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Abstract—One approach to prolong the lifetime of a wireless
sensor network (WSN) is to deploy some relay nodes to commu-
nicate with the sensor nodes, other relay nodes, and the base sta-
tions. The relay node placement problem for wireless sensor net-
works is concerned with placing a minimum number of relay nodes
into a wireless sensor network to meet certain connectivity or sur-
vivability requirements. Previous studies have concentrated on the
unconstrained version of the problem in the sense that relay nodes
can be placed anywhere. In practice, there may be some physical
constraints on the placement of relay nodes. To address this issue,
we study constrained versions of the relay node placement problem,
where relay nodes can only be placed at a set of candidate locations.
In the connected relay node placement problem, we want to place a
minimum number of relay nodes to ensure that each sensor node is
connected with a base station through a bidirectional path. In the
survivable relay node placement problem, we want to place a min-
imum number of relay nodes to ensure that each sensor node is con-
nected with two base stations (or the only base station in case there
is only one base station) through two node-disjoint bidirectional
paths. For each of the two problems, we discuss its computational
complexity and present a framework of polynomial time ���-ap-
proximation algorithms with small approximation ratios. Exten-
sive numerical results show that our approximation algorithms can
produce solutions very close to optimal solutions.

Index Terms—Approximation algorithms, connectivity and sur-
vivability, relay node placement, wireless sensor networks (WSNs).

I. INTRODUCTION

A WIRELESS sensor network (WSN) consists of many
low-cost and low-power sensor nodes (SNs) [1]. Sensing

and short-range communication to transmit sensed information
to the base stations are two of the most important functions
of a SN in a WSN. There has been extensive research on
energy-aware routing [4], [14], [18], [33], improvement in
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lifetime [12], [24], [32], and survivability [22] in WSNs. Since
energy consumption is proportional to for transmitting
over distance , where is a constant in the interval ,
long-distance transmission in WSNs is costly. To prolong
network lifetime while meeting certain network specifications,
researchers have proposed to deploy in a WSN a small number
of relay nodes (RNs) whose main function is to communicate
with the SNs and other RNs [2], [5], [11], [12], [15], [20], [21],
[32]. These are studied under the general theme of relay node
placement. Recently, this problem has received a lot of attention
from the networking community, with papers addressing this
problem published in MobiCom [24], MobiHoc [2], [29], and
Infocom [10], [15], [34].

Relay node placement problems can be classified into ei-
ther single-tiered or two-tiered based on the routing structures
[11], [12], [21], [24] and into either connected or survivable
based on the connectivity requirements [2], [11], [15], [34]. In
single-tiered relay node placement, a SN also forwards packets
received from other nodes. In two-tiered relay node placement,
a SN forwards its sensed information to a RN or a base station
(BS), but does not forward packets received from other nodes.
In connected relay node placement, we place a small number of
RNs to ensure that each sensor node is connected with a base
station through a bidirectional path. In survivable relay node
placement, we place a small number of RNs to ensure that each
sensor node is connected with two base stations (or the only
base station, in case there is only one base station) through two
node-disjoint bidirectional paths.

We first briefly review prior works on single-tiered relay node
placement, where both relay nodes and sensor nodes participate
in the forwarding of received packets. We will use and to
denote the communication ranges of RNs and SNs, respectively.
We will also use to denote connectivity requirement and
use to denote survivability requirement. In 1999, Lin and
Xue [19] studied the problem with and , proved
its NP-hardness, and presented a minimum spanning tree (MST)
based 5-approximation algorithm. They also designed a steiner-
ization scheme, which has been used by almost all later works
[2], [3], [5], [10], [11], [15], [20], [21], [29], [34]. Chen et al. [3]
proved that the Lin–Xue algorithm is a 4-approximation algo-
rithm and presented a 3-approximation algorithm. Cheng et al.
[5] presented a faster 3-approximation algorithm and a random-
ized 2.5-approximation algorithm. Bredin et al. [2] extended the
relay node placement problem to the case of and
and presented polynomial time -approximation algorithms
for any fixed . Kashyap et al. [15] presented a 10-approxima-
tion algorithm for the case of and . All of the
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above works assume that the transmission range of the RNs is
the same as that of the SNs. Lloyd and Xue [21] studied the
problem with and , proved its NP-hardness, and
presented a 7-approximation algorithm. Zhang et al. [34] pre-
sented a 14-approximation algorithm for and .

We next give a brief review of prior works on two-tiered
relay node placement, where only the RNs participate in packet
forwarding. Motivated by the works [9] and [24] on clustered
WSNs, Hao et al. in [11] formulated the two-tiered relay node
placement problems where each SN has to be within distance
of at least RNs, and the RNs (all having communication range

) form a -connected network, for . Tang et al.
in [30] presented 4.5-approximation algorithms for and
2, under the assumption that and that the SNs are uni-
formly distributed. In [20], under the assumption that
and with no restriction on the distribution of the SNs, Liu et al.
presented a -approximation algorithm for and a

-approximation algorithm for , where is any
given constant. In [21], Lloyd and Xue studied the problem for

with the condition relaxed to and presented
a -approximation algorithm. Srinivas et al. [29] presented
better approximation algorithms under the assumption .
Zhang et al. [34] studied both single-tiered and two-tiered relay
node placement problems that ensure 2-connectivity, which in-
volves sensor nodes, relay nodes, and base stations. They pre-
sented -approximation algorithms for both problems.

All of the above works study unconstrained relay node place-
ment in the sense that the RNs can be placed anywhere. For
example, in the works [2], [21], and [34], the relay nodes are
stacked on top of other relay nodes or sensor nodes. In practice,
however, there may be some physical constraints on the place-
ment of the RNs. For example, there may be a lower bound on
the distance between two network nodes to reduce interference.
Also, there may be some forbidden regions where relay nodes
cannot be placed. However, the relay node placement problem
subject to forbidden regions and lower bound on internode dis-
tance is intrinsically harder than its unconstrained counterpart.
As a first step toward solving this challenging problem, we study
constrained relay node placement problems where the RNs can
only be placed at a set of candidate locations. Our formulation
can be viewed as an approximation to the aforementioned relay
node placement problem subject to the constraints of forbidden
regions and lower bound on internode distance in the following
sense. Instead of allowing the relay nodes to be placed anywhere
outside of the forbidden regions and satisfying the internode
distance bound, we further restrict the placement of the relay
nodes to certain candidate locations that are outside of the for-
bidden regions. The use of candidate locations simultaneously
approximates the constraint enforced by the forbidden regions
and the constraint enforced by the internode distance bound. We
are using a discrete optimization problem to approximate a non-
convex continuous optimization problem.

