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Abstract —The constrained relay node placement problem in a wireless sensor network seeks the deployment of a minimum number of
relay nodes (RNs) in a set of candidate locations in the network to satisfy specific requirements, such as connectivity or survivability. In this
paper, we study the constrained relay node placement problem in an energy-harvesting network in which the energy harvesting potential of
the candidate locations are known a priori. Our aim is to place a minimum number of relay nodes, to achieve connectivity or survivability,
while ensuring that the relay nodes harvest large amounts of ambient energy. We present the connectivity and survivability problems, discuss
their NP-hardness, and propose polynomial time O(1)-approximation algorithms with low approximation ratios to solve them. We validate the
effectiveness of our algorithms through numerical results to show that the RNs placed by our algorithms harvest 50% more energy on average
than those placed by the algorithms unaware of energy harvesting. We also develop a unified-mixed integer linear program (MILP)-based
formulation to compute a lower bound of the optimal solution for minimum relay node placement and demonstrate that the results of our
proposed algorithms were on average within 1.5 times of the optimal.

Index Terms —Energy harvesting, relay node placement, wireless sensor networks, constant approximation algorithm.
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1 INTRODUCTION

A wireless sensor network consists of sensor nodes
(SNs) and base stations (BSs). Generally, the low-cost

and low-power SNs perform short range communications
to conserve their limited battery resources. Given the con-
straints on an SN’s power, the transmission of data to
the BS is performed in cooperation with other SNs that
forward the data. To help the power-constrained SNs, use of
nodes with higher power called relay nodes (RNs) has been
proposed in the literature. The placement of RNs has been
used to improve properties, such as network connectivity
by Cheng et al. [5] and Lloyd et al. [23], survivability by
Bredin et al. [2], Hao et al. [12], and Kashyap et al. [16], and
lifetime maximization by Cheng et al. [4] and Hou et al. [13].
These problems have been widely studied as the Relay
Node Placement (RNP) problem, which seeks the placement
of a minimum number of relay nodes anywhere in the
deployment region to satisfy the desired objectives [11],
[13].

In this paper, we consider a more practical setup – the
constrained RNP. Most deployment regions in reality may
contain forbidden regions or impose lower bounds on inter-
node distances – we cannot place nodes anywhere we
want. The positions of the nodes are constrained as per
the restrictions in real world [24], [36]. For instance, in a
volcano monitoring system, an SN/RN cannot be placed
inside the crater, but may be constrained to be placed only
in some allowed regions in the rim of the volcano. In
this paper, we assume that the continuous unforbidden (or
allowable) regions in the deployment area are discretized
into candidate locations, thus converting the intractable con-
tinuous problem into a tractable combinatorial optimization
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problem. However, the number of candidate locations is
unbounded; at the limit (number of candidate locations
tending to infinity) they represent the allowable regions.
Hence, the Constrained Relay Node Placement problem
(CRNP) is concerned with placing a minimum number of
RNs, in a subset of these candidate locations, to satisfy the
desired objectives.

The advent of wireless nodes that can harvest ambient
energy (solar, wind, thermal) [6], [21], [34], to supplement
their battery power, has added yet another dimension to
the research in wireless networks. All WSNs will possibly
harvest ambient energy in the future as the added cost
of the harvesting hardware/software would be much less
than the cost of replacing dead batteries. Additionally,
these networks can have better performance and network
lifetime than non-harvesting networks [14], [15] making
them attractive for additional tasks, such as multimedia
and real-time communication. The existing placement al-
gorithms [11], [13], [24], [37] cannot handle the additional
complexity of energy harvesting, and as we show in Sec-
tion 4, may have arbitrarily bad performance.

The RNP problems need to be re-explored in light of
this new dimension. For instance, in a WSN, with nodes
harvesting solar energy, a node in direct sunlight would
harvest much more energy than a node in shade; thus the
position of a node may have a significant bearing on its
energy harvesting capabilities. This makes it imperative for
placement algorithms to account for the energy harvesting
potential of a node placed at different possible locations so
that they may perform efficient placement that increases the
energy available to the nodes and consequently increases
network effectiveness. In effect, to fully-tap the potential
of energy harvesting networks we need algorithms that are
‘energy harvesting aware.’ These reasons motivate our study –
Constrained Relay Node Placement in Energy Harvesting
WSNs (EH-CRNP). The problem is concerned with placing
a minimum number of RNs in a subset of the candidate
locations with high energy harvesting potential, in order to
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achieve the objectives of connectivity or survivability. We
note that EH-CRNP is more complex than the classical RNP
problem (NP-hard in itself), as in addition to the number
of RNs being the minimum, their placement needs to be in
locations that allow them to harvest more energy.

Based on the network topology, RNP problems may be
categorized into a 1-tiered or a 2-tiered placement. In a
1-tiered topology, the SNs and RNs can forward packets
received from other nodes [23]. In a 2-tiered topology, only
the RNs forward packets, the SNs transmit only their own
packets [37]. We study the 1-tiered topology only. In a 1-
tiered WSN, EH-CRNP for connectivity ensures that the RNs
are placed in the network to connect the SNs and BSs;
whereas, the placement for survivability ensures that the
network of SNs and BSs remain connected despite a single
node failure (biconnected network [7]). In both cases, the
RNs’ positions are chosen such that their combined energy
harvesting potential is high. We define r > 0 and R and
as the communication ranges of SNs and RNs respectively.
For wider application, we study the general version of the
placement problem, where R ≥ r [23].

Our contributions can be summarized as: (i) We study
the complexity of the EH-CRNP problem, for connectivity and
survivability respectively, in a 1-tiered topology. (ii) We design ef-
ficient energy harvesting-aware algorithmic frameworks, and use
them to propose polynomial time O(1)-approximation algorithms
(polynomial in run time and constant in approximation ratio) to
solve the problems. (iii) We obtain an efficiently computable
lower bound using mixed integer linear programming. (iv) Our
numerical results demonstrate that our approximation algorithms
perform within twice the optimal in the average case. Our
algorithms deploy a small number of RNs in a subset of
candidate locations so that the overall energy harvesting
potential of the deployed RNs is high and the network is
connected/survivable. A more desirable objective would be
to deploy a minimum number of RNs, such that the sum of
the energy harvesting potential of the placed RNs is maxi-
mized. However, those type of problems are even harder to
solve, and may admit only heuristic solutions, not elegant
polynomial time approximation solutions. Incidentally, our
proposed algorithms could serve as very good heuristics
for these maximization problems as we demonstrate in our
comparative study (Section 7).

Using our proposed frameworks, we present a 12.4-
approximation algorithm for connectivity and a 20-
approximation algorithm for survivability respectively. We
compare our algorithms to the state of the art [24] and
also to an efficiently computable mixed integer linear
programming-based lower bound to the optimal number
of RNs. The numerical results demonstrate that the results
from our algorithms are very close to the optimal (within
twice) on average in terms of the number of RNs that
need to be placed, and our algorithms perform 50% better
on average than the state of the art in placing the RNs
in positions that allow them to harvest large amounts of
energy.

In Section 2, we present the related work. Section 3
contains basic definitions and notations used in the paper.
Section 4 elaborates on EH-CRNP for connectivity, while
Section 5 elaborates on EH-CRNP for survivability. Section 6

presents the efficiently computable lower bound, Section 7
the comparative numerical results and analyses, and Sec-
tion 8 our conclusions.

2 RELATED WORK

In this section, we briefly describe research in RNP and
energy harvesting in WSNs. We use r > 0 and R to denote
SNs’ and RNs’ communication ranges respectively; and k =
1, k = 2, and k ≥ 2 to denote network connectivity (at least
one path exists between any pair of nodes) , survivability
(there are at least two node-disjoint paths between any pair
of nodes) , and higher order survivability (at least k node-
disjoint paths), respectively. First, we present 1-tiered RNP.
Lin and Xue [20] studied the RNP problem with R = r
and k = 1, and presented the Steinerization technique to
solve the problem with a 5-approximation algorithm. Their
work has been extended by [2], [3], [5], [11], [12], [16],
[22], [23], [33], and [37]. Chen et al. [3] presented a 3-
approximation algorithm for the problem studied in [20].
A randomized 2.5-approximation algorithm was presented
by Cheng et al. [5]. For R = r and k = 2, Kashyap et al. [16]
presented a 10-approximation algorithm. Bredin et al. [2]
proposed polynomial time O(1)-approximation algorithms
for any fixed k, R = r and k ≥ 2. Lloyd and Xue [23]
were the first to study the case of R ≥ r, for k = 1, prove
its NP-hardness, and propose a 7-approximation algorithm.
For R ≥ r and k = 2, Zhang et al. [37] presented a 14-
approximation algorithm. The study of 2-tiered RNP was
motivated by research on clustered WSNs [10], [26]. Due
to lack of space, we do not discuss them further and point
readers to [11], [22], [12], [23], [33].

