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Abstract— In this paper, we present a game theoretic study of
the problem of routing in networks with max-min fair congestion
control at the link level. The problem is formulated as a non-
cooperative game, in which each user aims to maximize its
own bandwidth by selecting its routing path. We first prove the
existence of Nash Equilibria. This is important, because at a Nash
Equilibrium (NE), no user has any incentive to change its routing
strategy—leading to a stable state. In addition, we investigate
how the selfish behavior of users may affect the performance
of the network as a whole. We next introduce a novel concept
of observed available bandwidth on each link. It allows a user
to find a path with maximum bandwidth under max-min fair
congestion control in polynomial time, when paths of other users
are fixed. We then present a game based algorithm to compute
an NE and prove that by following the natural game course the
network converges to an NE. Extensive simulations show that
the algorithm converges to an NE within 10 iterations and also
achieves better fairness compared with other algorithms.

1. Introduction
Routing is the process of selecting paths in a network along
which to send data packets. In communication networks, the
choice of a route between a source-destination pair has a
significant bearing on the resulting bandwidth. For example,
in peer-to-peer networks, there may be several pairs of peers
sharing volumes of data between each other. The objective
of each pair of peers, considered as a user, is to send as
many packets as possible through the network while competing
for network resources against other users. With this selfish
objective, a user will change its path if the new path provides
a larger bandwidth value even at the cost of other users.
Since multiple users may compete for the bandwidth on the
same link, it is necessary to have a congestion control scheme
to allocate bandwidth among competing users. Hence max-
min fair bandwidth allocation has been widely adopted as
a congestion control scheme at the link level [6, 8, 16, 18–
20, 23]. The max-min fair bandwidth allocation scheme treats
all paths passing through a link equally and assigning an equal
share of bandwidth to each of them unless a path receives less
bandwidth at another link.

In this paper, we model the network using a directed graph,
and present a game theoretic study of non-cooperative routing
under max-min fair congestion control, where the goal of each
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user is to maximize the bandwidth of its chosen path. We call
this problem the Maximal-Bandwidth Routing problem. Two
questions arise while addressing this problem: How can a user
efficiently find a path with maximum bandwidth under max-
min fair congestion control, when the paths of all other users
are given? and Will the network oscillate or converge to a
stable state? The first question is critical to our convergence
analysis, since it directly affects the convergence speed. It is
also an independent problem to study, as we will point out later
that the strong correlation among competing paths makes the
calculation of available bandwidth on each link challenging.
The second question is important because oscillation among
different paths introduces dramatic overhead, consuming net-
work resources. This paper answers both questions.

In answering the first question, we introduce the concept
of observed available bandwidth and prove that it can ac-
curately predict the bandwidth of a path. In answering the
second question, we model the routing problem as a non-
cooperative game and employ game theoretic tools to analyze
the interaction among users. This question boils down to the
existence of Nash Equilibria and the convergence of the game.
One major challenge arises while answering these questions.
While selecting a new path, the available bandwidth of a
link may depend on the bandwidth of existing paths of other
users. However, the bandwidths of these paths in turn depend
on the bandwidth of the new path. Therefore the problem
is significantly more involved than the traditional maximum
capacity path problem.

The major contributions of this paper are as follows:
• We formulate the Maximal-Bandwidth Routing problem

(MAXBAR) as a non-cooperative strategic game where
each player makes the routing decision selfishly to max-
imize its bandwidth. In Section 7, we generalize it to the
case where each user has a bandwidth demand.

• We prove the existence of Nash Equilibria in the
MAXBAR game, where no player has any incentive to
deviate from its chosen path. We also prove a lower
bound and an upper bound on the price of anarchy of
the MAXBAR game, which is a concept quantifying the
system degradation due to selfish behavior of users. As a
byproduct, this also gives an approximation to the social
optimal solution to the MAXBAR problem.

• We introduce a novel concept of observed available
bandwidth to compute the available bandwidth on each
link. It empowers the efficient computation of the best
response strategy for each user. This is non-trivial, as
the traditional widest path algorithm cannot be directly
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applied due to the mutual influence between paths sharing
common links [18].

• We investigate the behavior and incentives of the players
in the game and present a game based algorithm to
compute an NE. We prove that by following the natural
game course, the MAXBAR game converges to an NE.

The rest of this paper is organized as follows. In Section 2,
we present a brief overview of related work. In Section 3, we
describe our system model, present the MAXBAR problem
where each user would like to have as much bandwidth
as possible, and formulate it as a non-cooperative game. In
Section 4, we prove the existence of Nash Equilibria and
quantify the inefficiency incurred by the lack of cooperation
via price of anarchy. In Section 5, we present an efficient
algorithm to select a path with maximum bandwidth in a
max-min fair network with multiple users. In Section 6, we
provide a comprehensive analysis of the MAXBAR game and
prove the convergence to an NE. In Section 7, we study
a generalization of the MAXBAR problem where each user
has a bandwidth demand, instead of aiming to have as much
bandwidth as possible. In Section 8, we present numerical
results on randomly generated networks. These results show
that the game converges to an NE rapidly (within 7 iterations
on average and 10 iterations at worst) and achieves better
fairness compared with other algorithms. We conclude this
paper in Section 9.

2. Related Work
Congestion control is a critical task in communication net-
works to address the issue of fairly and optimally allocating
resources, bandwidth in particular, among multiple competing
users. Max-min fair bandwidth allocation has been proposed as
one of the congestion control schemes [3, 16]. This scheme
was first presented in [16]. The author also proved the op-
timality and the uniqueness of the allocation. In [8], Demers
proposed a fair queuing scheduler, which is employed on each
gateway, to implement a max-min fair network. In [18], Ma
et al. studied how to route in max-min fair networks to
improve the total throughput of the network. To calculate the
max-min fair bandwidth for each path, they also presented
a centralized algorithm. Note that the information used by
the routing algorithm is abstract and only an estimate of the
accurate available bandwidth. Showing that computing the
max-min fair bandwidth requires global information, Mayer
et al. [19] designed a local distributed scheduling algorithm
to approximate max-min fair bandwidth allocation.

Chen and Nahrstedt [6] extended the concept of max-min
fairness to the routing level, since the max-min fair bandwidth
allocation scheme was proposed to achieve fairness at link
level. They defined the fairness-throughput and introduced
a new set of relational operators to compare two different
feasible bandwidth allocations at routing level. The fairness-
throughput performance of the bandwidth allocation is max-
imized if and only if such an allocation is the largest under
the relational operator. They also proposed a max-min fair
routing algorithm to select a path for the new user to maximize
the minimum bandwidth allocated to all users. In [20], Nace
considered a model, where the routing is splittable, and gave

a linear programming based algorithm to compute the opti-
mal max-min fair bandwidth allocation. Schapira et al. [23]
and Godfrey et al. [13] studied the efficiency and incentive
compatibility of different congestion control schemes in the
network where users’ paths are fixed. They also presented a
family of congestion control protocols called Probing Increase
Educated Decrease and showed that by following any of these
protocols, the network converges to a fixed point.

All the previous works mainly focused on either the case
where paths are fixed [8, 16, 19] or the case where routing
aims to improve the total performance [6, 13, 18, 20, 23]. In
contrast, the objective of our work is to investigate the scenario
where each user in the network is able to adapt its routing
decision based on the current environment and driven by its
own selfish objective. The game formulation of this scenario
falls into the category of bottleneck game [1]. There are also
important works on stable routing in the literature [12, 14, 15].
However, these works do not consider max-min fair bandwidth
allocation in their models.

3. System Model and Problem Formulation
We first describe the network model and discuss the well
known max-min fair congestion control scheme. We then
formulate the problem studied in this paper.