In this paper, we study single-tiered constrained relay node
placement problems under both the connectivity requirement
and the survivability requirement. We formulate the prob-
lems, discuss their complexities, and present polynomial time

-approximation algorithms. To our best knowledge, we

are the first to present -approximation algorithms for these
problems.

In Section II, we present basic notations and prove a few
fundamental lemmas that will be used in later sections. In
Section III, we study the connected relay node placement
problem. In Section IV, we study the survivable relay node
placement problem. In Section V, we present linear program-
ming-based schemes for computing lower bounds on the
optimal solutions of the relay node placement problems. We
present numerical results in Section VI and conclude the paper
in Section VII.

II. BASIC NOTATIONS AND FUNDAMENTAL LEMMAS

We consider a hybrid wireless sensor network (HWSN) con-
sisting of SNs, RNs, and BSs. We assume that all SNs have com-
munication range and that all RNs have communication
range , where and are given constants. We also as-
sume that the BSs are powerful enough so that their communi-
cation range is much greater than , and that any two BSs can
communicate directly with each other. We note that, in prac-
tice, two BSs may communicate indirectly via other means, such
as satellites or the Internet. Since the objective of this paper is
to place the minimum number of RNs to meet connectivity or
survivability requirements, our assumption simplifies notations
without losing any generality. We use to denote the Eu-
clidean distance between two points and in the plane. We
will also use to denote the location of a node , if no confu-
sion arises.

Following the above discussions, two nodes and can com-
municate directly with each other if and only if is less
than or equal to the smaller of the communication ranges of the
two nodes. In other words, a SN can communicate directly
with another node (which could be a SN, a RN, or a BS) if
and only if . A RN can communicate directly with
another node (which could be a RN or a BS) if and only if

. Similarly, any pair of BSs can communicate di-
rectly with each other. Following these rules, the SNs, the RNs,
and the BSs, together with the values of and , collectively
induce a hybrid communication graph ( ) formally defined
in the following.

Definition 2.1: Let be a set of BSs, be a set of SNs,
be a set of RNs, and be the respective communica-
tion ranges of RNs and SNs. The hybrid communication graph

induced by the 5-tuple is an
undirected graph with node set and edge set
defined as follows. For any two BSs , contains the
undirected edge . For a RN and a node

, which could be either a RN or a BS, contains the
undirected edge if and only if . For
a SN and a node , which is either a SN, a
RN, or a BS, contains the undirected edge if
and only if .

We illustrate the concept of using the example shown in
Fig. 1(a). In this example, the set of SNs is , the
set of RNs is , and the set of BSs is .
Therefore, the has six vertices. There is an edge
in the because . Similarly, the also
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Fig. 1. (a) Illustration of , showing ��� �� �� � � �� �� � � ��
�� � � ��, where ��� � � � � ��� � � � � ��� � � � � ��� � � � � �,
��� � � � � �. (b) Edge weights in , where an edge incident with no
relay node has a weight of 0, an edge incident with exactly one relay node has
a weight of 1, and an edge incident with two relay nodes has a weight of 2.

contains the edges , , and . There is an
edge in the connecting RNs and because

. Similarly, the also contains the edges
and . There is an edge in the con-

necting BSs and because we assume any pair of BSs are
directly connected.

The hybrid communication graph defines all possible bidirec-
tional communications between pairs of nodes. For the design
and analysis of our schemes, we will need to define two more
concepts related to an , i.e., the edge weights and the relay
size of an . These are formally defined in the following. We
use the following standard graph theoretic notations: for a graph

, denotes the node set of and denotes the edge
set of .

Definition 2.2: Let be a hybrid
communication graph. For each edge in the ,
we define its weight (denoted by ) as

(2.1)

Let be a subgraph of . The weight of [denoted by ]
is defined as

(2.2)

The relay size of [denoted by ] is defined as

(2.3)

In other words, the relay size of is the number of relay nodes
in .

Fig. 1(b) illustrates the edge weights of the shown in
Fig. 1(a). Simply put, the weight of an edge in the
is the number of relay nodes the edge is incident with. Recall
that our goal is to use the minimum number of relay nodes to
ensure that the sensor nodes and the base stations are connected
or biconnected. This assignment of edge weight in the en-
sures that a constant approximation to a minimum weight sub-
graph of connecting all of the sensor nodes and the base
stations corresponds to a constant approximation to an optimal
solution of the connected relay node placement problem, and
that a constant approximation to a minimum weight 2-connected
subgraph of connecting all of the sensor nodes and the base
stations corresponds to a constant approximation to an optimal
solution of the survivable relay node placement problem. More
precisely, our definition of the weight and relay size of a sub-
graph of an leads to an important relationship between the
weight and the relay size of a certain class of subgraphs of an

, which is stated in the following lemma.

Lemma 2.1: Let be a subgraph of
such that every RN in has degree at least 2 (within ). Then,

.
Proof: We prove this lemma by shifting the edge weight to

its end nodes. Initially, every node in has its weight initialized
to 0. We loop over all edges of to move the edge weights to
their end nodes in the following way.

Let be an edge of that is incident with two RNs.
According to our definition, the weight of this edge is 2. In this
case, we divide the edge weight into two equal pieces, add a
weight of 1 to node , and add a weight of 1 to node . Let

be an edge of , where is a RN and is not. According
to our definition, the weight of this edge is 1. In this case, we
add a weight of 1 to node , add a weight of 0 to node . Let

be an edge of where neither nor is a RN. According
to our definition, the weight of this edge is 0. In this case, we
add a weight of 0 to node and add a weight of 0 to node .

After all edges are looped over, we have shifted the edge
weights of to the RNs in . Note that a relay node is get-
ting a weight of 1 from every edge of that is incident with ,
resulting in a weight equal to the degree of . Since every RN in

is incident with at least two edges in , it receives a weight
of at least 2. Therefore, .

We use Fig. 1(b) to illustrate Lemma 2.1 and its proof. As-
sume that is the in Fig. 1(a). We have

and . Clearly, we have
. Following the weight shifting scheme used

in the proof, RN receives a weight of 1 from edge ,
a weight of 1 from edge , and a weight of 1 from edge

, resulting in a total weight of . Similarly, RN
receives a weight of 1 from edge , a weight of 1 from
edge , and a weight of 1 from edge , resulting in
a total weight of . Therefore, each RN receives a weight
that is equal to its degree, as stated in the proof of Lemma 2.1.