The more practical problem of constrained relay node
placement has been studied recently [24], [36]. For 1-tiered
network, Misra et al. [24] proposed a 6.2-approximation
algorithm for connectivity and a 10-approximation algo-
rithm for survivability. Yang et al. [36] studied the 2-tiered
problem and presented O(1)-approximation algorithms for
connectivity and an O(log n)-approximation algorithm for
survivability. However, in our knowledge, there is no study
on RNP problem in an energy harvesting WSN in the
literature.

Today’s SNs often have the capability to harvest ambient
energy from several modes [14], [15], [21], [31]. For such
networks, attention has been focused on the design of
energy harvesting aware algorithms to create perpetual-
operation [6], [8], [14]. Research has also been focused
on energy harvesting aware routing [1]. We consider the
problem of energy harvesting aware RNP, namely EH-
CRNP, which to our best knowledge has not been studied
in the literature. Algorithms proposed in previous studies
only aim to place a minimum number of RNs and do
not account for the energy harvesting capabilities of the
placed nodes, hence they may perform poorly by placing
the RNs at positions with low energy harvesting potentials.
In this paper, we use the term non-harvesting aware (NHA)
to refer to such algorithms. We address this gap in the
literature by proposing two RNP frameworks (connectivity
and survivability) that account for the energy harvesting
potential of RNs placed at different locations.
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3 BASIC DEFINITIONS AND NOTATIONS

We consider a hybrid wireless sensor network consisting
of SNs, RNs, and BSs. The communication range of the
SNs is r > 0, that of the RNs is R ≥ r > 0 , and that
of the BSs is much greater than R, with the BSs in the
network connected to each other. This is a valid assumption
as BSs are generally connected in a WSN by wired links,
the Internet, or satellites. For two nodes x and y, the
Euclidean distance between x and y is denoted as d(x,y),
where x and y denote the locations of the nodes as well.
The communication between two nodes in the graph is
symmetric, hence two nodes u and v can communicate with
each other if and only if d(u, v) is less than or equal to the
minimum of their communication ranges. Hence, an SN u is
connected to an SN, RN, or a BS v if and only if d(u, v) ≤ r.
An RN u is connected to an RN or a BS v if and only if
d(u, v) ≤ R. Finally, any two BSs are always connected.

Before going further, we would like to answer a per-
tinent question in this context, “How do we calculate
the energy harvesting potential of an RN in a candidate
location?” For this information, we can take advantage of
the densely deployed energy harvesting SNs to obtain an
‘energy-harvesting potential map’ containing all the candi-
date locations. The SNs in the network can communicate
their energy harvesting profiles (over some duration) to
a BS, if they can reach one. If the network is initially
disconnected, a set-up similar to data mules [32] can be
implemented to have a mobile data-gatherer travel the net-
work and gather the energy profiles from the disconnected
SNs. These profiles can be used by the BSs to estimate
(mean, median, or weighted average) the energy harvesting
potential (e.g., average of the instantaneous potentials from
the estimate) of the candidate locations. The caveat is that
when the network is disconnected (or sparse) to start with,
this estimation may involve some extrapolations. We note
that to reduce errors specialized estimation sensors can be
strategically placed in the network. However, we do not
discuss this further as we believe this problem of accurate
estimation is an application-specific research problem in
itself and is out of scope for this paper. We assume that we
have accurately estimated the energy harvesting potential
of each candidate location.

Let X be a set of SNs, B be a set of BSs, and Z be a set
of candidate locations where RNs can be placed. Each node
is assigned a weight that is related to its energy harvesting
potential. Since we are interested in energy aware place-
ment of RNs, for x ∈ X ∪B the energy harvesting potential
ex = 0 and the corresponding weight c(x) = 0. For z ∈ Z ,
ez is the amount of energy an RN placed at z can harvest
(0 ≤ ez ≤ emax), where emax is the maximum energy a node
can harvest, a variable that is determined by the hardware
used. The weight of the candidate location is given by,

c(z) =
emax − ez

emax

+ 1, (3.1)

where c(z) ∈ [1, 2]. This weight function ensures that the
locations that have more energy harvesting potential have
lower weights, hence will be favored by our algorithms
for placement. Instead of using just the fraction, we added
a one to the weight function to ensure that a relay node
placement comes at an additional cost (weight). Having

c(z) ∈ [1, 2] ensures that placing an RN incurs an additional
cost of one per position, hence an RN will only be placed
if absolutely necessary for connectivity/survivability. Our
aim is to place the minimum number of RNs, the decision
of whether a position is good for harvesting energy or not is
the next decision. Also, having c(z) ∈ [1, 2] helps prove the
approximation bounds efficiently (refer Sections 4 and 5).

Based on the above conditions, the SNs, RNs, and BSs,
with their communication ranges and their energy har-
vesting potentials, induce the hybrid communication graph
(HCG) formally defined below.

Definition 3.1. The edge weighted hybrid communication
graph, denoted by HCG(X ∪ B ∪ Z, r, R, w, E), induced by
the 6-tuple (r, R, w,X ,B,Z) is an edge weighted undirected
graph with the vertex set V = X ∪ B ∪ Z and the edge set
E consisting of edges that satisfy the following conditions:
For an SN x ∈ X and a node y ∈ X ∪B∪Z , edge (x, y) ∈ E
iff d(x, y) ≤ r. For an RN y ∈ Z and a node z ∈ B ∪ Z ,
edge (y, z) ∈ E iff d(y, z) ≤ R. For every pair of x, y ∈ B,
(x, y) ∈ E. The weight of an edge (u, v) is given as

w(u, v) =
c(u) + c(v)

2
. (3.2)

Hence, if u, v ∈ X ∪ B, w(u, v) = 0; if exactly one of u or
v belong to Z , 0.5 ≤ w(u, v) ≤ 1; and if u, v ∈ Z , then
1 ≤ w(u, v) ≤ 2. 2
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Fig. 1. HCG({x1, . . . , x5} ∪ {b1, b2} ∪ {y1, y2, y3}, r, R, w, E)

Each node contributes half of its weight to the weight of
the edge adjacent to it. The aim is to correlate the choice of
the edge to the choice of the corresponding location as will
be clear when we present our algorithms.

Fig. 1(a) shows an example of a hybrid communication
graph with X = {x1, . . . , x5},B = {b1, b2},Z = {z1, z2, z3}.
Each candidate location has an energy harvesting potential
(e1 = 25, e2 = 35, e3 = 45), with the maximum being
emax =50. The potentials are in energy-units per second and
are the average of values over some pre-determined time
period. The numbers in parentheses are c(z1) = 1.5, c(z2) =
1.3, and c(z3) = 1.1 and the zero weights of the SNs and
the BSs. Fig. 1(b) illustrates the corresponding edge weights.

In this paper, we use V (G) and E(G) to denote the vertex
and edge sets of a graph G.

Definition 3.2. Let G = HCG(X ∪ B ∪ Y, r, R, w, E) be an
edge weighted hybrid communication graph. The relay size
of G, denoted by s(G), is the number of RNs in G, that is,
s(G) = |V (G) ∩ Y|. For a subgraph H of G, the weight of
H is defined as,

w(H) =
∑

(u,v)∈E(H)

w(u, v). (3.3)

The relay size of s(H) of H is defined as,
s(H) = |V (H) ∩ Y|. (3.4)
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Definition 3.3. Given an undirected edge-weighted graph
G = (V, E), and a subset of nodes S ⊂ V , the graph Steiner
Tree Problem (STP) seeks a minimum-weight (minimum sum
of edge weights) tree that spans all nodes in S, and uses
some of the nodes in V \ S. 2

Definition 3.4. Given an undirected graph G = (V, E) with
non-negative weights on all edges e ∈ E and a connectivity
requirement r(u, v) ∈ {0, 1, 2} for each pair of vertices u, v ∈
V , the {0, 1, 2}−survivable network design problem ({0,1,2}-
SNDP) asks for a minimum weight subgraph H of G such
that for any two vertices u, v ∈ V, H contains at least r(u, v)
vertex-disjoint paths between u and v. 2

Also, a polynomial time α-approximation algorithm for
a minimization problem is an algorithm A that, for any in-
stance of the problem, computes a solution that is at most α
times the optimal solution of the instance, in time bounded
by a polynomial in the input size of the instance [7]. In
this case, we also say that A has an approximation ratio of
α. For concepts, such as NP-hard and biconnectivity please
refer to [7].

4 HA-CRNP FOR CONNECTIVITY

Given a set of SNs, a set of BSs, and a set of candidate
locations, we are interested in placing the minimum number
of RNs so that the SNs and the BSs are in the same
connected component of the HCG induced by the SNs, the
RNs, and the BSs and the total (sum of the) energy harvesting
potential of the RNs is high. Note again that the problem
where this sum is maximized is harder to solve.