A. Network Model
We model the network by a directed edge-weighted graph
denoted by G = (V,E, b), where V is the set of n nodes,
E is the set of m links, and b is a weight function such that
b(e) = b(v, w) > 0 is the bandwidth of link e = (v, w) ∈ E.
In the network, there is a collection U = {1, 2, . . . , N} of
users. User i ∈ U needs to transmit packets from a source
node si ∈ V to a destination node ti ∈ V over an si–ti path.
An s–t path in the network consists of an ordered sequence
of vertices s=v0, v1, . . ., vq=t, where (vl, vl+1) ∈ E for
0 ≤ l < q. We denote such a path by v0-v1-· · · -vq . We are only
interested in simple paths–for which the nodes in the sequence
are distinct. Although there may be multiple si–ti paths, at any
given time, user i uses only one path, which is denoted by Pi.
We denote the set of paths currently used by the users as
P = {P1, P2, . . . , PN}. We denote the set of users currently
sharing link e by Ue(P), i.e., Ue(P) = {i|i ∈ U and e ∈ Pi}.

For routing approach, we will use link-state source routing
algorithms as in [18]. In such routing schemes, each node
knows the network topology and the state information on each
link [2, 24]. Thus it is possible for the node to select its path.
In this paper, we consider best-effort flows [18] and assume
that every source node always has sufficient data to transmit.

B. Congestion Control
Since multiple users are competing for bandwidth resources,
congestion control is necessary for the management of band-
width. The employed congestion control needs to satisfy two
requirements: 1) the bandwidth allocation is fair and 2) the
bandwidth is fully allocated. A simple way to allocate the
bandwidth of a link to multiple competing paths is to share it
equally among them. However, some paths can use only less
than the equal share (due to some bottlenecks), while some
can use more. Hence, equal allocation is not desirable. In this
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paper, we assume that at the link level, max-min fair bandwidth
allocation (also known as fair queuing) [8, 16] is used for
congestion control. Max-min fair bandwidth allocation has
been recognized as the optimal throughput-fairness defini-
tion [16, 19]. Intuitively, if there are multiple users sharing
a common link, each user will get a “fair share” of the link’s
bandwidth. If some user cannot use up its fair share bandwidth
because it has a lower share assigned on another link, the
excess bandwidth is “fairly” split among all other users of this
link. Such a network with max-min fair congestion control at
the link level is called a max-min fair network. We denote
the bandwidth allocated to user i in a max-min fair network
by bi(P) (how to compute the value of bi(P) will be shown
later). Since user i will use only one path at any given time, we
will say the bandwidth of user i instead of the bandwidth of
user i’s path when the path is clear from the context. We use
b(P) = (b1(P), b2(P), . . . , bN (P)) to denote the Max-min
Fair Bandwidth Allocation (MFBA) given users’ paths P . The
uniqueness of MFBA has been proved in [23]. While assigning
the bandwidth to each path Pi, there must exist at least one
link that keeps the path from obtaining more bandwidth. We
call such link a bottleneck of path Pi. Note that there could be
more than one bottleneck for a path. We use Bi(P) to denote
the set of all bottlenecks of path Pi. Each bottleneck e of path
Pi has two important properties, which can be mathematically
expressed as follows:

1)
∑

j∈Ue(P) bj(P) = b(e),
2) bi(P) ≥ bj(P), ∀j ∈ Ue(P).

Property 1) means that link e is saturated. We call a link
saturated if its bandwidth is fully allocated. This property
is obvious as otherwise e is not a link that keeps Pi from
obtaining more bandwidth. Property 2) states that there is
no path being allocated more bandwidth than Pi on link e.
The reason is that if there exists another path Pj allocated
more bandwidth, Pi could equally share the bandwidth with
Pj due to max-min fair bandwidth allocation and obtain more
bandwidth. These two properties have also been proved in
Lemma 3 of [6] and Lemma 3 of [16].

Algorithms for calculating the bandwidth allocation for each
path in a max-min fair network have been proposed in [16, 18].
To make our paper self-contained, we illustrate the pseudo
code in Algorithm 1. For detailed description and correctness
proof, we refer the readers to [16, 18].

The basic idea of Algorithm 1 is that in each iteration, we
find a global bottleneck ē, which is defined as the link having
the least equal share, i.e., ē = argmine∈E

b(e)
|Ue(P)| . We allocate

the equal share of b(ē) to all users in Uē(P). Then all the
paths of users in Uē(P) are removed from the network. The
link bandwidths are reduced by the bandwidth consumed by
the removed users. The above procedure is repeated until all
the paths have been assigned bandwidth and removed from
the network.

To illustrate the idea of Algorithm 1, we compute the
bandwidth for the example in Fig. 1. In Fig. 1(a), (v4, t2)

is the ē selected in the first iteration and b(v4,t2)
|U(v4,t2)(P)| = 3.

Since user 2 (blue dotted) is the only one using link (v4, t2),
we set b2(P) = 3, remove path P2 from the network and

Algorithm 1: ComB(G, b,P,U)
input : Network G, path set P and user set U
output: bi(P) for all i ∈ U

1 bi(P)← 0, ∀i ∈ U ;
2 repeat
3 Let ē := argmine∈E

b(e)
|Uē(P)| in G(V,E, b);

4 btemp ← b(ē)
|Uē(P)| ;

5 foreach player i ∈ Uē(P) do
6 bi(P)← btemp;
7 foreach e ∈ Pi do
8 b(e)← b(e)− bi(P);
9 if b(e) = 0 then E ← E \ {e};

10 end
11 P ← P \ {Pi};
12 end
13 until P = ∅;
14 return bi(P) for all i ∈ U ;
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Fig. 1. An example with 3 users. P1 = s1-v1-v2-t1 (red solid), P2 = s2-
v1-v2-v4-t2 (blue dotted), and P3 = s3-v1-v2-v4-t3 (green dashed).

subtract the bandwidth from all the links along path P2 (blue
dotted). In the resulting network shown in Fig. 1(b), (v1, v2)
is selected as ē. There are two paths, P1 (red solid) and P3

(green dashed), sharing link (v1, v2). Each of them obtains
bandwidth b(v1,v2)

|U(v1,v2)(P)| = 4. We set b1(P) = b3(P) = 4, and
remove path P1 and path P3. Since there is no more paths
left, the algorithm terminates.

C. Problem Formulation
In this paper, we study the problem of routing in a max-
min fair network with multiple selfish users, where each
user selects its path to maximize its bandwidth. We call
this problem the MAXimal-BAndwidth Routing (MAXBAR)
problem. We are interested in the following questions:
Q1. How does each user select the path to maximally increase

its bandwidth?
Q2. Will the routing oscillate forever or converge to a sta-

ble state, where no user can increase its bandwidth by
unilaterally changing its path?

Q3. If the answer to Q2 is converging to a stable state, how
is the social welfare in the stable state compared to that
in the optimal solution with centralized control?
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The MAXBAR problem can be formulated as a non-
cooperative game, called MAXBAR game, as follows. Each
user is a player in this game. We define the strategy of player
i as its path Pi. A strategy profile of all players is then P . We
denote the strategies except player i’s by P−i. We define the
utility of player i as the bandwidth bi(P) of path Pi. Since
players are selfish but rational, each player makes independent
routing decisions to maximize its own utility. When player i’s
path is not in the network, we use b(P−i) to denote the MFBA
and use bj(P−i) to denote the bandwidth of path Pj , where
we assume bi(P−i) = 0 as a technical convention. Let P|iP ′

i

denote the path profile where player i changes its path to P ′
i

and others remain the same. When the context is clear, we
use P|i instead of P|iP ′

i for notational simplicity. Let b(P|i)
denote the MFBA and bj(P|i) denote the new bandwidth of
user j’s path. It is clear that Ue(P|i) = Ue(P−i)∪{i} if e ∈ P ′

i

and Ue(P|i) = Ue(P−i) otherwise.
An important subproblem of the MAXBAR problem, which

is of independent interest, is how to select a path to maximize
the allocated bandwidth, given the network and other users’
paths. This is known as best response in game theory.