We will also need to use the result stated in Lemma 2.3, which
is based on Lemma 2.2 in the following.

Lemma 2.2: Let be an undirected biconnected graph
where and each edge has a unit length .
Let be a minimum length biconnected subgraph of .
Then, .

Proof: Since is biconnected, we can find an ear
decomposition of [31]. Let be defined by all the ears in an
ear decomposition of . Then, is a biconnected subgraph of

spanning all vertices in . We need to prove that contains
no more than edges.

By definition, the first ear is a cycle spanning ver-
tices and contains edges. Each additional ear spans
new vertices using edges. Therefore, the total number of
edges in is at most .

Lemma 2.3: Let be an undirected connected graph
where and each edge has a unit length

. Let be a minimum length connected subgraph of
such that two vertices and are in the same biconnected

component of if and only if they are in the same biconnected
component of . Then, .

Proof: Let be the biconnected components of
, where has vertices, . Note that two

biconnected components and may share one common
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node, but never two. Assume that the union of has
connected components . Let

, where . Then,
can be obtained by connecting the connected components of
the union of and vertices using
exactly edges in . Therefore, the number of edges
in is

(2.4)

(2.5)

(2.6)

where the second equality follows from
. This proves the lemma.

Definition 2.3: Let be a hybrid
communication graph. Let be a subgraph of . Let be
a relay node in . The sensor degree of in , denoted by

, is the number of SNs that are neighbors of in .
The base station degree of in , denoted by , is the
number of BSs that are neighbors of in . The maximum
sensor degree of is defined as

. The maximum base station degree of is defined
as . The maximum
nonrelay degree of is defined as

.
It is clear that . For graph theoretic

terms not defined in this paper, we refer readers to the standard
textbook [31]. We will use to denote the undirected edge
in a graph. Therefore, and denote the same edge.
We will use the terms nodes and vertices interchangeably, as
well as links and edges. For concepts in algorithms and com-
puting theory, such as NP-hard, we refer readers to the standard
textbooks [6], [8].

A polynomial time -approximation algorithm for a mini-
mization problem is an algorithm that, for any instance of
the problem, computes a solution that is at most times the op-
timal solution of the instance in time bounded by a polynomial
in the input size of the instance [6]. In this case, we also say that

has an approximation ratio of .

III. RELAY NODE PLACEMENT TO ENSURE CONNECTIVITY

Given a set of SNs, a set of BSs, and a set of candidate lo-
cations where RNs can be placed, we are interested in placing
the minimum number of RNs so that the sensor nodes and the
base stations are in the same connected component of the hy-
brid communication graph induced by the SNs, the RNs, and
the BSs.

Relay node placement in wireless sensor networks has been
studied by many researchers [2], [3], [5], [10], [11], [15],
[19]–[21], [29], [34]. The objective here is to shift the load of
long-distance transmissions from the SNs to the RNs, therefore
achieving better energy efficiency and extending network
lifetime. Most of the previous studies have concentrated on
the case where the RNs can be placed anywhere. In practice,
however, there are certain restrictions on the locations of the

RNs with respect to the SNs, the BSs, and other RNs. This
motivated us to study the constrained relay node placement
problem. In this section, we study the problem of placing the
minimum number of RNs to ensure network connectivity.

A. Problem Definitions and Discussions

Definition 3.1: Let be the respective communi-
cation ranges for RNs and SNs. Let be a set of BSs, be a
set of SNs, and be a set of candidate locations where RNs
can be placed. A set of RNs is said to be a feasible
connected relay node placement (denoted by -RNPc) for

if the graph is connected.
The size of the corresponding -RNPc is . A -RNPc
is said to be a minimum connected relay node placement for

(denoted by -RNPc) if it has the minimum
size among all -RNPc for .

Definition 3.2: Let be the respective communi-
cation ranges for RNs and SNs. Let be a set of BSs, be a
set of SNs, and be a set of candidate locations where RNs
can be placed. The connected relay node placement problem
for , denoted by RNPc-P , seeks
a -RNPc for .

We also study a special case of RNPc-P where . Many
existing works correspond to this special case [3], [5], [19], [21].
For this special case, our algorithm has a faster running time and
a better approximation ratio. In this case, one of the relay nodes
deployed can work as a base station to collect data.

The authors of [16] studied the Critical-Grid Coverage
Problem (CGCP). CGCP is concerned with a grid of equi-
lateral triangles of size . Some of the grid points are critical
grids, which need to be covered by sensor nodes with sensing
range and communication range . The goal of CGCP is
to deploy a minimum number of sensor nodes on the grid points
so that: 1) each critical-grid point is within distance of at
least one sensor node; and 2) the sensor nodes form a connected
network under the unit disk communication model, where two
sensor nodes can communicate iff they are within distance .
It is proved in [16] that if and , then
CGCP is NP-hard using a reduction from planar 3SAT.

We demonstrate in the following that the special case of
RNPc-P with contains CGCP as a special case. For
any given instance of CGCP, we construct an instance
of RNPc-P with in the following way. Let (the set
of sensor nodes in ) be the set of critical grids in . Let
(the candidate locations for relay nodes in ) be the rest of the
grid points contained in the convex hull of the critical grids.
Let , , and . Then, we have an instance

for RNPc-P. Moreover, an optimal solution to corre-
sponds to an optimal solution to , and an -approximation to

corresponds to an -approximation to . Since CGCP is
NP-hard, RNPc-P is also NP-hard. Therefore, we seek efficient
algorithms that have provably good performance guarantees.

We present a general framework of efficient approximation
algorithms for RNPc-P, based on efficient approximation algo-
rithms for the graph Steiner tree problem (STP) [13]. In partic-
ular, we show that by using the best-known approximation algo-
rithm for STP [28], our framework becomes a -approxima-
tion algorithm for RNPc-P when , and a -approxima-
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TABLE I
CLOSELY RELATED RESULTS ON CONNECTED RELAY NODE PLACEMENT

tion algorithm for the general RNPc-P. To the best of our knowl-
edge, we are the first to present -approximation algorithms
for these constrained relay node placement problems. The un-
constrained version of RNPc-P when is the single-tiered
relay node placement problem studied by Lloyd and
Xue [21], where there is no restriction on the locations of the
relay nodes. Considering that the best-known approximation al-
gorithm [21] for (the unconstrained problem) has an
approximation ratio of , our -approximation algorithm for
the constrained problem is amazingly good. Table I lists the
most closely related results on this topic.