4.1 Problem Definitions and Our Contributions

Definition 4.1. Let X be a set of SNs, B be a set of BSs, and
Z be a set of candidate locations where RNs can be placed.
A set of RNs Y ⊆ Z is said to be a feasible connected maximum
harvesting energy relay node placement (denoted by F-CME)
for (r, R, w,X ,B,Z) if the HCG(X ∪ B ∪ Y, r, R, w, E) is
connected and

∑
y∈Y ey is high, ey is y’s harvesting po-

tential. The size of the corresponding F-CME is |Y|. An F-
CME is said to be a minimum connected maximum harvesting
energy relay node placement (denoted by M-CME) if it has
the minimum size among all F-CMEs′. 2

Definition 4.2. Let X be a set of SNs, B be a set of
BSs, and Z be a set of candidate locations where RNs
can be placed. The connected maximum harvesting en-
ergy relay node placement problem for (r, R, w,X ,B,Z),
denoted by CME(r, R, w,X ,B,Z), is to find an M-CME for
(r, R, w,X ,B,Z). 2

We also study the special case where B = φ, to compare
with studies that do not consider BSs in the network.
Computational Complexity: The CME problem is NP-hard.
This is because, a special case of the CME problem in
which each candidate location has zero energy harvesting
potential, is an instance of the NP-complete critical-grid
coverage problem studied by Ke et al. [17]. Therefore, NP-
completeness of the CME problem can be proved by re-
duction. Consequently, we seek polynomial-time constant-
approximation algorithms to solve the problem.

Contributions Summary: We present a framework that uses
existing approximation algorithms for the graph Steiner tree
problem (STP) (refer to Definition 3.3) [18], [30]. Our frame-
work is general and can easily incorporate future development
in algorithm design for STP. We demonstrate that using
the best approximation algorithm for the STP [30], we can
obtain a 12.4-approximation algorithm for the general case
and a 10.85-approximation algorithm for the case where
B = φ. We are the first to study the energy harvesting
aware relay node placement problem and propose O(1)-
approximation algorithms for it.

4.2 An Efficient Framework of Algorithms
In this section, we present a polynomial time approximation
algorithm for energy harvesting aware connected relay
node placement. Algorithm 1 presents our approximation
algorithm to solve the CME problem. We will show that our
algorithm framework provides an 8α-approximation algo-
rithm for the general CME problem and a 7α-approximation
algorithm for the CME problem when B = φ, where α is
the approximation ratio of an approximation algorithm A
for the STP.

Algorithm 1 Approximation for CME(r, R, w,X ,B,Z)

Input: R ≥ r > 0, set of BSs B, set of SNs X , set of RNs’
candidate locations Z , emax, and an approximation
algorithm A for STP.

Output: An F-CME for (r, R, w,X ,B,Z) given by YA.
1: For x ∈ X ∪ B, assign c(x) = 0 and for z ∈ Z , assign

c(z) = emax−ez

emax
+ 1.

2: Construct HCG(X ∪ B ∪ Z, r, R, w, E) as per Defini-

tion 3.1 and by assigning w(u, v) = c(u)+c(v)
2 for each

edge (u, v) ∈ E.
3: if the nodes in B ∪ X are not in a single connected

component of HCG(X ∪ B ∪ Z, r, R, w, E) then
4: The problem does not have a feasible solution.

Stop.
5: end if
6: Apply algorithm A to compute a low-weight tree sub-

graph TA which connects all nodes in B ∪ X .
7: output YA = Z ∩ V (TA)

Algorithm 1 works as follows. In Line 1, we assign the
weight to each node according to Equation 3.1. In Line
2, we construct the HCG based on Definition 3.1, with
the edge weights calculated as per Equation 3.2. Line 3
checks whether all the SNs and BSs belong to the same
connected component. If they do not, then there is no
feasible solution and the program stops. The check for
connected components can be performed in linear time
using the DFS algorithm [7], which makes up Lines 3–
5. We apply the α-approximation algorithm A in Line 6
and identify the candidate locations for RNs placement in
Line 7.

The best approximation algorithm for the STP problem
is the 1.55-approximation (actually 1 + ln 3

2 -approximation)
algorithm by Robins and Zelikovsky [30]. A simpler (and
easy to implement) 2-approximation algorithm is proposed
in [18]. The algorithm in [18] uses a Minimum Spanning
Tree (MST)-based technique to identify the Steiner points
that it has to choose to obtain a connected graph. We use
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this algorithm for our numerical results. Given our edge
and node weight functions (Equations 3.1 and 3.2), the
low weight tree TA translates to a high energy harvesting
potential for the RNs in YA.
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Fig. 2. Illustration of Algorithm 1 and comparison with results of
a non-harvesting aware algorithm using an HCG with six SNs (cir-
cles), two BSs (pawn shape), and 25 candidate locations (squares).

Fig. 2 illustrates Algorithm 1. Fig. 2(a) shows an HCG,
where the solid black lines represent edges between nodes
in the set Z , the dashed lines represent the edge (u, v),
u ∈ X and v ∈ X ∪ Z , and the dashed-dot lines represent
the edge (b, z), b ∈ B and z ∈ B ∪ X ∪ Z . We show the
node weights (bold numerals) for all the nodes, and the
edge weights (normal font numerals) of only the edges that
form a part of the complete graph whose edges represent
the shortest path between every u, v ∈ X ∪B. This complete
graph is obtained using the approximation algorithm in [18]
as A. The other edge weights are not shown to improve
figure clarity. Fig. 2(b) shows the corresponding complete
graph with the resulting MST shown using thick (red)
lines. Fig. 2(c) shows the placement of the RNs by our
algorithm to create TA (numbers in parentheses represent
the harvesting potentials of the RNs in energy units/sec).
Fig. 2(d) shows a possible placement of the RNs by the
non-harvesting aware (NHA) CRNP algorithm [24]. Coin-
cidentally, both the algorithms choose three RNs, however,
the RNs chosen by our algorithm can harvest much more
energy than RNs chosen by NHA algorithm which chooses

three RNs that harvest only 10, 10, and 20 energy units/sec.
The fact that the NHA algorithms may have arbitrarily poor
performance underscores the need for our energy harvesting aware
algorithms.

Theorem 4.1. The asymptotic time complexity of Algo-
rithm 1 is given by O(|X ∪ B ∪ Z|2 + T (A)); T (A) is the
run time complexity of the approximation algorithm A for
the STP.

Proof: Line 1 assigns the weights to the nodes, which
can be accomplished in O(|X∪B∪Z|) time. Line 2 constructs
the HCG which requires O(|X ∪ B ∪ Z|2) time. The Depth
First Search algorithm can be used on Lines 3–5, which has
a complexity of O(|X∪B∪Z|2) as well. Line 6 takes O(T (A))
time as specified, while Line 7 take O(|Z|). Hence proved.

To prove the approximation ratio of the algorithm, first
we need to prove some necessary results. Let us define TN
as the tree that is derived from TA obtained in Algorithm 1
by removing the edge weight w(u, v) for each edge (u, v)
in E(TA) and by reinstating the node weight c(u) for each
u ∈ X ∪ B ∪ Y .

Lemma 4.1. If the CME(r, R, w,X ,B,Z) has a feasible
solution, then:

(a) |YA| ≤ w(TN ) ≤ 2 · |YA| and

(b) w(TN ) ≤ w(TA), where w(TN ) is the node-weight sum
of TN and w(TA) is the edge weight sum of TA.

Proof: (a) From Equation 3.1, we know that 1 ≤ c(z) ≤ 2,
for z ∈ Z , and from Algorithm 1, YA ⊆ Z . Hence we have,

|YA| ≤
∑

y∈YA

c(y) ≤ 2 · |YA| (4.1)

|YA| ≤ w(TN ) ≤ 2 · |YA| (4.2)

The weight of each RN is between 1 and 2 and the weight
of all the other nodes is zero, hence the weight of the tree
is bounded between |YA| and 2 · |YA|.

(b) For (u, v) in TA, w(u, v) = c(u)+c(v)
2 , hence each RN gives

half of its weight to each one of its edges. Since no RN
y ∈ TA in the tree is a leaf, the degree of y is at least two. So
y gives at least all of its weight to its edges. Additionally, the
weights of SNs and BSs are 0. Therefore, w(TN ) ≤ w(TA).

Lemma 4.2. Let Topt be a minimum edge weighted span-
ning tree (MST) of the HCG, where Yopt is the optimal
solution to the CME(r, R, w,X ,B,Z) problem, y ∈ Yopt and
x ∈ X ∪ B then, ∑

(y,x)∈E(Topt)

w(y, x) ≤ 6 · |Yopt|

Proof: Refer to Appendix A.1.

Lemma 4.3. Let Topt be an MST of the HCG, where Yopt is
the optimal solution to the CME(r, R, w,X ,B,Z) problem
and y, z ∈ Yopt then,

∑
(y,z)∈E(Topt)

w(y, z) ≤ 2 · (|Yopt| − 1).

Proof: Since Topt is a tree and no RN is a leaf, there are
at most |Yopt|−1 edges with two RNs adjacent to each edge.
From Equations 3.1 and 3.2, the weight of each such edge
is at most two. Therefore the sum of the weight of all such
edges is less than or equal to 2 · (|Yopt| − 1).
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Lemma 4.4. Let Topt be an MST of the HCG, where Yopt is
the optimal solution to the CME(r, R, w,X ,B,Z) problem,
y, z ∈ Yopt, and x ∈ X ∪ B then, w(Topt) ≤ 8 · |Yopt|.