Definition 3.1: [Best Response Routing] Given other users’
paths P1, · · · , Pi−1, Pi+1, · · · , PN , the best response routing
for user i is a path Pi such that bi(P) is maximized over all
si–ti paths. 2

Finding a best response path for a user is not straightfor-
ward. As we learned from previous discussions, the allocated
bandwidth for each path can be computed after considering
the whole network topology and all path selections. Thus
how to compute the available bandwidth on each link before
the routing is known has not been solved yet. This problem
was also studied in [18]. However, the authors only gave
estimated information for each link and their algorithm is
approximate. We will present an efficient solution to this
problem in Section 5.

In order to study the strategic interactions of the players,
we first introduce the concept of Nash Equilibrium [11].

Definition 3.2: [Nash Equilibrium] A strategy profile
Pne = {Pne

1 , Pne
2 , . . . , Pne

N } is called a Nash Equilibrium
(NE), if for every player i, we have:

bi(Pne) ≥ bi(Pne|iP ′
i )

for every strategy P ′
i , where P ′

i is an si–ti path. 2

In other words, in an NE, no player can increase its utility
by unilaterally changing its strategy.

The social optimum in the MAXBAR game is a strategy
profile P∗ such that the total utility, i.e.

∑
i∈U bi(P∗), is

maximized among all P . We use the concept of price of
anarchy defined in [17] to quantify the system inefficiency
due to selfishness.

Definition 3.3: [Price of Anarchy] The price of anarchy
(POA) of a game is the ratio of the total utility achieved in a
worst possible NE over that of the social optimum. 2

Table I lists frequently used notations.

4. Existence of Nash Equilibria
As a crucial step in proving the existence of NE, we show that
every time a player changes its path, the minimum bandwidth
of the players, whose bandwidths change, increases strictly.

TABLE I
FREQUENTLY USED NOTATIONS

Notation Description

G graph representing the network
V , E node set, link set
v, w node
e, ē link and global bottleneck
b(e) bandwidth of link e
U , N user (player) set, number of users (players)

i, j, k, u user (player)
si, ti source node and destination node of user i
Pi path (strategy) of user i
P path (strategy) set of users

P−i path (strategy) set of users except i
P|iP ′

i path (strategy) set with user i’s path changed to P ′
i

P|i abbreviation of P|iP ′
i when P ′

i is clear from the context
Ue(P) set of users whose paths share link e for given P
bi(P) bandwidth (utility) of user i for given P
b(P) bandwidth (utility) vector of all users for given P

Lemma 4.1: Assume that player i unilaterally changes its
path from Pi to P ′

i , such that bi(P) < bi(P|i). We have
minj∈U↓∪U↑ bj(P|i) > minj∈U↓∪U↑ bj(P), where U= = {j ∈
U|bj(P) = bj(P|i)}, U↑ = {j ∈ U|bj(P) < bj(P|i)} and
U↓ = {j ∈ U|bj(P) > bj(P|i)}. 2

Proof. It is clear that i ∈ U↑, since bi(P) < bi(P|i). First
we claim that, for any j ∈ U↓, there exists k ∈ U↑, such that
bj(P|i) ≥ bk(P|i). Let e ∈ Bj(P|i) be a bottleneck of Pj

after player i changes its path. By Property 2) of bottleneck,
we have bj(P|i) ≥ bk(P|i), ∀k ∈ Ue(P|i). Therefore, we only
need to prove that there exists a player k ∈ Ue(P|i) ∩ U↑. If
i ∈ Ue(P|i), then we can take k = i. Next, we consider the
case where i ̸∈ Ue(P|i). Note that Ue(P)\{i} = Ue(P|i)\{i},
since only player i changes its path. Therefore i ̸∈ Ue(P|i)
implies that Ue(P|i) ⊆ Ue(P). Assuming to the contrary that
bk(P) ≥ bk(P|i), ∀k ∈ Ue(P|i), the total bandwidth usage on
link e in b(P|i) is

bj(P|i) +
∑

k∈Ue(P|i)\{j}

bk(P|i) < bj(P) +
∑

k∈Ue(P)\{j}

bk(P) ≤ b(e),

where the first inequality follows from j ∈ U↓ and Ue(P|i) ⊆
Ue(P), the second inequality follows from the feasibility of
b(P). This contradicts the fact that e is a bottleneck, and
proves the existence of player k in the case where i ̸∈ Ue(P|i).

In summary, for any j ∈ U↓, there exists k ∈ U↑ such that

bj(P) > bj(P|i) ≥ bk(P|i) > bk(P). (4.1)

Following inner pair of (4.1), we know that

minj∈U↓∪U↑ bj(P|i) = bk1(P|i)

for some player k1 ∈ U↑. Following outer pair of (4.1), we
know that

minj∈U↓∪U↑ bj(P) = bk2(P)

for some player k2 ∈ U↑. Since k1 ∈ U↑, we know that
bk1(P|i) > bk1(P) ≥ bk2(P). Hence this lemma holds.

We use the example in Fig. 2 to illustrate the meaning of
Lemma 4.1. In this example, we have three players: player
1 (red solid), player 2 (blue dotted) and player 3 (green
dashed). From Fig. 2(a) to Fig. 2(b), player 2 changes its path
from P2 = s2-v1-v2-v3-t2 to P ′

2 = s2-v1-v2-t2. Before the
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Fig. 2. An example for Lemma 4.1.

change, b1(P) = 4, b2(P) = 2, and b3(P) = 4. After the
change, b1(P|2) = 4, b2(P|2) = 4, and b3(P|2) = 6. In this
example, U= = {1}, U↑ = {2, 3}, and U↓ = ∅. We have
min{b2(P|2), b3(P|2)} > min{b2(P), b3(P)}.

We now prove the existence of NE in the MAXBAR game.
Theorem 4.1: There exists at least one NE in the

MAXBAR game. 2

Proof. At every stage of the game, we arrange the bandwidth
values of the paths lexicographically in a non-decreasing order,
resulting in a vector b⃗l = (b1, b2, . . . , bN ). In this vector, the
minimum bandwidth b1 is at the most significant coordinate.
We have bκ ≤ bκ+1 for 1 ≤ κ < N . For any two vectors
b⃗l = (b1, b2, . . . , bN ) and b⃗′

l = (b′1, b
′
2, . . . , b

′
N ), b⃗l < b⃗′

l in
lexicographic order if and only if:

1) b1 < b′1, or
2) ∃ 1 < τ ≤ N s.t. bκ = b′κ for 1 ≤ κ < τ and bτ < b′τ .

By Lemma 4.1, we conclude that every time a player changes
its path, the ordering b⃗l increases lexicographically. We know
that there are a finite number of paths for each player. Thus
the number of different strategy profiles is finite as well. As
each strategy profile corresponds to one vector, we pick the
one corresponding to the largest vector as the strategies for
the players. We conclude that such strategy profile is an NE
as no player can improve its utility by unilaterally changing
its strategy.

While we know the existence of NE, there are still open
questions to answer. How to efficiently find a path with
maximum bandwidth in a max-min fair network? Will the
MAXBAR game converge to an NE? We will answer these
questions in Sections 5 and 6, respectively.

Now, we quantify the worst-case “penalty” incurred by the
lack of cooperation among the players in this game using
the concept of price of anarchy (POA). Recall that POA is
the ratio of the total bandwidth of the worst NE to the total
bandwidth of the social optimum among all strategies.