B. A Framework of Efficient Approximation Algorithms

In this section, we present a framework of polynomial time
approximation algorithms for RNPc-P. For the general case, we
prove that the number of RNs used by our algorithm is no more
than times the number of RNs required by an optimal solu-
tion, where is the approximation ratio of the approximation
algorithm for STP. For the special case where , we
prove that the number of RNs used by our algorithm is no more
than times the number of RNs required by an optimal so-
lution. Our approximation algorithm for RNPc-P is presented
as Algorithm 1.

Algorithm 1 Approximation for RNPc-P

Input: , set of BSs , set of SNs , set of candidate
locations of RNs , and an approximation algorithm for
the STP.

Output: An -RNPc for given by .

1: Construct .

2: if the nodes in are not in a single connected
component of then

3: The RNPc-P instance does not have a feasible solution.

Stop.

4: end if

5: Assign edge weights to the edges in
as in Definition 2.2.

6: Apply algorithm to compute a low weight tree
subgraph of which connects all
nodes in .

7: Output .

Algorithm 1 takes as input an instance of RNPc-P and an
approximation algorithm for the graph STP. Simply put, an
instance of STP is given by an undirected graph
and a subset of target nodes, where and the are
the set of nodes and edges, respectively, and is the
weight of edge . The goal is to compute a minimum
weight tree subgraph of such that connects all target
nodes (maybe some additional nodes in , which are called
Steiner nodes) [13]. This problem is NP-hard, but admits many
polynomial time approximation algorithms with small constant
approximation ratios. The simplest approximation algorithm for
STP is the MST-based 2-approximation algorithm of Kou et al.
[17]. The algorithm first constructs an edge-weighted complete
graph on the set of target nodes, where the weight of
an edge in is the weight of the minimum weight

– path in . We then compute an MST of . Since each
edge in corresponds to a – path in , the MST
of the complete graph corresponds to a connected subgraph
of . Note that is not necessarily a tree. We can then com-
pute a tree subgraph of and repeatedly delete nontarget leaf
nodes in the tree. The resulting tree is a Steiner tree whose cost
is no more than twice that of the optimal Steiner tree. Other
more sophisticated approximation algorithms are also known.
For example, with a longer running time (still a polynomial time
algorithm), the algorithm of [28] has an approximation ratio of

.
The major steps of Algorithm 1 are as follows. First, we con-

struct the hybrid communication graph , as
if we were placing an RN at every candidate location in .
This is accomplished in Line 1 of the algorithm. It should be
noted that the given instance of the problem has a feasible so-
lution if and only if all the BSs and SNs are in the same con-
nected component of . Recall that we as-
sume that all base stations are connected. We can compute all of
the connected components of in linear time
using depth first search [6]. This is accomplished in Lines 2–4
of the algorithm. Next, we assign nonnegative integer weights
to the edges of the as in Definition 2.2, i.e., the weight
of an edge is the number of relay nodes with which it is inci-
dent. This is accomplished in Line 5 of the algorithm. Then, we
apply algorithm to compute a low-weight tree subgraph
of , spanning all nodes in . This is
accomplished in Line 6 of the algorithm. Finally, in Line 7, we
identify the locations to place the RNs.

We use the example shown in Fig. 2 to illustrate Algorithm 1.
Fig. 2(a) shows six SNs (illustrated using small circles), two
BSs (illustrated using small hexagons), and 18 candidate loca-
tions for RNs (illustrated using small squares). These 26 nodes
are sitting on unit grid points. Assuming and ,
the edges of the corresponding are also shown, where
the 0-weight edges (edges with weight 0) are shown in dashed
lines, the 1-weight edges are shown in dash-dot lines, and the
2-weight edges are shown in solid lines. Fig. 2(b) shows the
edge-weighted complete graph on , where the weight of
an edge in the complete graph is the length of the shortest path
connecting the two end nodes in the . A MST of the com-
plete graph is shown in thick edges. Fig. 2(c) shows the relay
node placement corresponding to the MST, which uses six RNs,
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Fig. 2. (a) The of the instance for two BSs (hexagons), six SNs (circles),
and 18 candidate locations for RNs (squares). (b) The edge-weighted complete
graph on ��� , where the edge weight is the shortest path length in the ,
and a MST (thick edges). (c) The corresponding MST-based � -RNPc, which
uses six RNs. (d) The optimal solution, which uses four RNs.

shown as filled squares. Fig. 2(d) shows the optimal relay node
placement, which uses four RNs.

Theorem 3.1: Algorithm 1 has a worst-case running time
bounded by , where is the time
complexity of the approximation algorithm used for approx-
imating the STP problem. Furthermore, we have the following:

• RNPc-P has a feasible solution if and only
if has a connected component that
contains all nodes in .

• When RNPc-P has a feasible solution, Al-
gorithm 1 guarantees computing a feasible solution that
uses no more than times the number of
RNs required in an optimal solution , where is the
approximation ratio of , and is a minimum spanning
tree of .
Proof: Line 1 constructs the , which requires

time. Lines 2–4 can be accomplished using depth first
search, which also requires time. Line 5 also
requires time. Line 6 requires time.
This proves the time complexity of the algorithm.

If not all the nodes in are in the same connected com-
ponent of , there must be two nodes

that are not connected in . Since all
base stations are connected with each other in the , this
means that there is at least one sensor node that is not connected
to a base station, implying that the given instance does not have a
feasible solution. On the other hand, if all the nodes in are
in the same connected component of , any
tree subgraph of which spans all the nodes
in corresponds to an -RNPc of the given instance.

Let be a minimum weight tree subgraph of
which connects all nodes in .

Since is a tree subgraph of which
connects all nodes in , we have

(3.1)

Since is a -approximation algorithm, we have

(3.2)

We can write as ,
where is the sum of the 1-weight edges in and

is the sum of the 2-weight edges in . Since
for each RN in

(3.3)

Since is a tree, it has at most 2-weight edges.
Therefore

(3.4)

Therefore

(3.5)

Combining Lemma 2.1 and inequalities (3.2) and (3.5), we have

(3.6)

This proves the theorem.
There are several choices for the approximation algorithm .

For example, if we use the algorithm of [17], the corresponding
approximation ratio is . If we use the algorithm of [28],
the corresponding approximation ratio is .
Next, we will prove a bound on .

Lemma 3.1: Let be a MST of ,
where is an optimal solution to RNPc-P .
Then, and .

Proof: We prove this by contradiction. Assume that in
, a RN is connected to six SNs .

Without loss of generality, assume that . Since
and , we have . Since

is a tree, it does not contain edge , as otherwise
there would be a cycle . Replacing edge
in with edge , we obtain another tree spanning
the nodes . Since and ,
we have , contradicting the assumption that

is a minimum spanning tree. Therefore, an RN cannot
be connected to more than five SNs in .