Proof: Since only the edges incident on the RNs con-
tribute to the weight of Topt we have,

w(Topt) =
∑

(y,z)∈E(Topt)

w(y, z) +
∑

(y,x)∈E(Topt)

w(y, x) (4.3)

≤ 2 · (|Yopt| − 1) + 6 · |Yopt| (4.4)

≤ 8 · |Yopt| (4.5)

Inequality 4.3 implies that the weight of Topt is a sum
of the weight of the edges incident on the RNs in Yopt.
Inequality 4.4 follows from Lemmas 4.2 and 4.3.

Theorem 4.2. (a) The CME(r, R, w,X ,B,Z) problem has a
feasible solution iff the HCG(X ∪B∪Z, r, R, w, E) contains
X ∪ B in one connected component.
(b) If CME(r, R, w,X ,B,Z) has a feasible solution, Algo-
rithm 1 is guaranteed to find a feasible solution, which
is no more than 8α times the number of RNs in an op-
timal solution Yopt, where α is the approximation ratio
of approximation algorithm A and Topt is an MST of
HCG(X ∪ B ∪ Yopt, r, R, w, E).

Proof: Refer to Appendix A.2.

Theorem 4.3. The general CME problem has a 12.4-
approximation algorithm, while the special case with B = φ,
has a 10.85-approximation algorithm.

Proof: If we use the approximation algorithm proposed
in [30], which has an approximation ratio of α = 1 +
ln 3
2 ≤ 1.55 as algorithm A, then the general case has an

approximation of 8α, which is 12.4. In case where B = φ, it
is easy to see that the approximation ratio is 7α, leading to
a 10.85-approximation algorithm.

Theorem 4.4. The general CME problem has a 16-
approximation algorithm with a running time of O(|X ∪
B ∪ Z|2 log(|X ∪ B ∪ Z|)). The special case with B = φ,
has a 14-approximation algorithm with a running time of
O(|X ∪ Z|2 log(|X ∪ Z|)).

Proof: If we use the MST-based 2-approximation algo-
rithm for the STP proposed in [18] as A in Algorithm 1, then
the running time of Algorithm 2 for the general case will
be O(X ∪B∪Z)2 log(X ∪B∪Z)) and the special case will be
O(|X ∪Z|2 log(|X ∪Z|)). The corresponding approximation
ratios can be derived in the same way as in Theorem 4.3.

5 HA-CRNP FOR SURVIVABILITY

In the last section, we discussed EH-CRNP for connectivity,
in this section we will discuss the same for survivability.
Given a set of SNs, a set of BSs, and a set of candidate
locations where RNs can be placed, we are interested in
placing the minimum number of RNs so that the SNs and
the BSs are in the same biconnected component (there exist
two vertex-disjoint paths between every u, v ∈ X ∪ B) of
the hybrid communication graph induced by the SNs, the
RNs, and the BSs, and the overall energy harvesting potential
of the RNs is high.

Survivable relay node placement (also known as fault
tolerant relay node placement) in wireless sensor networks

has been studied by many researchers [2], [12], [16]. The
objective here is to ensure that the network remains con-
nected in the event of up to one node failures. For a network
to tolerate up to m node failures, it has to be (m + 1)-
connected. Several works have considered survivability in
the case where the RNP is unconstrained [2], [11], [12], [16],
[22], [33], [37]. CRNP placement has only recently received
attention, with connectivity (k = 1) and survivability (k = 2)
having been studied in both 1-tier and 2-tier networks [24],
[36]. However, to our best knowledge there has been no
work on harvesting aware RNP for survivability.

5.1 Problem Definitions and Our Contributions
Definition 5.1. Let X be a set of SNs, B be a set of BSs,
and Z be a set of candidate locations where RNs can be
placed. A set of RNs Y ⊆ Z is said to be a feasible survivable
maximum harvesting energy relay node placement (denoted by
F-SME) for (r, R, w,X ,B,Y) if the graph HCG(X ∪ B ∪
Z, r, R, w, E) is biconnected and

∑
y∈Y ey is high. The size

of the corresponding F-SME is |Y|. An F-SME is said to be
a minimum survivable maximum harvesting energy relay node
placement (denoted by M-SME) if it has the minimum size
among all F-SMEs’. 2

Definition 5.2. Let X be a set of SNs, B be a set of BSs,
and Z be a set of candidate locations where RNs can be
placed. The connected maximum harvesting energy relay
node placement problem for (r, R, w,X ,B,Z), denoted by
SME(r, R, w,X ,B,Z), is to find an M-SME. 2

Computational Complexity: Since the corresponding con-
nectivity problem CME is NP-hard, the SME problem,
which requires biconnectivity, will be NP-hard as well (can
be proved by reduction). We have also proved that the SME
problem is NP-hard by reducing the planar 3-SAT [19] to
the SME problem. However, due to space constraints we
omit the long proof and instead concentrate on designing
polynomial time approximation algorithms.
Contributions Summary: We present a framework that incor-
porates existing approximation algorithms for the {0,1,2}-
Survivable Network Design Problem ({0,1,2}-SNDP) (refer
to Definition 3.4) [9], [28], [29]. Our framework is general
and can easily incorporate future development in algorithm de-
sign for {0,1,2}-SNDP. We demonstrate that using the best
approximation algorithm for the SNDP [9], we can obtain a
20-approximation algorithm for the general case and a 18-
approximation algorithm for the special case where B = φ.

5.2 An Efficient Framework of Algorithms

In this section, we present Algorithm 2 – a polynomial
time approximation algorithm to solve the SME problem.
We will show that our algorithm framework provides an
10α-approximation algorithm for the general SME problem
and a 9α-approximation algorithm for the SME problem
when B = φ, where α is the approximation ratio of an
approximation algorithm A for the {0,1,2}-SNDP.

The algorithm is similar to Algorithm 1 in the initial set-
up. Line 1 assigns weight to each node as per Equation 3.1.
Line 2 constructs the HCG based on Definition 3.1 and
assign edge weights as per Equation 3.2. Lines 3–5 check if
all SNs and BSs are in the same biconnected component. If
they are not, then SME has no feasible solution. The check in
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Algorithm 2 Approximation for SME(r, R, w,X ,B,Z)

Input: R ≥ r > 0, set of BSs B, set of SNs X , set of RNs’
candidate locations Z , emax, and an approximation
algorithm A for {0,1,2}-SNDP.

Output: An F-SME for (r, R, w,X ,B,Z) given by YA.
1: For x ∈ X ∪ B, assign c(x) = 0 and for z ∈ Z , assign

c(z) = emax−ez

emax
+ 1.

2: Construct HCG(X ∪ B ∪ Z, r, R, w, E) as per Defini-

tion 3.1 and by assigning w(u, v) = c(u)+c(v)
2 for each

edge (u, v).
3: if the nodes in B ∪ X are not in a single biconnected

component of HCG(X ∪ B ∪ Z, r, R, w, E) then
4: The problem does not have a feasible solution.

Stop.
5: end if
6: Assign connectivity requirements r(u, v) for each pair of

vertices in u, v ∈ X ∪ B ∪Z . For edge pair u, v ∈ X ∪B,
r(u, v) = 2, for every other pair r(u, v) = 0.

7: Apply algorithm A to compute a low-weight bicon-
nected subgraph HA which biconnects all nodes in
B ∪ X .

8: output YA = Z ∩ V (HA)

Line 3 can be performed by using the DFS algorithm, which
can compute all biconnected components in the HCG [7].
Line 6 constructs an instance of the {0,1,2}-SNDP. Line
7 applies the α-approximation algorithm A to the HCG
to obtain a low weight biconnected subgraph containing
all SNs and BSs. In Line 8, the candidate locations are
identified for RNs placement.

The best approximation algorithm for the {0,1,2}-SNDP
is the 2-approximation algorithm proposed by Fleischer [9].
A simpler 3-approximation algorithm was proposed by
Ravi and Williamson [28]. We use this algorithm for our
numerical results.

Theorem 5.1. The asymptotic time complexity of Algo-
rithm 2 is given by O(|X ∪ B ∪Z|2 + T (A)), where T (A) is
the run time complexity of the approximation algorithm A
for the {0,1,2}-SNDP.

Proof: Line 1 assigns the weights to the nodes, which
can be accomplished in O(|X∪B∪Z|) time. Line 2 constructs
the HCG which requires O(|X ∪ B ∪ Z|2) time. The Depth
First Search algorithm can be used on Lines 3–5, which
has a complexity of O(|X ∪ B ∪ Z|2) as well. Line 6 has a
complexity of O(|X ∪B∪Z|2) for assigning the connectivity
requirements. Line 7 takes O(T (A)) time as specified, while
Line 8 take O(|Z|).

To prove the approximation ratio of the algorithm, first
we need to prove some necessary results. The first two
results are lemmas that we state without proving. We
recommend the readers to refer to [24] for the proofs.

Lemma 5.1. Let G(V, E) be an undirected biconnected
graph where |V | ≥ 3 and each edge e ∈ E has a unit length
l(e) = 1. Let H(V, E′) be a minimum length biconnected
subgraph of G. Then |E′| ≤ 2|V | − 3. �

Lemma 5.2. Let G(V, E) be an undirected connected graph
where |V | ≥ 3 and each edge e ∈ E has a unit length

l(e) = 1, if H(V, E′) be a minimum length connected
subgraph of G such that two vertices u and v are in the
same biconnected component of H if and only if they are in
the same biconnected component of G, then |E′| ≤ 2|V |−1.