Theorem 4.2: For the MAXBAR game, 1
N ≤ POA ≤ 2

N .2
Proof. We prove this theorem by proving the lower bound in
Lemma 4.2 and the upper bound in Lemma 4.3.

Lemma 4.2: For the MAXBAR game, POA ≥ 1
N . 2

Proof. Let Pne = {Pne
1 , Pne

2 , . . . , Pne
N } be any NE of the

MAXBAR game. Let P∗ = {P ∗
1 , P

∗
2 , . . . , P

∗
N} be the social

optimum. We first claim that bi(Pne) ≥ bi(P∗)
N for any player

i, where bi(P∗) is the bandwidth of P ∗
i in the social optimum.

Since Pne is an NE, no player has any incentive to change its

path, i.e.,

bi(Pne) ≥ bi(P|iP ∗
i ) ≥

b(e∗)

N
, (4.2)

where e∗ is a bottleneck of P ∗
i after player i unilaterally

changes its path from Pne
i to P ∗

i . The second inequality
follows from the fact that each link can be shared by at most
N players. In the social optimum, we have bi(P∗) ≤ b(e)
for any e ∈ P ∗

i . Plugging it into (4.2), we proved our claim.
Based on the claim, the total utility is∑

i∈U bi(Pne) ≥
∑

i∈U bi(P∗)

N = b(OPT )
N (4.3)

for any NE, where b(OPT ) is the total bandwidth in the social
optimum. Since (4.3) holds for any NE, we have POA ≥ 1

N .
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Fig. 3. An example where the POA is 2
N

.

Lemma 4.3: For the MAXBAR game, POA ≤ 2
N . 2

Proof. We prove this lemma with the help of an example.
Fig. 3 depicts (partly) a network with N players. In this net-
work, the bandwidth of each link is 1. As shown in Fig. 3(a),
all the source-destination pairs with odd indices are located
counterclockwise on a ring topology, while those with even
indices are located clockwise. The source and destination for
the same player are next to each other. Clearly, there are only
two si–ti paths for each player i with odd index (resp. even
index), the clockwise (resp. counterclockwise) path si-si+1-
ti+1-. . .-sN -tN -t1-s1-. . .-ti and the counterclockwise (resp.
clockwise) path si-ti. As shown in Fig. 3(b), if each player
i with odd index chooses the clockwise si–ti path and each
player i with even index chooses the counterclockwise si–ti
path, the resulting strategy profile is an NE with bi(P) = 2

N
for each player i. Because if any player i deviates from the
current strategy and chooses the clockwise si–ti path, it results
in the bandwidth 2

N+2 . The total utility in this NE is 2.
Next, we consider the social optimum, where players with

odd indices choose the counterclockwise paths and players
with even indices choose the clockwise paths. The total utility
is N . Hence the POA of the MAXBAR game is at most 2/N .

2

3

2

4

1 1

s1 v1

v2s2

t1

t2

(a) Social optimum

2

3

2

1 1

s1

v2s2 t2

v1 t14

(b) Nash Equilibrium
Fig. 4. A social optimum is not necessarily an NE.



6

Remark 4.1. Note that the social optimum in Fig 3 is also
an NE. Nevertheless, the simple example in Fig. 4 shows that
a social optimum is not necessarily an NE.

Remark 4.2. Efficient algorithms to compute a social
optimum are still open. Simple brute fore algorithms may take
exponential time, since the number of s-t paths for a single
player is exponential in the size of the network.

Remark 4.3. We do not know whether the bounds for the
POA are tight. Either proving the tightness of these bounds
or deriving tighter bounds is a topic for future research.

5. Best Response Routing in Max-min Fair Networks
An important step in the MAXBAR game is for a player to
decide whether it has any incentive to change its strategy uni-
laterally. Intuitively, it is natural for the player to unilaterally
change its strategy to one that would give it the maximum
utility. However, the utility of the chosen path depends on
other players’ strategies due to the competition among players
sharing links with this chosen path. Obviously, the player can
try all its strategies and pick the one giving it the maximum
utility. However, this may take exponential time as the number
of strategies of the user may not be polynomially bounded.

In this section, we introduce the novel concept of observed
available bandwidth (formally defined later in this section) and
prove the following facts: 1) the observed available band-
width on all links can be computed in O(Nm+N logN)
time; 2) the widest si-ti path with regard to the observed
available bandwidth is a best response routing for player
i. Hence, player i can compute its best response routing
in polynomial time. Therefore, player i has an incentive to
change its strategy if and only if the utility corresponding to
its best response strategy is larger than that corresponding
to its current strategy. Given the challenges outlined at the
beginning of this section, our results are significant. Although
the facts are seemingly simple, the proofs are quite involved,
which are the subjects of the rest of this section.

?

11
7

3

1Player 1

Player 2

Player 3

Player 4

Fig. 5. A link e with max-min fair bandwidth allocation, where there are
three players before player 4 joins.

To get an intuition for calculating the available bandwidth,
we take the link in Fig. 5 as an example. In this example, we
assume that player i = 4 needs to find a path. Further assume
that Ue(P−i) = {1, 2, 3} and b(e) = 11. Also, b1(P−i) = 1,
b2(P−i) = 3, and b3(P−i) = 7. After player i joins, it is
clear that player 1 would not lose its bandwidth share, since
it has less than the equal share, i.e., b1(P−i) = 1 < 11

4 . If
player i competes the bandwidth with players 2 and 3 for the
residual bandwidth of 10, each of them gets bandwidth of 10

3 .
We know before i joins, player 2 only uses bandwidth of 3,
which is less than 10

3 . Therefore, only i and 3 will compete
for the residual bandwidth of 7 and get bandwidth of 7

2 each.

To capture the process we conducted above, we introduce
the concept of observed available bandwidth. Assume that all
players except i have their paths chosen. Now player i needs to
find a path with maximum bandwidth in the current network.
For any link e and player j ∈ Ue(P−i), let

Ûe(P−i, j) = {k|k ∈ Ue(P−i) and bk(P−i) < bj(P−i)}
denote the set of players who are using less bandwidth than
player j on link e. Let

Ũe(P−i) = {j|j ∈ Ue(P−i) and

bj(P−i) ≥

b(e)−
∑

k∈Ûe(P−i,j)

bk(P−i)

|Ue(P−i)| − |Ûe(P−i, j)|+ 1
}

denote the set of players such that for any player j in this
set, the new bandwidth bj(P|i) is at least as large as the
bandwidth of the new path P ′

i of player i. The observed
available bandwidth bo(e) of link e ∈ E is

bo(e) =
b(e)−

∑
j∈Ue(P)\Ũe(P−i)

bj(P−i)

|Ũe(P−i)|+ 1
. (5.1)

If we first sort the paths according to their band-
width values, then for each link e we can compute
Ûe(P−i, 1), Ûe(P−i, 2), . . . , Ûe(P−i, N), and Ũe(P−i) in
O(N) additional time. Thus we can compute bo(e) for all
links e ∈ E in O(Nm + N logN) time. Accordingly, the
observed bandwidth of the new path P ′

i is

boi (P|i) = mine∈P ′
i
bo(e), (5.2)

and the set of observed bottlenecks of path P ′
i is

Bo
i (P|i) = arg min

e∈P ′
i

bo(e).

Considering the example in Fig. 5, we have Ûe(P−i, 1) = ∅,
Ûe(P−i, 2) = {1}, and Ûe(P−i, 3) = {1, 2}. The set Ũe(P−i)
is {3}. Therefore, bo(e) = 11−1−3

1+1 = 7
2 .

The properties of the observed available bandwidth are
summarized in the following four lemmas, which will be used
in later proofs in the rest of this section.