Now, assume that a relay node is connected to two BSs
and in . Since is a tree, it does not contain the edge

. We can replace edge in with edge
to obtain another lower weight tree spanning the nodes

. This contradiction proves that no RN in can be
connected to more than one BSs.

Corollary 3.1: The general RNPc-P has a polynomial time
-approximation algorithm. The special case of RNPc-P with

has a polynomial time -approximation algorithm.
Proof: According to Robins and Zelikovsky [28], there is

a polynomial time approximation scheme for the STP whose
approximation ratio can be made arbitrarily close to
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. The claims of this corollary follow from Theorem 3.1 with
and the bound derived in Lemma 3.1.

Corollary 3.2: The general RNPc-P has an -approximation
algorithm with a running time of

. The special case of RNPc-P (with ) has a -approxi-
mation algorithm with a running time of

.
Proof: If we take in Algorithm 1 as the MST-based 2-ap-

proximation algorithm for STP [17], the running time of Algo-
rithm 1 is . The corresponding
approximation ratios of Algorithm 1 follows from Theorem 3.1
and Lemma 3.1.

IV. RELAY NODE PLACEMENT TO ENSURE SURVIVABILITY

In Section III, we have studied the relay node placement
problem under the connectivity requirement, i.e., there is a path
connecting every pair of nodes . In this section,
we consider a relay node placement problem that meets both
the connectivity requirement and the survivability requirement.
In particular, we need to ensure that between each pair of
nodes , there exists a pair of node-disjoint paths
connecting and .

Survivable relay node placement (also known as fault-tolerant
relay node placement) in wireless sensor networks has been
studied by many researchers [2], [10], [11], [15], [20], [29],
[34]. The objective here is to ensure that the network remains
connected in the presence of up to node failures. For a
network to tolerate up to node failures, it has to be -con-
nected. The works [11], [15], [20], [29], and [34] study relay
node placement that ensures 2-connectivity, while the works [2]
and [10] study relay node placement that ensures higher order
connectivity. All these works can be viewed as unconstrained
survivable relay node placement in the sense that relay nodes
can be placed anywhere. Our current work can be viewed as
constrained survivable relay node placement in the sense that
relay nodes can only be placed at some prespecified candidate
locations.

A. Problem Definitions and Discussions

Given a set of SNs, a set of BSs, as well as the candidate lo-
cations where RNs can be placed, we are interested in placing
the minimum number of relay nodes so that the hybrid commu-
nication graph induced by the SNs, the RNs, and the BSs is bi-
connected.

Definition 4.1 : Let be the respective communi-
cation ranges for RNs and SNs. Let be a set of BSs, be a set
of SNs, and be a set of candidate locations where RNs can be
placed. A set of RNs is said to be a feasible survivable
relay node placement (denoted by -RNPs) for
if the graph is biconnected. The size of
the corresponding -RNPs is . A -RNPs is said to be a
minimum survivable relay node placement for
(denoted by -RNPs) if it has the minimum size among all

-RNPs for .
Definition 4.2: Let be the respective commu-

nication ranges for RNs and SNs. Let be a set of BSs, be
a set of SNs, and be a set of candidate locations where RNs

TABLE II
CLOSELY RELATED RESULTS ON SURVIVABLE RELAY NODE PLACEMENT

can be placed. The survivable relay node placement problem
for , denoted by RNPs-P , seeks
a -RNPs for .

The problem we are studying here is closely related to the
-survivable network design problem ( SNDP) defined

in Definition 4.3. The SNDP is known to be NP-hard [26], [27],
but admits several polynomial time approximation algorithms
[7], [26]. Our approximation algorithms for RNPs-P rely on
solving instances of SNDP.

Definition 4.3: Let be an undirected graph with
nonnegative weights on all edges . For each pair of
nodes , there is a connectivity requirement

. The -survivable network design problem
(SNDP) asks for a minimum weight subgraph of such
that for any two nodes , contains at least
node-disjoint paths between and .

Since the RNPc-P problem studied in Section III (which only
requires connectivity) is NP-hard, it is natural to believe that
the RNPs-P problem is also NP-hard. Instead of searching for
a hardness proof of the problem, we concentrate on the design
and analysis of polynomial time approximation algorithms that
have small approximation ratios.

We present a general framework of efficient approximation
algorithms, based on approximation algorithms for SNDP. In
particular, we show that by using the best-known approximation
algorithm for SNDP [7], our framework becomes an -approxi-
mation algorithm for the general RNPs-P problem, and a -ap-
proximation algorithm for the special RNPs-P problem where

. Table II lists the most closely related results on this topic.

B. A Framework of Efficient Approximation Algorithms

In this section, we present a framework of polynomial time
approximation algorithms for RNPs-P. Our framework is based
on polynomial time approximation algorithms for -
SNDP. Our framework for RNPs-P is presented as Algorithm 2.

Algorithm 2 Approximation forRNPs-P

Input : , set of SNs , set of BSs , set of candidate
locations of RNs , and an approximation algorithm for the

-SNDP.

Output : A -RNPs for given by .

1: Construct .

2: if the nodes in are not in a single biconnected
component of

3: The RNPs-P problem does not have a feasible solution.
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Stop.

4: end if

5: Assign edge weights to the edges in
as in Definition 2.2.

6: Assign connectivity requirements between every pair of
nodes in in the following way. Let and be two nodes.
If neither of them is in , set . Otherwise, set

.

7: Apply the polynomial time -approximation algorithm
to compute a low weight biconnected subgraph

of which meets the connectivity
requirement specified in the previous step of this algorithm.

8: Output .

The major steps of our scheme are as follows. First, we con-
struct , as if we were placing a RN at every
candidate location in . This is accomplished in Line 1 of the
algorithm. The given instance of the problem has a feasible so-
lution if and only if all of the BSs and SNs are in the same bi-
connected component of . We can compute
all of the biconnected components of in
linear time using depth first search [6]. This is accomplished in
Lines 2–4 of the algorithm. Next, we assign nonnegative integer
weights to the edges of the as in Definition 2.2. This is ac-
complished in Line 5 of the algorithm. In Line 6, we construct
an instance of the -SNDP problem. Then, we apply al-
gorithm to compute a low-weight biconnected subgraph
of , spanning all nodes in . This is
accomplished in Line 7 of the algorithm. Finally, in Line 8, we
identify the locations to place the RNs.