�

Let us define HN as the biconnected subgraph that is
derived from HA obtained in Algorithm 2 by removing the
edge weight w(u, v) for each edge (u, v) in E(HA) and by
reinstating the node weight c(u) for each u ∈ X ∪ B ∪ Y .

Lemma 5.3. If the SME(r, R, w,X ,B,Z) has a feasible
solution, then:
(a) |YA| ≤ w(HN ) ≤ 2 · |YA| and
(b) w(HN ) ≤ w(HA), where w(HN ) is the node weights
sum of HN and w(HA) is the edge weight sum of HA.

Proof: The proof follows that of Lemma 4.1.
(a) From Equation 3.1, we know that 1 ≤ c(z) ≤ 2, for z ∈ Z ,
and from Algorithm 1, YA ⊆ Z . Hence we have,

|YA| ≤
∑

y∈YA

c(y) ≤ 2 · |YA| (5.1)

|YA| ≤ w(HN ) ≤ 2 · |YA| (5.2)

The weight of each RN is between 1 and 2 and the weight
of all the other nodes is zero, hence we have Inequality 5.2.
(b) For (u, v) in HA, w(u, v) = c(u)+c(v)

2 , hence each RN
gives half of its weight to each one of its edges. Since each
RN y ∈ HA belongs to the biconnected component, the
degree of y is at least two. So y gives at least all of its
weight to its edges. Additionally, the weights of SNs and
BSs are 0. Therefore, w(HN ) ≤ w(HA).

Lemma 5.4. Let Hopt be a minimum edge weighted bi-
connected spanning subgraph of the HCG, where Yopt is
the optimal solution to the SME(r, R, w,X ,B,Z) problem,
y ∈ Yopt and x ∈ X ∪ B then,

∑

(y,x)∈E(Hopt)

w(y, x) ≤ 6 · |Yopt|

Proof: Refer to Appendix B.1.

Lemma 5.5. Let Hopt be a minimum-weight biconnected
subgraph of the HCG, where Yopt is the optimal solution
to the SME(r, R, w,X ,B,Z) problem and y, z ∈ Yopt then,∑

(y,z)∈E(Yopt)
w(y, z) ≤ 2 · (2 · |Yopt| − 1).

Proof: With the help of Lemmas 5.1 and 5.2, we have
that the number of edges with weight between one and two
in Hopt is at most 2|Yopt|−1. These are the edges of the form
(y, z), where y, z ∈ Yopt. Therefore,

∑
(y,z)∈E(Yopt)

w(y, z) ≤

2 · (2 · |Yopt| − 1).

Lemma 5.6. Let Hopt be a minimum-weight biconnected
subgraph of the HCG, where Yopt is the optimal solution
to the SME(r, R, w,X ,B,Z) problem, y, z ∈ Yopt, and x ∈
X ∪ B then, w(Topt) ≤ 10 · |Yopt|.

Proof: Since only the edges adjacent on the RNs con-
tribute to the weight of Hopt we have,

w(Hopt) =
∑

(y,z)∈E(Hopt)

w(y, z) +
∑

(y,x)∈E(Hopt)

w(y, x)(5.3)

≤ 2 · (2 · |Yopt| − 1) + 6 · |Yopt| (5.4)

≤ 10 · |Yopt| (5.5)
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Inequality 5.3 implies that w(Hopt) is a sum of the weight of
the edges incident on the RNs in Yopt. Inequality 5.4 follows
from Lemmas 5.4 and 5.5, resulting in Inequality 5.5.

Theorem 5.2. (a) The SME(r, R, w,X ,B,Z) problem has a
feasible solution iff the HCG(X ∪B∪Z, r, R, w, E) contains
X ∪ B in one biconnected component.
(b) If the SME(r, R, w,X ,B,Z) problem has a feasible solu-
tion, Algorithm 1 is guaranteed to find a feasible solution,
which is no more than 10α times the number of RNs in
an optimal solution Yopt, where α is the approximation
ratio of the approximation algorithm A and Hopt is a
minimum-weight biconnected subgraph of HCG(X ∪ B ∪
Yopt, r, R, w, E).

Proof: Refer to Appendix B.2.

Theorem 5.3. The general SME problem has a 20-
approximation algorithm, while the special case with B = φ,
has an 18-approximation algorithm.

Proof: If we use the 2-approximation algorithm pro-
posed in [9] as algorithm A, then the general case has an
approximation of 10α, which results in a 20-approximation
algorithm. When B = φ the approximation ratio become
9α, leading to an 18-approximation algorithm.

Theorem 5.4. The general SME problem has a 30-
approximation algorithm with a running time of O(|X ∪
B ∪ Z|3 + |E| · |X ∪ B ∪ Z| · α(|X ∪ B ∪ Z|)), where E is
the edge set of the HCG(X ∪B ∪Z, r, R, w, E). The special
case with B = φ, has a 27-approximation algorithm with a
running time of O(|X ∪ Z|3 + |E| · |X ∪ Z| · α(|X ∪ Z|)).

Proof: If we use the 3-approximation algorithm for the
{0, 1, 2}-SNDP proposed by Ravi and Williamson [28], [29]
as A in Algorithm 2, then the running time of Algorithm 2
follows.

6 EFFICIENTLY COMPUTABLE LOWER BOUND

In order to evaluate the performance of our approximation
algorithms, it would be useful to compare their results
with the optimal results. The lack of efficient algorithms for
computing optimal solutions for CME and SME problems
presents a challenge for such a comparative study. Since
CME and SME are NP-hard, solving them optimally would
require solving integer linear programs (ILP). Computation
of optimal solutions to these ILPs in a reasonable amount
of time is unlikely, unless the input size of the instances
is very small. As a work around we develop a two step
unified-mixed integer linear programming (unified-MILP)
formulation for the problems, which can be efficiently com-
puted to obtain a lower bound on the number of RNs placed by
the optimal solution for the the CME and the SME problems,
but in much less time than the corresponding integer
programming formulations. We denote the unified-MILP
formulation by MILP(f), where f = 1 corresponds to the
CME problem (connectivity) and f = 2 corresponds to the
SME problem (survivability). In the rest of this paper, we
use the terms unified-MILP or MILP interchangeably.

We note here that the MILP provides a lower bound to
the optimal solution (for the CME/SME problems) in terms
of the minimum number of RNs only, it is difficult to design
a formulation that also provides a lower bound to the total

TABLE 1
Notations/Variables Used In The MILP Formulation

B : the set of BSs
X : the set of SNs
Z : the set of candidate locations for RNs

HCG : the hybrid communication graph HCG(X ∪ B ∪ Z, r, R,w,E)
f : f = 1 for connectivity and f = 2 for survivability
t : BS chosen as the common sink, t = b1

B′ : the set of BSs excluding t = b1

fuvx : variable denoting type-x flow on edge (u, v) ∈ HCG
rzx : variable denoting total flow of type-x (x ∈ X ) into z ∈ Z
rbx : variable denoting total flow of type-x (x ∈ X ) into b ∈ B′

rwx : variable denoting total flow of type-x (x ∈ X ) into w ∈ X \ {x}
fz : variable denoting the maximum contribution of node z

in forwarding any flow of type-x, x ∈ X
δ(f) : value of the objective function in the First Step (LP)

denoting the minimum number of RNs required to be placed
pz : variable denoting energy harvesting ratio (ez/emax) of an RN

placed at position z ∈ Z
gz : binary variable denoting whether z contributes to the objective value
hz : variable denoting the energy harvesting ratio of an RN placed at z ∈ Z

if the RN at z contributes to the objective value, and 0 otherwise.

energy harvesting potential of the optimal solution. We will
discuss why, in more detail, in this section.

Our unified-MILP formulation is based on multi-
commodity flow-packing [27] defined on the HCG and
contains two steps – the first step is a linear program, which
seeks the placement of a minimum number of RNs, and
the second step is a mixed integer linear program, which
uses the result from the first step as one of the inputs
and seeks to place the RNs in positions, such that their
total energy harvesting potential is maximized. We list
the notations used in our unified-MILP formulation in
Table 1 and present the formulation as MILP(f) in Table 2
consisting of steps S1(f) and S2(f). Both formulations share
some commonalities in terms of variables and notations,
we present them first. In the network, we arbitrarily pick
one of the base stations (say b1 ∈ B) as the common sink
to which a flow of type-x and value-f is routed from each
SN x ∈ X ; B′ = B \ {b1}. This type-x flow uses the edges of
the HCG (flow fuvx for (u, v) ∈ HCG). For each x ∈ X and
each z ∈ Z , the amount of type-x flow going through node
z (denoted by the variable rzx) cannot exceed 1. For each
x ∈ X and each b ∈ B′, the amount of type-x flow going
through node b (denoted by the variable rbx) cannot exceed
1. For each x ∈ X and each w ∈ X \ {x}, the amount of
type-x flow going through node w (denoted by the variable
rwx) cannot exceed 1. These conditions ensure that a node
other than the source can only be part of one node-disjoint
path to the sink. For each z ∈ Z , the maximum amount of
flow of any type going through z is denoted by variable fz .