Lemma 5.1: Assume that j ∈ Ũe(P−i). For all u ∈
Ue(P−i), bu(P−i) ≥ bj(P−i) implies u ∈ Ũe(P−i). 2

Proof. It is obvious that if bu(P−i) = bj(P−i), then u ∈
Ũe(P−i). Next, we prove that if bu(P−i) > bj(P−i), then
u ∈ Ũe(P−i). Let K = Ûe(P−i, u) \ Ûe(P−i, j). We have

bu(P−i)−
b(e)−

∑
k∈Ûe(P−i,u)

bk(P−i)

|Ue(P−i)| − |Ûe(P−i, u)|+ 1

= bu(P−i)−

b(e)−
∑

k∈Ûe(P−i,j)

bk(P−i)−
∑
k∈K

bk(P−i)

|Ue(P−i)| − (|Ûe(P−i, j)|+ |K|) + 1

> bj(P−i)−

b(e)−
∑

k∈Ûe(P−i,j)

bk(P−i)− |K|bj(P−i)

|Ue(P−i)| − (|Ûe(P−i, j)|+ |K|) + 1
(5.3)

≥ 0, (5.4)

where (5.3) follows from the fact that k ∈ Ue(P−i) \
Ûe(P−i, j) implies bk(P−i) ≥ bj(P−i), and (5.4) follows
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from the fact that j ∈ Ũe(P−i). Hence we have u ∈ Ũe(P−i).
Lemma 5.2: If j ∈ Ũe(P−i), then bj(P−i) ≥ bo(e). If

j ∈ Ue(P−i) \ Ũe(P−i), then bj(P−i) < bo(e). 2

Proof. Let x be the player whose path has the minimum
bandwidth in Ũe(P−i). Thus we have Ûe(P−i, x) ⊆ Ue(P−i)\
Ũe(P−i). For all j ∈ Ue(P−i), if bj(P−i) ≥ bx(P−i), it
follows from Lemma 5.1 that j ∈ Ũe(P−i). Thus we have
Ûe(P−i, x) ⊇ Ue(P−i) \ Ũe(P−i). Therefore Ûe(P−i, x) =
Ue(P−i) \ Ũe(P−i). Since x ∈ Ũe(P−i), we have

bx(P−i) ≥

b(e)−
∑

j∈Ûe(P−i,x)

bj(P−i)

|Ue(P−i)| − |Ûe(P−i, x)|+ 1
(5.5)

=

b(e)−
∑

j∈Ue(P−i)\Ũe(P−i)

bj(P−i)

|Ũe(P−i)|+ 1

= bo(e). (5.6)

Therefore bx(P−i) ≥ bo(e). This implies the first part of the
lemma, since bj(P−i) ≥ bx(P−i) for any j ∈ Ũe(P−i).

Next, we prove the second part of the lemma. If j ̸∈
Ũe(P−i), we know that bj(P−i) < bx(P−i). Now assume that
y is the player whose path has the maximum bandwidth in
Ue(P−i) \ Ũe(P−i). Then, we have bj(P−i) = by(P−i), ∀j ∈
Ûe(P−i, x) \ Ûe(P−i, y). Let J = Ûe(P−i, x) \ Ûe(P−i, y).
We have

by(P−i)− bo(e)

= by(P−i)−
b(e)−

∑
j∈Ûe(P−i,x)

bj(P−i)

|Ue(P−i)| − |Ûe(P−i, x)|+ 1
(5.7)

= by(P−i)−

b(e)− (
∑

j∈Ûe(P−i,y)

bj(P−i) +
∑
j∈J

bj(P−i))

|Ue(P−i)| − (|Ûe(P−i, y)|+ |J |) + 1

= by(P−i)−
b(e)−

∑
j∈Ûe(P−i,y)

bj(P−i)− |J |by(P−i)

|Ue(P−i)| − (|Ûe(P−i, y)|+ |J |) + 1
< 0, (5.8)

where (5.7) follows from (5.5) and (5.6), (5.8) follows from the
fact that y ̸∈ Ũe(P−i). In addition, we know that bj(P−i) ≤
by(P−i) < bo(e), ∀j ∈ Ue(P−i) \ Ũe(P−i).

We now prove that the observed available bandwidth defined
above accurately calculates the bandwidth on each link in the
sense that after we choose a path with the maximum observed
bandwidth and reallocate the bandwidth for each path using
Algorithm 1, the new allocated bandwidth of the path is equal
to its observed bandwidth.

We use proof by contradiction. The sketch of our proof
is as follows. If the new allocated bandwidth of the path is
not equal to its observed bandwidth, two cases may happen:
1) the path is allocated more bandwidth than the observed
bandwidth, or 2) the path is allocated less bandwidth than the
observed bandwidth. For each case, we show that it will lead to
a chain reaction, which results in a contradiction. We analyze
two phenomena that may occur and cause the chain reaction
after a player chooses its new path based on the observed
available bandwidth. In Lemma 5.3 (resp. Lemma 5.4), we
show that the decrease (resp. increase) of the bandwidth of one

path must be directly related to the increase (resp. decrease)
of that of another path. More importantly, the relation between
new bandwidth values of these two paths satisfies certain rules.
In order to facilitate the understanding of these lemmas, an
example is presented in Fig. 6.

Lemma 5.3: Let P ′
i be the new si-ti path chosen by player

i based on the observed available bandwidth. We have the
following:

1) If bi(P|i) < boi (P|i), then ∃k ∈ Ue(P|i)\{i}, such that
1a) bk(P|i) > bk(P−i) and 1b) bk(P|i) ≤ bi(P|i),
where e ∈ Bi(P|i) is a bottleneck of path P ′

i .
2) If bj(P|i) < bj(P−i) for some j ∈ U , then ∃k ∈
Ue(P|i) \ {j}, such that
2a) bk(P|i)>bk(P−i) and 2b) bk(P|i) ≤ bj(P|i),
where e ∈ Bj(P|i) is a bottleneck of path Pj after player
i changes its path. 2

Proof. We prove 1) and 2) separately:
We first prove 1). Assume that bi(P|i) < boi (P|i).

By Property 2) of bottleneck, we know that bi(P|i) ≥
bj(P|i), ∀j ∈ Ue(P|i). Thus it suffices to prove that ∃k ∈
Ue(P|i) \ {i}, such that 1a) holds. We prove this by contra-
diction. Assume that bj(P|i) ≤ bj(P−i), ∀j ∈ Ue(P|i) \ {i}.
The total bandwidth usage on link e in b(P|i) is∑

j∈Ue(P|i) bj(P|i)

= bi(P|i) +
∑

j∈Ũe(P−i)

bj(P|i) +
∑

j∈Ue(P−i)\Ũe(P−i)

bj(P|i)

≤ (|Ũe(P−i)|+ 1)bi(P|i) +
∑

j∈Ue(P−i)\Ũe(P−i)

bj(P|i) (5.9)

< (|Ũe(P−i)|+ 1)boi (P|i) +
∑

j∈Ue(P−i)\Ũe(P−i)

bj(P−i) (5.10)

≤ b(e), (5.11)

where (5.9) follows from Property 2) of bottleneck, (5.10) fol-
lows from the condition bi(P|i) < boi (P|i) and the assumption
bj(P|i) ≤ bj(P−i), and (5.11) follows from (5.2) and (5.1).
This contradicts the fact that e ∈ Bi(P ′

i ), because e should
be saturated in b(P|i) according to Property 1) of bottleneck.
This completes the proof of 1).
We now prove 2). Assume that bj(P|i) < bj(P−i).