Theorem 4.1: Algorithm 2 has a worst-case running time
bounded by , where is the time
complexity of the approximation algorithm used for approx-
imating -SNDP. Furthermore, we have the following:

• RNPs-P has a feasible solution if and only
if has a biconnected component that
contains all nodes in .

• When RNPs-P has a feasible solution,
Algorithm 2 guarantees computing a feasible solution
that uses no more than times the
number of RNs required in an optimal solution ,
where is a minimum-weight biconnected sub-
graph of that spans all nodes in

, and is the approximation ratio of .
Proof: Let be an optimal solution of the -

SNDP instance. Since is a feasible solution to -
SNDP, and is a -approximation algorithm for -
SNDP, we have

(4.1)

We need to find an upper bound on using a func-
tion of . Let denote the total weights of
the 2-weight edges in , and let denote

Fig. 3. Proof of Lemma 4.1: � �� � � � (a) Delete �� � �� (b) Delete
edge �� � ��.

the total weights of the 1-weight edges in . We have
. Since each RN in

is incident with at most -weight edges in , we
have

(4.2)

Applying Lemma 2.3 to each of the connected components of
the subgraph of induced by all the 2-weight edges, we have

(4.3)

It follows from Lemma 2.1 that

(4.4)

(4.5)

This proves the theorem.
There are several choices of the approximation algorithm

for -SNDP. For example, if we use the algorithm of
[7], the corresponding approximation ratio is . If we use
the algorithm of [26], the corresponding approximation ratio is

. Next, we will prove a bound for .
Lemma 4.1: Let be an optimal solution to RNPs-P

. Let be a minimum-weight biconnected
subgraph of spanning all nodes in the
graph. Then, , .

Proof: We prove this by contradiction. Assume that RN
is connected to six sensor nodes in . Without
loss of generality, assume that . Since
, and , we have .

Therefore, is an edge in . Since
the weight of is 0, we can assume that .

Since is biconnected, it contains an – path that
does not go through . If path does not go through node [as
shown in Fig. 3(a)], contains a cycle (the edges ,

, concatenated with the path ) and one of its
chords . Deleting the chord from will re-
duce its weight without destroying its biconnectivity [31]. This
contradicts the minimum weight property of . If path
goes through node [as shown in Fig. 3(b)], contains a
cycle (the edge concatenated with the path ) and one of
its chords . Deleting the chord from will re-
duce its weight without destroying its biconnectivity [31]. This
again contradicts the minimum weight property of .

Now, assume that RN is connected to two BSs and in
. Since is an optimal solution, is connected to a SN
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Fig. 4. Proof of Lemma 4.1:� �� � � � (a) Delete edge �� � �� (b) Delete
edge �� � ��.

or another RN in . Since the weight of is 0, we
can assume that .

Since is biconnected, it contains a – path that
does not go through . If path does not go through node
[as shown in Fig. 4(a)], contains a cycle (the edges ,

, concatenated with the path ) and one of its
chords that has a weight of 1. Deleting the chord
from will reduce its weight without destroying its bicon-
nectivity [31]. This contradicts the minimum weight property
of . If path goes through node [as shown in Fig. 4(b)],

contains a cycle (the edge concatenated with the
path ) and one of its chords . This again contradicts the
minimum weight property of .

Corollary 4.1: The general RNPs-P problem has a -ap-
proximation algorithm with a polynomial running time. The
special RNPs-P problem, where , has a -approxima-
tion algorithm with a polynomial running time.

Proof: This is achieved by choosing as the 2-approxi-
mation algorithm of Fleischer [7].

Corollary 4.2: The general RNPs-P problem has a -ap-
proximation algorithm with a running time of

, where and are the node set and edge set of
, and is the inverse Ackermann func-

tion [6]. The special case of RNPs-P, where , has a
-approximation algorithm with a running time of

.
Proof: This is achieved by choosing as the 3-approxima-

tion algorithm of Ravi and Williamson for the -SNDP
problem [26], [27].

V. EFFICIENTLY COMPUTABLE LOWER BOUNDS

In order to evaluate the performance of the approximation al-
gorithms that we developed in the previous two sections, we
need to compare the approximate solutions with the optimal so-
lutions. The lack of efficient algorithms for computing optimal
solutions for RNPc-P and RNPs-P presents a challenge for the
necessary performance study of our approximation algorithms.
Since RNPc-P is known to be NP-hard, and RNPs-P is believed
to be NP-hard, it is unlikely that one will be able to compute
optimal solutions to these problems in a reasonable amount of
time, unless the input size of the instances is very small. In this
section, we present a unified linear programming (LP) formula-
tion that can efficiently compute lower bounds for both RNPc-P
and RNPs-P. These lowers bounds will be used to study the per-
formance of our approximation algorithms in the next section.
We denote the LP formulation by , where corre-
sponds to the case of RNPc-P and corresponds to the
case of RNPs-P.

TABLE III
NOTATION USED IN THE LP FORMULATION

Our LP formulation is based on multicommodity flow
packing [25] defined on the . We arbitrarily pick one of
the base stations (say ) as the common sink and route a flow
of type- and value- from node to this common sink for
each sensor node . This type- flow is distributed on
the edges of the (in the variables for )
and routed toward the common sink node. For each and
each , the amount of type- flow going through node
(denoted by the variable ) cannot exceed 1. For each
and each other than the common sink, the amount of
type- flow going through node (denoted by the variable )
cannot exceed 1. For each , the maximum amount of flow
of any type going through node is denoted by the variable .
The objective of the LP is to minimize subject to flow
conservation constraints in addition to the above constraints.
When the variables are restricted to 0 and 1
values, becomes an integer LP problem, which we de-
note by . A feasible solution to corresponds to a

-RNPc where there is a relay node placed at iff
in the feasible solution, as the solution guarantees that there is
a path connecting sensor node and base station for each
sensor node . Similarly, a feasible solution to
corresponds to a -RNPs where there is a relay node placed
at iff in the feasible solution, as the solution
guarantees that there are two node-disjoint paths connecting
sensor node and base station for each sensor node .
Therefore, the optimal objective function values of and

are the numbers of relay nodes required in the optimal
solutions to RNPc-P and RNPs-P, respectively, where there is
a relay node at iff in the optimal solution. We list
the notations used in the LP formulation in Table III and present
the LP formulation as . See equations (5.1)–(5.11) at the
bottom of the next page.