First Step – S1(f): First, we will explain the constraints
and then the objective function for this LP. Constraint (6.2)
ensures that the net flow of type-x out of node x is f. Constraint
(6.3) ensures that the net flow of type-x into node t is f.
Constraints (6.4) and (6.5) ensure that for each z ∈ Z and
x ∈ X , the total flow of type-x into z is rzx and that the total
flow of type-x out of z is also rzx – flow conservation at z.
Constraints (6.6) and (6.7) ensure similar flow conservation
for each b ∈ B′ and x ∈ X , while Constraints (6.8) and
(6.9) ensure the conservation for each w ∈ X − {x} and
x ∈ X . Constraint (6.10) ensures that the flow of type-x
on each link is a real number between 0 and 1. Constraint
(6.11), together with constraints (6.4) and (6.5) ensure that
for each z ∈ Z and x ∈ X , the total flow of type-x into
z is conserved and is a real number between 0 and 1.
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TABLE 2
Our Unified-MILP Formulation MILP(f)

First Step – S1(f):

δ(f) = min
∑

z∈Z fz, over variables fuvx, rzx, rbx, rwx, fz (6.1)

s.t.
∑

(x,v)∈HCG fxvx −
∑

(u,x)∈HCG fuxx = f,∀x ∈ X (6.2)

∑
(u,t)∈HCG futx−

∑
(t,v)∈HCG ftvx = f,∀x ∈ X (6.3)

∑
(u,z)∈HCG fuzx = rzx,∀z ∈ Z,∀x ∈ X (6.4)

∑
(z,v)∈HCG fzvx = rzx,∀z ∈ Z,∀x ∈ X (6.5)

∑
(u,b)∈HCG fubx = rbx,∀b ∈ B′,∀x ∈ X (6.6)

∑
(b,v)∈HCG fbvx = rbx,∀b ∈ B′,∀x ∈ X (6.7)

∑
(u,w)∈HCG fuwx = rwx,∀w ∈ X \ {x},∀x ∈ X (6.8)

∑
(w,v)∈HCG fwvx = rwx,∀w ∈ X \ {x},∀x ∈ X (6.9)

fuvx ∈ [0, 1],∀x ∈ X ,∀(u, v) ∈ HCG (6.10)

rzx ∈ [0, 1],∀z ∈ Z,∀x ∈ X (6.11)

rbx ∈ [0, 1],∀b ∈ B′,∀x ∈ X (6.12)

rwx ∈ [0, 1],∀w ∈ X \ {x},∀x ∈ X (6.13)

rzx ≤ fz,∀z ∈ Z,∀x ∈ X (6.14)

Second Step – S2(f):

max
∑

z∈Z hz,

over variables fuvx, rzx, rbx, rwx, fz, gz, hz, δ(f) (6.15)

s.t. All constraints (6.2) to (6.14)

∑
z∈Z fz = δ(f) (6.16)

gz = ⌈fz⌉,∀z ∈ Z (6.17)

hz = pz · gz,∀z ∈ Z (6.18)

Constraint (6.12), (6.6), and (6.7) and Constraint (6.13), (6.8),
and (6.9) ensure the same for x ∈ X and each b ∈ B′ and
each w ∈ X \ {x} respectively. Constraint (6.14) defines the
flow packing, that is, for each z ∈ Z , fz is the maximum
usage among all flows using z. The objective function (6.1)
to be minimized is the summation of the maximum usages
over all nodes z ∈ Z . The objective value of S1(f) termed
as δ(f) provides the minimum contribution of each chosen
candidate location to the objective value (at most one) to
ensure connectivity/survivability. However, the placement
of the least number of RNs could be fractional.

Second Step – S2(f): The objective of the second step is
not only to place δ(f) number of RNs but also to ensure
that the placement is only at positions such that the sum
of the energy harvesting potential of the placed RNs is
maximized. Constraint (6.16) ensures that the cardinality
of RNs that will be placed in a subset of positions in Z
is equal to δ(f). Constraint (6.17) defines variable gz for
each z ∈ Z where gz is zero if no RN is placed at z (no
contribution to the objective value), and one otherwise. We

define the energy harvesting ratio (denoted as EH-ratio)
of an RN placed at position z as pz = ez/emax, where
ez is the harvesting potential at position z and emax is
the maximum energy harvesting potential. Consequently,
in this step, the objective function maximizes the total EH-
ratio of RNs placed in a subset of candidate locations
under the constraint that the cardinality of the placed
RNs equals δ(f). In essence, in this step, we are trying to
place RNs in candidate locations, such that their number is
minimized, and also their total energy harvesting potential
is maximized. Constraints (6.16), (6.17), (6.18), and (6.2)–
(6.14) ensure these conditions. An illustrative example for
the MILP formulation is presented in Appendix C.

From the formulation of our unified-MILP, it is under-
standable that the solution would be a lower bound to
the optimal in terms of the number of RNs placed (proved
in Theorem 6.1). However, given that the formulation can
provide fractional placement of RNs in candidate locations,
the solution may not be a lower bound on the total energy
harvesting potential. Given this difficulty, in the second
step, our formulation finds a subset of candidate locations
with total contribution δ(f), such that the locations have
the highest total harvesting potential. The lower bound to
the optimal, δ(f), is adequate to compare the effectiveness
of our corresponding algorithms in terms of the number
of RNs placed. On the other hand, the energy values
from S2(f) serve as a good yardstick for comparing the
effectiveness of our algorithms on the energy front, as we
will show in Section 7.

Next, we prove that the solutions to MILP(f) lead to a
lower bound on the corresponding optimal solutions for
the CME and SME problems with respect to the number of
RNs.

Theorem 6.1. Let H1 be the number of RNs placed by a
solution to MILP(1) with Z1 ⊆ Z being the corresponding
subset of candidate locations with fz > 0, z ∈ Z1, and H2

be the number of RNs placed by a solution to MILP(2)
with Z2 ⊆ Z being the corresponding subset of candidate
locations with fz > 0, z ∈ Z2, then H1 is a lower bound
to the optimal value, Opt(1) of CME and H2 is the lower
bound to the optimal value, Opt(2) of SME.

Proof: Consider an instance for the relay node place-
ment problem with R ≥ r > 0, SNs X , BSs B, and candidate
locations Z , with t = b1 ∈ B being the common sink node.
We will prove the connectivity case, the survivability case
follows. First, let’s see how Z1 can be used to obtain a
feasible solution to the CME problem. If we place a RN
at each position z ∈ Z1 for which f(z) > 0, then we have
Opt(1) ≤ |Z1|, hence we obtain an M-CME, that is, a feasible
solution to the CME problem. On the other hand, the
optimal solution to CME, Opt(1), is a minimum cardinality
of the RNs placed in a subset of the candidate locations such
that the sum of their energy harvesting potential is high and
the SNs and the BSs are connected. This placement of the
RNs is in fact a feasible solution to the MILP(1) problem
as δ(1) ≤ Opt(1). This proves that H1 is a lower bound to
the optimal solution to the CME problem Opt(1). The same
argument can be advanced for the relationship between
Opt(2) and H2.
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7 NUMERICAL RESULTS
To demonstrate the effectiveness of our algorithms, in this
section, we compare the results we obtain using them with
those for the RNPc and RNPs problems respectively [24],
and those obtained using the unified-MILP formulations (in
Section 6) on the basis of the number of RNs placed and the
values of the EH-ratios of the placed RNs. We denote our
algorithms for the CME and SME problems as HAc (Har-
vesting Aware connectivity) and HAs (Harvesting Aware
survivability) respectively. We denote the corresponding
algorithms (RNPc and RNPs problems) in [24] as NHAc
(Non-Harvesting Aware connectivity) and NHAs (Non-
Harvesting Aware survivability) respectively. We denote
MILPc (Mixed Integer Linear Program connectivity) as
a solution to MILP(1) and MILPs (Mixed Integer Linear
Program survivability) as a solution to MILP(2), and obtain
these solutions using ILOG CPLEX [35]. We study the
running time of the approximation algorithms, the number
of RNs placed by the algorithms and the solutions of the
MILPs, and also the average EH (energy harvesting) ratio
of the RNs for the algorithms and the MILP solutions.

As we defined earlier, the energy harvesting ratio (denoted
as EH-ratio) of an RN y is given by ey/emax, and it identifies
harvesting efficiency of the RN, that is, the fraction of
energy y can harvest. We use the average EH-ratio, which is
the average of the EH-ratios of all deployed RNs, instead of
the sum of the energy harvesting potential of each placed
RN (or the sum of the EH-ratios), because the average is
a better indicator of the performance of the algorithms
and indicates the collective energy harvesting capability
of the RNs better. The average also allows us to make
fair performance comparisons – now we can compare two
techniques that place disparate number of RNs as is the case
of the MILP and our HA algorithms. This fact is also true if
instead of the linear formulation we use the corresponding
integer linear formulation. We show that the average EH-
ratios of our algorithms are more than 30% higher (in all
cases) than that of the algorithms in [24]; being more than
50% higher on an average. They perform very close to the
results from the MILP formulations. Despite our approxi-
mation algorithms having higher approximation ratios, the
number of RNs required are comparable to the algorithms
in [24], and within 1.5 times that obtained from the MILP
solutions for CME and within twice that obtained from the
MILP solutions for SME.