By Property 2) of bottleneck, we know that bj(P|i) ≥
bk(P|i), ∀k ∈ Ue(P|i). Thus it suffices to prove that
∃k ∈ Ue(P|i) \ {j} such that 2a) holds. The condition
bj(P|i) < bj(P−i) implies that i ̸= j. If i ∈ Ue(P|i), we
can take k = i and bi(P|i) > 0 = bi(P−i). Next, we consider
the case where i ̸∈ Ue(P|i). We prove 2a) by contradiction.
Assume that bk(P|i) ≤ bk(P−i), ∀k ∈ Ue(P|i)\{j}. Note that
i ̸∈ Ue(P|i) implies Ue(P−i) = Ue(P|i). The total bandwidth
usage on link e in b(P|i) is

bj(P|i) +
∑

k∈Ue(P|i)\{j}

bk(P|i) < bj(P−i) +
∑

k∈Ue(P−i)\{j}

bk(P−i) ≤ b(e),

where the first inequality follows from the condition bj(P|i) <
bj(P−i) and the assumption bk(P|i) ≤ bk(P−i), ∀k ∈
Ue(P|i)\{j}, and the second inequality follows from the fea-
sibility of b(P−i). This contradicts the fact that e ∈ Bj(P|i).
Therefore, 2) holds.
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We have finished the proof of this lemma.
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(b) After player 2 chooses its path
Fig. 6. An example for Lemma 5.3 and Lemma 5.4.

Fig. 6 illustrates Part 2) of Lemma 5.3 with i = k = 2 and
j = 1. From Fig. 6(a), we observe that b1(P−2) = 5. From
Fig. 6(b), we observe that b1(P|2) = 4 and b2(P|2) = 4. We
note that the bandwidth of player 1 (red solid) decreases from
5 to 4 and the bandwidth player 2 (blue dotted) increases from
0 to 4. We also note that b2(P|2) ≤ b1(P|2).

Lemma 5.4: Let P ′
i be the new si-ti path chosen by player

i based on the observed available bandwidth. We have the
following:

1) If bi(P|i) > boi (P|i), then ∃k ∈ Ue(P|i)\{i}, such that
1a) bk(P|i) < bk(P−i) and 1b) bk(P|i) < bi(P|i),
where e ∈ Boi (P|i) is an observed bottleneck of path
P ′
i .

2) If bj(P|i) > bj(P−i), then ∃k ∈ Ue(P−i) \ {j}, such
that
2a) bk(P|i) < bk(P−i) and 2b) bk(P|i) < bj(P|i),
where e ∈ Bj(P−i) is a bottleneck of path Pj when
player i’s path is not in the network. 2

Proof. We prove Part 1) and 2) separately:
We first prove 1). Assume that bi(P|i) > boi (P|i).

We prove 1) by contradiction. Assuming to the contrary that
bk(P|i) ≥ bk(P−i) or bk(P|i) ≥ bi(P|i), ∀k ∈ Ue(P|i) \ {i},
we have the following two claims:

Claim 1: For all k ∈ Ũe(P−i), we have bk(P|i) ≥ boi (P|i).
When bk(P|i) ≥ bk(P−i) is true, we have

bk(P|i) ≥ bk(P−i) ≥ bo(e) = boi (P|i),

where the second inequality follows from Lemma 5.2 and
the equality follows from the fact that e ∈ Boi (P|i). When
bk(P|i) ≥ bi(P|i) is true, we have bk(P|i) ≥ bi(P|i) >
boi (P|i), due to the condition bi(P|i) > boi (P|i).

Claim 2: For all k ∈ Ue(P−i)\Ũe(P−i), we have bk(P|i) ≥
bk(P−i).

Let k be any player in Ue(P−i)\Ũe(P−i). We need to prove
that bk(P|i) ≥ bk(P−i). According to the contrary assumption
at the beginning of this proof, we only need to prove for the
case where bk(P|i) ≥ bi(P|i) is true. In this case, we have

bk(P|i) ≥ bi(P|i) > boi (P|i) = bo(e) > bk(P−i),

where the last inequality follows from Lemma 5.2.
Note that Ue(P|i) = Ue(P−i) ∪ {i}. The total bandwidth

usage on link e in b(P|i) is∑
k∈Ue(P|i)

bk(P|i) (5.12)

= bi(P|i) +
∑

k∈Ũe(P−i)

bk(P|i) +
∑

k∈Ue(P−i)\Ũe(P−i)

bk(P|i)

> (|Ũe(P−i)|+ 1)boi (P|i) +
∑

k∈Ue(P−i)\Ũe(P−i)

bk(P−i) (5.13)

= (|Ũe(P−i)|+ 1)bo(e) +
∑

k∈Ue(P−i)\Ũe(P−i)

bk(P−i)

= b(e), (5.14)

where (5.13) follows from the condition of 1) and the two
claims, and (5.14) follows from (5.1). This contradicts the
feasibility of b(P|i). Thus we have proved 1).
We now prove 2). Assume that bj(P|i) > bj(P−i).

We prove 2) by contradiction. Assume to the contrary that
bk(P|i) ≥ bk(P−i) or bk(P|i) ≥ bj(P|i), ∀k ∈ Ue(P−i)\{j}.
When bk(P|i) ≥ bj(P|i) is true, we have

bk(P|i) ≥ bj(P|i) > bj(P−i) ≥ bk(P−i),

where we used the condition of 2) and the fact that e ∈
Bj(P−i). Thus we have bk(P|i) ≥ bk(P−i), ∀k ∈ Ue(P−i) \
{j}. Then, considering the fact that Ue(P−i) ⊆ Ue(P|i), the
total bandwidth usage on link e in b(P|i) is

bj(P|i) +
∑

k∈Ue(P|i)\{j}

bk(P|i) > bj(P−i) +
∑

k∈Ue(P−i)\{j}

bk(P−i) = b(e),

where the equality follows from the fact that e ∈ Bj(P−i).
This violates the feasibility of b(P|i). We have proved 2).

Fig. 6 illustrates Part 2) of Lemma 5.4 with i = 2, j = 3,
and k = 1. From Fig. 6(a), we observe that b3(P−2) = 5 and
b1(P−2) = 5. From Fig. 6(b), we observe that b3(P|2) = 6
and b1(P|2) = 4. We note that the bandwidth of player 3
(green dashed) increases from 5 to 6, but the bandwidth of
player 1 (red solid) decreases from 5 to 4. We also note that
b1(P|2) < b3(P|2).

Based on Lemma 5.3 and Lemma 5.4, we prove in the fol-
lowing an important theorem, which states that the bandwidth
of the new path is equal to its observed bandwidth.

Theorem 5.1: Let P ′
i be the new si-ti path chosen by

player i based on the observed available bandwidth. Then
bi(P|i) = boi (P|i). 2

Proof. First, we prove that bi(P|i) ≥ boi (P|i). To the contrary,
assume that bi(P|i) < boi (P|i). We will derive a contradiction.
By Part 1) of Lemma 5.3, we know that

∃j, s.t., bj(P|i) > bj(P−i) and bj(P|i) ≤ bi(P|i). (5.15)

By the first inequality of (5.15) and Part 2) of Lemma 5.4, we
know that

∃k, s.t., bk(P|i) < bk(P−i) and bk(P|i) < bj(P|i). (5.16)

By the first inequality of (5.16) and Part 2) of Lemma 5.3, we
know that

∃j1, s.t., bj1(P|i)>bj1(P−i) and bj1(P|i)≤ bk(P|i). (5.17)

By the first inequality of (5.17) and Part 2) of Lemma 5.4, we
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know that

∃k1, s.t., bk1(P|i)<bk1(P−i) and bk1(P|i)<bj1(P|i).(5.18)

Repeating (5.17) and (5.18), we obtain a sequence i, k,
k1, k2, . . ., such that bi(P|i) > bk(P|i) > bk1(P|i) >
bk2(P|i) > · · · . Since the number of users is finite, there
must be a user that is repeated an infinite number of times in
the above sequence of users. This is a contradiction, since
the corresponding sequence of bandwidth values is strictly
decreasing. This contradiction proves that bi(P|i) ≥ boi (P|i).