Constraint (5.2) ensures that the net flow of type-x out of node
x is f. Constraint (5.3) ensures that the net flow of type-x into
node t is f. Constraints (5.4) and (5.5) ensure that for each
and , the total flow of type-x into node z is and that
the total flow of type-x out of node z is also . Constraints
(5.6) and (5.7) ensure that for each and , the
total flow of type-x into node b is and that the total flow of
type-x out of node b is also . Constraint (5.8) ensures that the
flow of type-x on each link is a real number between 0 and 1.
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Fig. 5. Example network for the LP formulation illustration.

Constraint (5.9), together with Constraints (5.4) and (5.5), en-
sures that for each and , the total flow of type-x
into node z is a real number between 0 and and 1, which equals
the total flow of type-x out of node z. Constraint (5.10), together
with Constraints (5.6) and (5.7), ensures that for each
and , the total flow of type-x into node b is a real number
between 0 and and 1, which equals the total flow of type-x out of
node b. Constraint (5.11) defines the flow packing, i.e., for each

, is the maximum usage of node z among all types of
flows. The objective function (5.1) to be minimized is the sum-
mation of the maximum usages over all nodes .

Fig. 5 shows a small input instance that we shall use to illus-
trate the LP formulation of RNPc-P and RNPc-P. The instance
consists of two SNs 0 and 1, two RNs 2 and 3, and two BSs 4 and
5. We pick as the common sink node for the LP formula-
tions. The corresponding LP formulations for RNPc-P
and RNPs-P is shown in Fig. 6.

Next, we will prove that the solution to LP(f) leads to a lower
bound on the optimal solution for RNPc-P (with ) and for
RNPs-P (with ).

Theorem 5.1: Let be the objective function value of LP(1),
and be the objective function value of LP(2). Then, is a

Fig. 6. LP formulation for the illustrative deployment setup.

lower bound on the optimal value of RNPc-P, and is a lower
bound on the optimal value of RNPs-P.

over variables (5.1)

(5.2)

(5.3)

(5.4)

(5.5)

(5.6)

(5.7)

(5.8)

(5.9)

(5.10)

(5.11)
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Fig. 7. Results with increasing density: 100� 100 playing field; ��� � ���; �� � �� � ��� ��� ��� ��� ��� ���� ���� ���� ���. (a) Running times of
ARNPc and ARNPs. (b) Number of RNs used by ARNPc, LP-RNPc. (c) Number of RNs used by ARNPs, LP-RNPs.

Proof: Let an instance for the relay node placement
problem be given by , sensors , base stations ,
and candidate locations for relay nodes . We arbitrarily pick

as the common sink node.
Let be a -RNPc for the given instance. Then,

the hybrid communication graph is con-
nected. Therefore, for each , there is an – path in

. We can use this path to define the type-
flow of value-1 in . Also, for each ,
set if , and otherwise. Then, we have
a feasible solution for LP(1) whose objective function value is
equal to . This proves that is a lower bound for the op-
timal solution of RNPc-P.

Let be a -RNPs for the given instance. Then the hy-
brid communication graph is 2-connected.
Therefore, for each , there exists a pair of node-disjoint

paths in . We can use this pair of paths
to define the type- flow of value-2 in .
Also, for each , set if , and
otherwise. Then, we have a feasible solution for LP(2) whose
objective function value is equal to . This proves that is
a lower bound for the optimal solution of RNPs-P.

Note that LP(f) can be solved in polynomial time, which can
provide a lower bound on the optimal solutions for RNPc-P
(with ) and for RNPs-P (with ). If an approximate
solution produced by an approximation algorithm to RNPc-P
(RNPs-P, respectively) is within a factor of from its lower
bound, it is guaranteed to be within a factor of from its optimal
solution. We will use these efficiently computable lower bounds
in our performance studies in the next section.

VI. NUMERICAL RESULTS

To verify the effectiveness of the frameworks presented in this
paper, we have implemented our approximation algorithms for
both RNPc-P and RNPs-P, tested them on a variety of test prob-
lems, and compared the solutions obtained by our approxima-
tion algorithms with the corresponding lower bounds computed
using the LP formulations presented in Section V. We have
studied both the running times (for scalability) and the number
of relay nodes required (for performance of approximation). The
numerical results show that our theoretical analyses are quite
conservative. In all cases, the number of relay nodes required in
the solutions obtained by our approximation algorithms is very

close to the corresponding theoretical lower bounds. This in-
dicates that our approximation algorithms are very effective in
practice.

The algorithms implemented are: 1) ARNPc, which is Algo-
rithm 1 with being the MST based 2-approximation in [17] for
STP (simpler than the algorithm in [28]); 2) ARNPs, which is
Algorithm 2 with being the sequential maximum-flow-based
3-approximation in [26] for -SNDP (simpler than the
algorithm in [7]); 3) LP-RNPc, which solves LP(1) using ILOG
CPLEX [35]; and 4) LP-RNPs, which solves LP(2) using ILOG
CPLEX [35]. The tests were run on a 2.4-GHz Linux PC with
1 GB of memory.

As in [15] and [34], the SNs were randomly distributed in a
square playing field. Two base stations were randomly deployed
in the field. We used both regular grid points and randomly gen-
erated points as the candidate locations for the relay nodes. For
both setups, we set and .

We first present the results for the case where the candidate
locations are regular grid points. For this setting, we chose the
grid to be a square grid since it is the most commonly used
deployment. The playing field consists of small squares
each of side 10, with the grid points as . We studied
two separate settings: the case where the density of the SNs in
the field increases and the case where the density is constant.
We define the density as the ratio between the number of SNs
in the field and the area of the field. For the increasing density
case, we chose a constant field size of square units.
For the constant density case, we let the size of the playing field
increase with the number of SNs.

In the case with increasing density, the number of candi-
date RN locations was 121. The number of SNs was varied
from 10 to 120. For each setting, the SNs were deployed ran-
domly in the field. The results were averaged over 10 test cases.
Fig. 7(a) shows the running time of ARNPs and ARNPc. The

-axis is the sum of the average number of edges and nodes
in the (as the running time of the algorithm depends on
both and ), and the -axis is the running time in seconds.
The solid line shows the running time of ARNPc, which is less
than 1 s in all cases. This is because of the com-
plexity of ARNPc, which is fairly small. The dashed line shows
the running time of ARNPs. The running time of ARNPs in-
creases with the increase of the number of SNs and decreases
after a certain threshold, as shown in the figure. This is ex-
pected because the -SNDP algorithm requires com-
putation of the maximum flows for every pair of SNs in the
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Fig. 8. Results with constant density: seven different playing fields, from 40� 40 to 100� 100; two density values, � � ����� and � � ����. (a) Running
times of ARNPc and ARNPs. (b) Number of RNs used by ARNPc, LP-RNPc. (c) Number of RNs used by ARNPs, LP-RNPs.