For HAc and NHAc, the algorithm A was the 2-
approximation algorithm in [18] and for HAs and NHAs,
the algorithm A was the 3-approximation algorithm in [28],
[29] – same as those used in [24]. We used C++ as the
programming language and ran the numerical analysis on
a 2 GHz Linux machine with 8 GB RAM.

The SNs and two BSs were randomly placed in the de-
ployment region. For the candidate locations, we used the
random grid, that is, the candidate locations were randomly
dispersed in the network. We chose R = 30m, r = 15m,
and emax = 50 energy-units per second. The harvesting
potential e(y) of an RN y was chosen randomly such that
e(y) ∈ U [0, emax]. Based on the density of SNs in the net-
work (#SNs/Total area), we studied the increasing density
and the constant density cases. In the increasing density

case, the number of possible RNs positions was fixed at
121, the number of SNs were either 10, 20, 40, 60, 80, 100, or
120, and the field size was 100×100 sq. units. In the constant
density case, we studied two densities, d1 = 0.005 and
d2 = 0.01, with the field sizes ranging from 40 × 40 sq.
units to 100 × 100 sq. units. For d1, the number of SNs
ranged from 8 to 50 and for d2 they ranged from 16 to
100. All results were averaged over 30 runs. The graphs
used in the runs, and consequently the corresponding
HCG(X ∪ B ∪ Z, r, R, w, E), are connected (or survivable)
and hence have feasible solution(s). Further, our algorithms
are designed to terminate if the HCG is infeasible (refer to
Steps 3 and 4 in Algorithms 1 and 2).

7.1 Increasing Density Analyses

Fig. 3 presents the results for the increasing density case in
both connectivity and survivability. Fig. 3(a) presents the
running times of the algorithms. As the running time de-
pends on the number of vertices and edges of the HCG, the
X-axis represents the average of the sum of the edges and
vertices over the 30 instances. Both NHAc (star-thin lilac
dashes) and HAc (small star-thick black dashes) take less
than four seconds (two lines at the bottom). The intriguing
result is that HAs (circle-red dashes) grows much slower
than NHAs (diamond-blue solid). We note that the algo-
rithm implementations for NHAs and HAs are identical,
hence have no bearing on the time difference. From our
analysis, we identified the difference to be a result of the
weight assignment for the edges. The weight assignment for
the NHA algorithms results in an edge in the HCG having a
weight of either 0.5 or 1.0, whereas the assignment for HA
algorithms results in edge weights in the range [0.5, 2.0].
Each iteration of A chooses an edge with the least cost that
connects two sets containing a (SN-SN, SN-BS, or a BS-BS)
pair that are not yet biconnected. For NHAs there is not
much choice, consequently, NHAs ends up choosing a lot
more unnecessary edges, which need to be deleted at the
end as per A. On the other hand, finer-grained weights in
HAs allow A add edges more judiciously, resulting in less
deletions in the end and more running time savings.

Fig. 3(b) presents the number of RNs placed by each
algorithm. From the overlapping error-bars, it is clear that
the number of RNs placed by HAc and HAs are comparable
to that by NHAc and NHAs respectively (95% confidence
interval). Despite having higher approximation ratios, in
the average case, our HA algorithms perform as well as the
non-HA algorithms, whose only aim is to place a minimum
number of RNs. Our algorithms sometimes perform better
than the NHA algorithms (20, 80, and 100) node cases, this
is expected, as all algorithms are approximation algorithms
and any value within the theoretical approximation bound
of the optimal solution is possible. In all cases, the number
of RNs required by HAc and HAs is within 1.5 times that of
the number obtained by solving the corresponding MILPs,
hence within 1.5 times the optimal. This indicates that our
approximation algorithms perform very well.

Fig. 3(c) compares the average of the EH-ratios of the
placed RNs – closer the ratios to 1, higher the energy
harvesting potential. From the error-bars, it is clear that the
results from both HA and MILP are significantly different
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Fig. 3. Increasing Density: #RNs = 121, #SNs = {10, 20, 40, 60, 80, 100, 120}. r = 15m, R = 30m, emax = 50 energy-units/sec.
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Fig. 4. Constant Density (d1 = 0.005): Field size = {40 × 40, . . . , 100 × 100}, r = 15m, R = 30m, emax = 50 energy-units/sec.
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Fig. 5. Constant Density (d2 = 0.01): Field size = {40 × 40, . . . , 100 × 100}, r = 15m, R = 30m, emax = 50 energy-units/sec.

(95% confidence interval) from that of NHA (especially in
the survivability cases), while being similar to each other.
In only one case the NHA and HA error-bars overlap: the
connectivity case (NHAc/HAc), increasing density scenario
with 120 SNs. This is because the density of SNs in this case
is high, resulting in the network to be connected in almost
90% of sample graphs at the outset, thus needing no RNs
to be placed. Thus, only a few number of sample graphs
remain that have non-zero results. However, this results in
inaccurate comparison. We ran HAc and NHAc for another
100 sample graphs for this case to make a more precise
comparison. Among the 31 non-zero results obtained, the
average EH ratios were 0.45±0.09 and 0.76±0.07 for NHAc
and HAc respectively. This shows that even in a dense
network, HA performs better (95% confidence interval).

The RNs placed by our algorithms have much better
average EH-ratio than those by NHA algorithms (ranging
between 30% to 70% improvement), which translates into
more harvested energy. This implies that the placement
satisfies not only the connectivity or survivability require-
ments, but also allows the RNs to harvest up to 70% more
energy.

The averages of EH-ratios of HAc and HAs are com-
parable and very close to MILPc and MILPs respectively.

The MILP values are a little lower in almost all cases. This
is because the unified-MILP uses less number of RNs for
connectivity/survivability, however, it can choose fractions
of RNs (being an LP) as stipulated in S1(f). This does
give the unified-MILP more leverage in minimizing the
number of RNs that need to be placed (δ(f)), but the use of
more positions (even though fractionally) results in a bigger
spread of the EH-ratios, especially lowering the minimum
EH-ratio among all chosen positions, and thus a reduction
in the average. On the other hand, in our algorithms the
higher EH-ratios are used in identifying the positions to
choose and hence the result is better.

Another reason is that the first objective for the unified-
MILP is to minimize the number of RNs that need to
be placed to ensure connectivity or survivability, which
happens in Step S1(f). In Step S2(f), the formulation tries to
place the RNs in positions that have the highest cumulative
harvesting potential, while ensuring the number of RNs
placed (may be fractional) is equal to δ(f) obtained in S1(f).
In a sense, although this is unavoidable, Step S1(f) actually
impedes the selection of higher EH-ratio positions by plac-
ing the constraint δ(f) on the number of RNs. Hence the LP
suffers simultaneously from two seemingly opposite effects,
thus resulting in lower average EH-ratio. We discuss more
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TABLE 3
Maximum EH-ratio in Increasing Density Case

NHAc HAc MILPc NHAs HAs MILPs

10 0.687801 0.929979 0.99888 0.63936 0.847967 0.99888

20 0.684148 0.885283 0.99976 0.6113 0.822308 0.99991

40 0.692352 0.902571 0.99936 0.611803 0.803705 0.99936

60 0.84124 0.971575 0.99933 0.640356 0.894829 0.99933

80 0.79787 0.96571 0.99747 0.689626 0.97306 0.99747

100 0.871265 0.996175 0.99865 0.87675 0.95463 0.99834

120 0.89518 0.956925 0.99563 0.88055 0.94593 0.99747

about this in Subsection 7.3. The second reason will cause
a similar disparity while comparing the ILP formulations
(instead of the corresponding MILP formulations) with our
algorithms.

7.2 Constant Density Analyses

Fig. 4 and Fig. 5 present the results for the constant density
cases d1 = 0.005 and d2 = 0.01 respectively. Fig. 4(a) and
Fig. 5(a) show the running time. In the increasing density
case, the running time of HAs and NHAs appears to level
off, but in this case the running time keeps increasing. This
is because as the field size increases more sparsely spaced
SNs need to be biconnected. Higher density implies more
number of SNs need to be biconnected, hence the running
time for the higher density case is more than the lower
density case. With the increase in density, at some point,
the density of sensor nodes would be high enough that we
would not need RNs to connect the network or make it
survivable. However, that density is higher than d2 = 0.01.
Note that the running time of the HA algorithms is less than
that of the NHA algorithms because of the same reason as
in the increasing density case.