Using a similar logic, we can prove that bi(P|i) ≤ boi (P|i).
This implies that bi(P|i) = boi (P|i).

Remark 5.1. As a direct consequence of Theorem 5.1,
player i has an incentive to change its strategy if and only
if boi (P|i) > bi(P). Also, P ′

i is the best response strategy for
player i.

6. Converging to Nash Equilibrium
In this section, we present a game based algorithm, listed in
Algorithm 2, to compute an NE of the MAXBAR game. The
idea of the algorithm is as follows. In the initialization stage
(Line 2), each player i chooses an initial si–ti path regardless
of the paths of other players. Without loss of generality,
each player chooses a path with maximum bandwidth using
an algorithm denoted by WP(G, si, ti, b). Then Algorithm 2
proceeds in a round-robin fashion. At every stage, there can be
only one player changing its path. Such assumption is common
in game theory and essential to avoid oscillation.

When a player plans to change its path, it follows the
following steps:

1) Compute its current bandwidth (Line 5).
2) Calculates the observed available bandwidth for each

link in the resulting network (Lines 6 and 7).
3) Finds a path with the maximum observed bandwidth

(Line 8).
4) If the observed bandwidth of the new path is greater

than its current bandwidth, it switches to the new path;
otherwise, it keeps the same path (Line 9).

The process stops when no player can improve its bandwidth
by changing to another path.

In Algorithm 2, WP(G, si, ti, b) returns a path with max-
imum bandwidth from si to ti in graph G with bandwidth
function b. The basic idea of Algorithm 2 is as follows.
First (Line 2), each player i chooses an initial si–ti path
regardless of other players. Next, in a round-robin fashion
(Lines 3-11), each player changes its path to improve its utility,
when possible. This is referred to as the best-response move
in [21]. The process stops when no player can improve its
bandwidth by changing to another path.

The correctness and an upper on the convergence speed of
Algorithm 2 are captured in the following theorem.

Theorem 6.1: For every instance of the MAXBAR game,
Algorithm 2 converges to a set P of paths in O((Nm +
n log n+N logN)(Nm)N ) time, where N is the number of
players, m is the number of links, and n is the number of
nodes. Moreover, P is an NE of the MAXBAR game. 2

To prove this theorem, we need the following lemma, which
shows an important property of the global bottleneck.

Algorithm 2: Game Based Algorithm
input : Network G(V,E, b) and set U of players

{1, . . . , N}
output: A Nash Equilibrium P

1 P ← ∅;
2 Pi ←WP(G, si, ti, b), P ← P ∪ {Pi}, ∀i ∈ U ;
3 repeat
4 foreach player i ∈ U do
5 (b1(P), . . . , bN (P))← ComB(G, b,P,U);
6 (b1(P−i), . . . , bN (P−i))← ComB(G, b,P−i,U);
7 Compute bo(e) for all e ∈ E using (5.1);
8 P ′

i ←WP(G, si, ti, b
o);

9 if bo(P ′
i ) > bi(P) then P ← P|iP ′

i ;
10 end
11 until there is no path changed;
12 return P;

Lemma 6.1: Let P be a path set of the users and b(P) be
the corresponding MFBA. Let ē be a global bottleneck. We
then have bj(P) = b(ē)

|Uē(P)| , ∀j ∈ Uē(P). 2

Proof. First, we claim that for any e ∈ Bi(P) for some i, we
have bi(P) ≥ b(e)

|Ue(P)| . Considering both Properties 1) and 2)
of bottleneck e, we have

b(e) =
∑

j∈Ue(P)

bj(P) ≤ |Ue(P)| · bi(P).

Thus the claim is proved. Based on this claim and the fact
that ē is a global bottleneck, we have

bj(P) ≥
b(ē)

|Uē(P)|
, ∀j ∈ Uē(P). (6.1)

Assume that ∃k ∈ Uē(P) such that bk(P) > b(ē)
|Uē(P)| .

The total bandwidth usage on ē is
∑

j∈Uē(P) bj(P) > b(ē),
contradicting the feasibility of b(P). Hence we have proved
that bj(P) = b(ē)

|Uē(P)| , ∀j ∈ Uē(P).
Proof of Theorem 6.1: By Lemma 4.1, we conclude that

every time a player changes its path, the ordering b⃗l increases
lexicographically. Now we prove an upper bound on the
number of times the ordering can increase. By Lemma 6.1,
we know that a global bottleneck must be equally shared
by all paths using it. As a result, the number of different
possible values of b1 is bounded by O(Nm). For each
possible value of b1, there are at most N players whose
paths correspond to this value. If the value of b1 and the
corresponding path Pi stay the same, the number of different
possible values of b2 is O(Nm). The reason is that we
can subtract b1 from the bandwidth of each link along Pi,
and remove i from the player set. This resulting graph is
a smaller instance and all the lemmas still hold. Repeating
this analysis for all the coordinates, we conclude that the
number of times that the lexicographic ordering can increase is
bounded by O((Nm)N ). The time complexity of Algorithm 1
is O(Nm). Recall that computing bo(e) for all e ∈ E takes
O(Nm+N logN) time. In addition, the time complexity of
WP(G, b,P) is O(m+n logn) by using a variant of Dijkstra’s
shortest path algorithm [9, 10]. Therefore the time complexity
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of Algorithm 2 is O((Nm+n log n+N logN)(Nm)N ). By
Theorem 5.1, the returned P is an NE, since no player can
improve its utility by changing its path unilaterally.

Remark 6.1. Our extensive simulations in Section 7 show
that the MAXBAR game converges to an NE within 10 iter-
ations. This indicates that our theoretical bound O((Nm)N )
on the number of iterations is quite conservative.

Remark 6.2. As shown in the example in Section 4, there
could be more than one NE. If the initial set of strategies were
different from the one computed in Line 2 of Algorithm 2,
Lines 3–12 may lead to a different NE. However, Lines 3–12
of the algorithm will always lead to some NE.

Remark 6.3 In our algorithm, we require that only one
player can change its path each time. This is essential to
the convergence of the algorithm. We use an example to
show that oscillation may occur when this requirement is
violated. As shown in Fig. 7, assume that player 1’s path is
s1-v1-v2-v3-t1 and player 2’s path is s2-v1-v2-v3-t2 at certain
point of the game. If the players are allowed to change their
paths simultaneously, player 1 and player 2 would change
their paths to s1-v1-v4-v3-t1 and s2-v1-v4-v3-t2, respectively.
Because both of them expect that they can increase their
bandwidth from 1 to 2. Since two players change their paths
simultaneously, the allocated bandwidth for each player is
actually 1.5. Now both players would change their paths back
to the previous ones because they expect to increase their
bandwidth from 1.5 to 2. Therefore the network will oscillate
between Fig. 7(a) and Fig. 7(b) if simultaneous path change
is allowed.

2

2

33

2

s1

v1 v3

s2

t1

t2

v2

v4

2

2

2

(a)

2

2

33

2

s1

v1 v3

s2

t1

t2

v2

v4

2

2

2

(b)
Fig. 7. Oscillation when simultaneous path change is allowed

One way to enforce the users in the network to follow the
game course is to use a token-based protocol, where a token is
circulated among the users in a round-robin fashion–only the
user with the token has the opportunity to change its path. This
token-based protocol can guarantee the convergence of Algo-
rithm 2. A distributed implementation of ComB(G, b,P,U)
were proposed by [5, 16]. The information needed by (5.1) to
compute the observed available bandwidth is sent to each user
by the link-state algorithm for determining the new path.