Fig. 9. Random grid—Results with increasing density: 100� 100 playing field; ��� � ���; �� ��� � ��� ��� ��� ��� ��� ���� ���� ���� �	�. (a) Running
times of ARNPc and ARNPs. (b) Number of RNs used by ARNPc, LP-RNPc. (c) Number of RNs used by ARNPs, LP-RNPs.

network that are not biconnected yet. If the number of SNs in-
creases beyond the threshold, the biconnectivity among the SNs
also increases correspondingly. This increased biconnectivity
reduces the number of maximum flow computations required,
resulting in a decrease in the running time. From the figures,
we conclude that ARNPc is has a fast running time, whereas
ARNPs requires increasing computation with increasing values
of up to a threshold beyond which the computation
time decreases. Fig. 7(b) and (c) show the average number of
RNs required by ARNPc and ARNPs, respectively, and that re-
quired by LP-RNPc and LP-RNPs, respectively. The number of
RNs required decreases with an increase in the number of SNs.
This is because with an increase in the number of SNs, they are
able to satisfy the connectivity and survivability requirements
with the help of less number of RNs. From the figures, we can
conclude that in a network where the SNs are sparsely deployed,
use of an effective algorithm is essential for efficient relay nodes
placement. With increasing density, the number of relay nodes
required is much lesser, hence the effectiveness of the algorithm
is not as crucial. We note that in all cases, the number of RNs re-
quired by our approximation algorithms is no worse than twice
that of the number obtained from solving the corresponding LPs.
This indicates that our approximation algorithms perform very
well.

For the case of constant density, we studied two subcases: one
with density and the other with density .
For each density value, we used seven different numbers of SNs.
The field sizes were chosen to be , with
the number of SNs ranging from 8 to 50 for , and 16 to 100 for

, deployed randomly in the field. The result of each configura-
tion was averaged over 10 test cases. Fig. 8(a) shows the running
times of ARNPc and ARNPs. For both densities, ARNPc has
running time less than 1 s because of its small time complexity.

On the other hand, the running time of ARNPs is dependent on
both the density and the number of SNs in the network. The run-
ning time for is lesser than that of . This
is expected because with the increase in density, more pairs of
SNs are already biconnected. Hence, our algorithm runs faster
with an increase in density. Fig. 8(b) and 8(c) show the number
of RNs required by various algorithms. Our algorithms perform
very well in comparison with the results obtained by solving
the LPs. In the worst case, the number of RNs obtained from
ARNPc is four times the number obtained from solving the cor-
responding LPs. This is the case where the density is and the
field size is 40 40. This shows that our theoretical analysis
on the approximation ratios of our approximation algorithms
is quite conservative. In other words, our approximation algo-
rithms perform quite better than the theoretical approximation
ratios indicate.

Now, we present results where the candidate locations of the
RNs were randomly generated. This simulates a random deploy-
ment of the RNs, say, from an aircraft or a terrestrial vehicle. In
this setup, we studied the settings where the density of the SNs
in the field increases and where the density remains constant.
The parameters of the simulations are exactly the same barring
the fact that the RNs are now randomly deployed in the square
field instead of on a square grid. This setup may also be thought
of as the placement of the RNs on a random grid. Fig. 9 shows
the results for the increasing density case. The trend is similar
to the case with square grid. Despite the trend being the same,
the value of the running time is higher in the random grid case
than in the square grid case. This is because in the random grid
case, due to the random deployment of the RNs, a RN chosen at
an iteration in the algorithm may only be able to biconnect one
SN that needs to be biconnected. This results in more computa-
tion to ensure that all the SNs are biconnected, thus increasing
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Fig. 10. Random grid—Results with constant density: seven different playing fields, from 40� 40 to 100� 100; two density values, � � ����� and � � ����

(a) Running times of ARNPc and ARNPs (b) Number of RNs used by ARNPc, LP-RNPc (c) Number of RNs used by ARNPs, LP-RNPs.

the running time. Fig. 9(b) and (c) show the number of RNs
used for the connectivity and survivability cases, respectively.
The number of RNs obtained by our approximation algorithms
is within two times the number obtained by the solution of the
corresponding LPs.

Fig. 10 shows the results for the constant density case. The
running time of the ARNPc and ARNPs algorithms is shown in
Fig. 10(a). In comparison to the running time plot in the square
grid case, we can see that the running time of the ARNPs for

is higher than the running time for .
This is due to the random placement of the RNs. The number
of SNs when the density is is twice that when in the density
is . Owing to the random deployment of the RNs, it takes
more time to biconnect the SNs in the network. Thus, we can
conclude that, in the random grid case, increase in the density
of the SNs can increase the running time of ARNPs. Fig. 10(b)
shows the number of RNs required when ARNPc and LP-RNPc
are used. As expected, the number of RNs required when the
density is is lesser than that required when the density
is . The number of RNs required by ARNPc is less
than four times that required by the LP solution in the worst case
(40 40 case). Fig. 10(c) shows the number of RNs required for
survivability. The number of RNs required by ARNPs is never
more than twice the number required by the LP solution. The
simulation results show that our approximation algorithms are
very effective in solving RNPc-P and RNPs-P.

VII. CONCLUSION

In this paper, we have formulated constrained single-tiered
relay node placement problems in a heterogeneous wireless
sensor network to meet connectivity and survivability require-
ments. We have discussed the computational complexities of
these problems and presented a framework of polynomial time
approximation algorithms with approximation ratios. To
our best knowledge, we are the first to present approx-
imation algorithms for the constrained relay node placement
problems.

The connectivity requirement in this paper ensures the exis-
tence of a bidirectional path between each sensor node and a
base station, which supports both broadcast from a base station
and data collection to the base stations. A weaker connectivity
requirement is one that ensures the existence of a directional
path from each sensor node to a base station, which supports

data collection only. Obviously, the number of relay nodes re-
quired to ensure this weaker connectivity will not exceed the
number of relay nodes required to ensure the stronger connec-
tivity studied in this paper. The study of constrained relay node
placement under this weaker connectivity requirement may be
a direction of future research.

Instead of placing the more powerful and more expensive
relay nodes to meet the connectivity or survivability require-
ment, one may also place the less expensive sensor nodes to
meet the connectivity or survivability requirement. This corre-
sponds to the special case of . The algorithms studied in
this paper apply to this case as well. However, approximation
algorithms with smaller approximation ratios may exist for this
special case. Therefore, the study of better algorithms for this
case is also of interest.
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