(a) shows the
results when the anchors are not colluding, whereas Fig. 3(b)
shows the results when the malicious anchors were colluding.
To simulate collusion between the malicious anchors, the
malicious anchors attempted to localize the MN 35m away
from its true location. The choice of this value for the false
position was motivated by the fact that the farther the false
position of MN t is from its true position, the more is the
resultant disruption in localization. Hence we chose a distance
difference that is equal to the transmission range so as to model
a large deviation from the true position due to collusion. When

7 8 9 10 11 12
0

0.2

0.4

0.6

0.8

1

1.2

Total number of anchors

F
ra

ct
io

n 
of

 m
al

. a
nc

s.
 c

au
gh

t

 

 

Avg. caught fraction
Min. caught fraction
Max. caught fraction

(a) The non-colluding case
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(b) The colluding case

Fig. 3. Fraction of malicious anchors caught by our scheme
the anchors were not colluding, on an average our scheme
was able to identify at least 45% of the malicious anchors.
When the malicious anchors were colluding, on an average
more than 85% of them were caught. This is because when
the malicious anchors colluded, they attempted to localize the
MN 35m away from t. This resulted in a large enlargement
of their bound circles, hence making them more susceptible
to getting caught. To study the effect due to the amount of
malicious anchors are lying, we study the result corresponding
to varying values of θmax (in the non-colluding case) and the
distance between the false position and t (in the colluding
case). These results are presented in Fig. 4. In this setting, the
value of N was 12 and that of M was 4. For each data point on
the X-axis, the bar on the right represents the average number
of malicious anchors in the range of t and the bar on the left
represents the average number of malicious anchors caught.
Fig. 4(a) illustrates the case where the malicious anchors are
not colluding. The lying proportion θ was assigned values
between 0.2 and 1.0 with a step size of 0.2. Fig. 4(b) illustrates
the case where the malicious anchors are colluding to localize
t at a false position. The distance between t and and the false
position was assigned values ranging from 5m to 35m in steps
of size 5m. We observe that with the increase in the value of
θmax in the non-colluding case or the increase in the distance
in the colluding case, the number of malicious anchors in
the range of t increases. This is due to the increase in the
magnitude of their lying potential (θmax or the distance). Thus
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Fig. 4. Graph showing the number of malicious anchors caught with a change
in the amount by which they lie.

the number of malicious anchors that do not satisfy Equation
(4) and are designated as malicious also increases. We observe
that with an increase in the malicious anchors lying potential,
more number of these anchors were caught. In addition, with
a higher value of θmax or the distance between the false
position and t, the percentage of malicious anchors caught
by our scheme also increases.
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Fig. 5. Comparison of localization error in MMSE, LMS, and our scheme.

Fig. 5 shows the comparison of our scheme with other
schemes, namely LMS (denoted as Med-MSE) and modified
MSE (denoted as MMSE). Fig. 5(a) presents the result when
the malicious anchors are lying without collusion. Fig. 5(b)
presents the result when the malicious anchors are colluding.
With the use of only the estimates obtained from anchors that
have been identified by our scheme to be true, the modified
MMSE scheme results in an average estimation error that is
comparable with that obtained when using the LMS scheme,

which is more computation intensive [16], [19]. However, the
error obtained by our scheme is always less than that from
the other two techniques. With an increase in the number
of anchors, the use of our scheme results in a decrease in
the value of localization error. This is expected, because the
number of true anchors increases with the increase in the
number of anchors, resulting in a reduction in the size of R′

t.
Consequently, reducing the error in the use of our scheme
and refining the estimate. However, the basic least squares
technique on which the LMS and MMSE schemes are based
can not guarantee such a refinement. Our scheme is also better
than the LMS/MMSE schemes in another aspect. It ensures
that the MN being localized is certain to exist inside R′

t,
obtained in Algorithm 1. The LMS and the modified MMSE
schemes cannot provide any such guarantees.

When the anchors are colluding, with the use of the LMS
scheme the estimation errors first increase with increase in the
number of anchors because the number of malicious anchors
also increase, and then decrease as the number of true anchors
become large. The modified MMSE scheme gives better results
than the LMS scheme as the malicious anchors are removed
from the estimation process. This demonstrates that even the
modified MMSE scheme, which is much simpler than the
computation intensive LMS scheme, can perform much better
localization if the malicious anchors are effectively removed
from the localization process. Our scheme provides even better
results than the modified MMSE scheme, with the localization
error value being less than half of the others in most cases. The
maximum value of the average estimation error was less than
2.5m when N was 8, which is less than 8%. The simulation
results underline the efficacy of our scheme for improving
localization accuracy in the presence of malicious anchors.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we have proposed a robust and secure schemes
for MN localization in the presence of malicious anchors. We
proved a critical threshold for the number of malicious anchors
that can be tolerated by the localization process without
undermining the accuracy of MN localization in an error-free
environment. Our schemes perform robust localization when
there are no measurement errors and also when both positive
and negative measurement errors exist. Simulation results
demonstrated the effectiveness of our schemes in localizing
the MN and also identifying the malicious anchors.
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