7. Generalization of MAXBAR
We have studied the MAXBAR problem where users have
infinite bandwidth demand. In this section, we generalize
the MAXBAR problem and consider the case where each
user has a bandwidth demand of γi > 0. We denote this
generalized problem as MAXBARγ . The difference between
the MAXBARγ problem and the MAXBAR problem is that
we need to consider user’s bandwidth demand while allocating
bandwidth. Each user i will only use up to γi bandwidth and
is not interested in switching to a path with more bandwidth
as long as its bandwidth demand is met. The MAXBAR

problem is a special case of the MAXBARγ problem, as we
can consider that γi = ∞ in the MAXBAR problem. It is
seemingly necessary for us to redesign the ComB algorithm,
and analyze the existence of NEs and convergence of routing
again. However, we will show that we can transform any in-
stance of the MAXBARγ problem to a corresponding instance
of the MAXBAR problem, and study the MAXBAR problem
using the algorithms and analysis in previous sections.

Let Iγ = ((V,E, b),U , γ) be an instance of the MAXBARγ

problem, where G = (V,E, b) is the edge-weighted graph
for the network. We build a corresponding instance I =
((V ′, E′, b′),U ′) of the MAXBAR problem (where G′ =
(V ′, E′, b′) is the edge-weighted graph for the corresponding
network) as follows. Corresponding to each node v ∈ V , V ′

contains a node v. Corresponding to each link (v, w) ∈ E, E′

contains a link (v, w) and b′(v, w) = b(v, w). Corresponding
to each source si ∈ V , V ′ contains an additional node s′i
and E′ contains an additional link (s′i, si) with bandwidth
b′(s′i, si) = γi. Corresponding to each user i ∈ U , U ′ contains
a user i, who needs to transmit packets from s′i to ti in G′.
Fig. 8 illustrates this transformation.

si

··· 

i
gsi

··· 

si’

Fig. 8. Transforming an instance of the MAXBARγ problem to a corre-
sponding instance of the MAXBAR problem

Note that although we allow users to have as much band-
width as possible in the MAXBAR problem, the special link
(s′i, si) ensures that user i will only compete for bandwidth
up to the demand γi. It is clear that the MFBA for Iγ can
be obtained by computing the MFBA for I. Therefore all the
lemmas and theorems for the MAXBAR problem still hold for
the MAXBARγ problem.

8. Numerical Results
In this section, we evaluate the performance and verify the
convergence analysis of Algorithm 2 (denoted as GBA) on
network topologies generated by BRITE [4].

A. Simulation Setup
We compared GBA with two other routing algorithms. In the
first algorithm, each user acts independently and attempts to
maximize its bandwidth as much as possible. We denote this
algorithm by IMA (Independent Maximization Algorithm). In
the second algorithm, the bandwidth allocation for the users is
done sequentially. A user is chosen randomly from the set of
users that have not been allocated bandwidth. It then chooses a
widest path in the residual network, and has a bandwidth equal
to that of the chosen path. This procedure is repeated until all
users are considered for bandwidth allocation. This technique
is similar to the Resource reSerVation Protocol (RSVP) [22],
with the difference being that each user is allocated the max-
imum possible bandwidth in the residual network. We denote
this scheme by SRA (Sequential Reservation Algorithm).
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Fig. 9. Total bandwidth
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Fig. 10. Disparity ratio
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Fig. 11. Convergence speed. For (a) and (c), n = 120 and N = 100. For (b) and (d), n = 120 and µ = 4.

BRITE [4] is a widely used Internet topology generator.
We used the Waxman model [25] with default values for α =
0.15 and β = 0.2. According to the Waxman model, if dvw
denotes the Euclidean distance between two nodes v and w,
the probability of having a directed link (v, w) from v to w
is given by β× exp

(
dvw

α·L
)
, where L is the maximum distance

between two nodes. The nodes of the graph were deployed
randomly in a square region of size 1000 × 1000 m2. We
varied the number of nodes n from 40 to 320 with increment
of 40 and set the number of links to m = µn, where µ is
the link density and was varied from 3 to 8. We varied the
number of users N from 100 to 200 with increment of 20.
For each network size, we used BRITE to generate different
network topologies, where the link bandwidth was drawn from
a uniform distribution in the range [1, 10]. For each setting, we
randomly generated 100 test cases and averaged the results.

Performance Metrics:
• Total bandwidth: the sum of the bandwidth of all users.
• Bandwidth disparity ratio: the ratio of the highest band-

width over the lowest bandwidth among the users.
• Convergence speed: the number of the round-robin itera-

tions (Lines 3–11 in Algorithm 2) or the number of path
changes (Line 9 in Algorithm 2).

B. Results Analysis

1) Total Bandwidth: Fig. 9 shows the total bandwidth
obtained by SRA, IMA and GBA. We observe that GBA
always outperforms IMA. This is as expected, because IMA
uses less information in decision making. SRA and GBA have
similar performance, because some users can reserve most of

the bandwidth resources in SRA. We also notice that the total
bandwidth in Fig. 9(c) increases first and almost remains the
same after n = 240. This is because the bandwidth of some
users has reached the maximum value at n = 240.

2) Disparity Ratio: Fig. 10 shows the bandwidth disparity
ratio obtained by SRA, IMA and GBA. We observe that
GBA is the fairest. SRA has the worst disparity ratio with
the value of ∞ for all settings. This is because some users
will be blocked and have zero bandwidth in SRA, as other
users have reserved all the bandwidth on the links connecting
their sources and destinations. We also see that the disparity
ratios of IMA and GBA are independent of n, as shown in
Fig. 10(c), but decrease when the user density, N

m , becomes
lower, as shown in Fig. 10(a) and Fig. 10(b). The reason is that
when the user density is low, users have a low probability of
sharing common links and hence competing the bandwidth.
These results are not unexpected, as SRA and IMA are not
designed to achieve small disparity ratios.

3) Convergence Speed: Fig. 11(a) and Fig. 11(b) show the
number of iterations before GBA converges. We observe that
the number of iterations is within 10 in all cases. Fig. 11(c) and
Fig. 11(d) show the number of path changes before GBA con-
verges. The theoretical bound on the number of path changes
is O((Nm)N ) in Theorem 6.1. However, as we can see, the
number of path changes in the simulations is significantly
less than the theoretical bound. Another observation is that
GBA converges slower when the link density µ is high, as
shown in Fig. 11(c). The reason is that when each node has
more links, a user is highly likely to find a path with higher
bandwidth if the current path results in low bandwidth, due
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to the competition from newly joined paths. According to
Theorem 6.1, the number of path changes is independent of
n. Our simulation results also confirm this proof and thus are
omitted due to the space limitations.

To summarize, extensive simulations show that our algo-
rithm converges to an NE rapidly and achieves very good
fairness as well as total bandwidth.

9. Conclusions
In this paper, we formulated the problem of routing in
networks with max-min fair bandwidth allocation as a non-
cooperative game, where each user aims to maximize its
own bandwidth. We proved the existence of Nash Equilibria,
where no user has any incentive to unilaterally change its
path. We derived both a lower bound and an upper bound of
the system degradation, due to the selfish behavior of users.
Finding a path with maximum bandwidth in the max-min
fair network is both a key step for our main analysis and
of independent interest. To this end, we introduced a novel
concept of observed available bandwidth to accurately predict
the available bandwidth on each link. We next presented a
game based algorithm to compute an NE and proved that
the network converges to an NE if all users follow the
natural game course. Note that the theoretical convergence
speed proved in this paper does not change even when an
approximate Nash Equilibrium [7] is considered. Deriving a
tighter bound on the time complexity of the convergence speed
is a future research direction. Through extensive simulations,
we showed that the network can converge to an NE within 10
iterations and also achieve better fairness compared with other
algorithms.
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