Fig. 4(b) and Fig. 5(b) demonstrate that even in the
constant density case, for both densities, our HA algorithms
perform comparably to the NHA algorithms and are not
penalized in terms of number of RNs. This similarity is
also illustrated by the overlapping error bars. Also, the
number of RNs required by our algorithms is within 1.4
times the number obtained from solving the corresponding
MILP(f)s. This shows that our theoretical analysis on the
approximation ratios of our algorithms is quite conservative
– our approximation algorithms perform much better than
the theoretical (worst-case) approximation ratios indicate.

Figs. 4(c) and 5(c) again demonstrate that the average EH-
ratios of the RNs placed by our algorithms are much better
than that of the RNs placed by the NHA algorithms. Here as
well the average EH-ratio of RNs placed in our algorithm is
50% to 95% more than that of the RNs placed by the NHA
algorithms. This highlights the effectiveness and efficiency
of our algorithms. The EH-ratio of RNs placed using the
solution to the MILP(f) is again lower than those of our
algorithm in almost all cases. The causes are similar to
the increasing density scenario – the larger search space
available to the LP as well as the constraint placed by δ(f)
in S1(f) on the result of S2(f). Due to such factors, it is
required to study the maximum and minimum EH-ratios
in addition to average EH-ratios.

7.3 Analyses of the Maximum and Minimum EH-ratios

For an in-depth investigation of why the MILP (as will
the corresponding ILP) results in a lower average EH-ratio,

TABLE 4
Maximum EH-ratio in Constant Density (d1 = 0.005) Case

NHAc HAc MILPc NHAs HAs MILPs

(d=0.005) (d=0.005) (d=0.005) (d=0.005) (d=0.005) (d=0.005)

25x25 0.82563 0.96966 0.96966 0.857945 0.97939 0.99876

49x49 0.97252 0.99953 0.99953 0.779627 0.94625 0.99953

81x81 0.873247 0.97996 0.99946 0.660862 0.905838 0.99946

121x121 0.76917 0.94247 0.99631 0.601584 0.840018 0.99992

TABLE 5
Maximum EH-ratio in Constant Density (d2 = 0.01) Case

NHAc HAc MILPc NHAs HAs MILPs

(d=0.01) (d=0.01) (d=0.01) (d=0.01) (d=0.01) (d=0.01)

25x25 0.76805 0.97942 0.97942 0.84489 0.96489 0.97942

49x49 0.91372 0.9825 0.9825 0.94543 0.99627 0.99827

81x81 0.92 0.99121 0.99121 0.89596 0.96481 0.99814

121x121 0.89204 0.9973 0.99871 0.844127 0.94205 0.99871

in general, we need to study the difference in the maxi-
mum and minimum EH-ratios obtained by our algorithms
and the solutions to the corresponding MILP formulations.
For each of the 30 runs, we obtained the maximum and
minimum EH-ratios of all individual RNs chosen by our
algorithms and the solutions to the corresponding unified-
MILPs. Tables 3, 4, and 5 show the maximum EH-ratio
among the RNs chosen by NHAc, HAc, MILPc, NHAs,
HAs, and MILPs, respectively, in all 30 runs, in the increas-
ing density and both the constant density (d1 = 0.005 and
d2 = 0.01) cases respectively.
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Fig. 6. Illustration for maximum EH-ratio less for solution from HAc
in comparison to solution to MILPc.

From the tables, it can be observed that the maximum EH-
ratios of the RNs placed by our algorithms (HAc/HAs) are
less than or equal to the solutions to the MILP formulations
(MILPc/MILPs), while being close to the corresponding val-
ues. Fig. 6 shows an illustrative example of how such sce-
narios occur. The graph corresponding to this case contains
two SNs, {0, 1}, one BS, {2}, and three candidate locations,
{3, 4, 5}. The EH-ratio of the candidate locations are given
besides the locations themselves; the corresponding weights
of each candidate location, calculated using Equation 3.1,
are specified within the square brackets. The EH-ratios
and the corresponding node weights of SNs and BS are
zero. The weight of each edge in the graph, calculated
using Equation 3.2, is also shown. Here, our algorithm,
which selects edges based on the minimum edge weights,
selects candidate locations 3 and 4 to place RNs because the
positions have the least corresponding edge lengths, hence
the maximum EH-ratio is 0.8 of RN 3 or 4. However, the
optimal solution corresponding to the MILPc, will choose
candidate locations 3 and 5, because in the first step S1(1)
the solution is δ(1) = 2, the second step S2(1) identifies the
two candidate locations (3 and 5) with the most EH-ratio
(or EH potential). Therefore the maximum EH-ratio is 0.9
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(RN 5) – higher than that obtained using the HAc.
From the numerical data, we also observed cases where

the maximum EH-ratio from our algorithm(s) is greater
than that from the corresponding MILP solution(s). This
happens when the number of candidate locations (δ(f))
obtained in Step S1(f) (and hence the unified-MILP) is less
than (it can be equal to) that obtained by our HA solution
and then the second step S2(f) tries to find a configuration
of fractional allocation of RNs to candidate locations, so as
to maximize the sum of the EH-ratios, but is restricted by
δ(f). We illustrate our reasoning for the CME problem (as it
is easier to follow) with the help of Fig. 7. An illustration of
the survivability case, although non-trivial, can be created
from augmenting this example.
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Fig. 7. Illustration for maximum EH-ratio less for solution to MILPc
in comparison to solution from HAc.

In Fig. 7, the graph represents a network consisting of
two SNs, {0, 1}, a BS, {2}, and a set of candidate locations,
{3, 4, 51, . . . , 5k}, k ≥ 2. The EH-ratios, weights of the nodes,
and weights of the edges are calculated in the same way
as for Fig. 6. We assume that p5i

≤ min{p3, p4}, ∀1 ≤ i ≤ k.
For the illustrative example in Fig. 7, our approximation
algorithm HAc, will choose the two candidate locations 3
and 4 for the placement of the RNs, based on the high EH-
ratios of those locations. The corresponding paths for SNs 0
and 1 to reach the BS are shown with the solid (red) arrows.
However, the solution to the MILP(1) formulation, MILPc,
chooses the set of locations {51, . . . , 5k}, with each location
having a contribution of 1/k for RN placement, resulting in
the placement of only one RN (split into k-portions). The
dashed (blue) arrows represent the flow from SN 0 and
dashed-dotted (green) arrows represent the flow from SN
1 to the BS respectively. The MILP requires only one RN to
be placed, thus a better solution than our algorithm, which
requires the placement of two RNs. However, the energy
harvesting potentials of all these positions are less than that
of 3 and 4, and so are their corresponding EH-ratios and
their maximum EH-ratio.

Tables 6, 7, and 8 present the minimum EH-ratios among
the RNs chosen by NHAc, HAc, MILPc, NHAs, HAs, and
MILPs, respectively. It is very interesting to note that when
the MILP solution is lower than the HA solution, it is
significantly lower (several orders of magnitude in some
cases). Fig. 7 illustrates one such case – it is easy to see that
the minimum EH-ratio from the MILP could be arbitrarily
small. Given the possibility of a larger set of nodes that
the MILP can have as a solution, the possibility of one of
them having a low EH-ratio is high, hence the reduced
minimum EH-ratio. However, our algorithms have better

TABLE 6
Minimum EH-ratio in Increasing Density Case

NHAc HAc MILPc NHAs HAs MILPs

10 0.329132 0.567958 0.00002 0.364375 0.601911 0.00002

20 0.376629 0.585089 0.00102 0.36948 0.608629 0.00102

40 0.352475 0.709212 0.000003 0.348608 0.626374 0.00021

60 0 0 0 0.333215 0.575431 0.00041

80 0 0 0 0.318665 0.626037 0.00105

100 0 0 0 0.165265 0.449117 0.00007

120 0 0 0 0 0 0

TABLE 7
Minimum EH-ratio in Constant Density (d1 = 0.005) Case

NHAc HAc MILPc NHAs HAs MILPs

(d=0.005) (d=0.005) (d=0.005) (d=0.005) (d=0.005) (d=0.005)

25x25 0 0 0 0 0 0

49x49 0 0 0 0.152095 0.49371 0.00124

81x81 0.03492 0.64745 0.00188 0.234323 0.55922 0.00015

121x121 0.25328 0.703902 0.00075 0.286628 0.571536 0.00035

minimum EH-ratio on account of the fact that they select
candidate locations to minimize the edge weights chosen
(refer to Algorithms 1 and 2), and hence indirectly try
to choose candidate locations with high energy potential.
This is a desirable, but unintended, consequence of our
algorithms. Even though our objective is to find a placement
such that the sum of the energy harvesting ratios are high,
our algorithm also causes the minimum EH-ratio among
the chosen RNs to be high as well – a desirable side-effect.
These results show that indeed our algorithms are efficient
and effective in achieving their desired objectives.

We note that we do not study the ILP version of the
problem because obtaining a solution for them may take
much longer – sometimes months. On the other hand, the
solutions to our unified-MILP formulations serve as a lower
bound to the optimal number of relay nodes, and also
provide useful information about the total energy harvest-
ing potential of the RNs, for effective comparisons without
incurring the penalty of time. The results help us gain a
perspective on the HA solutions very quickly – solving the
two MILP steps sequentially to obtain a solution takes only
2 minutes (worst-case)! Thus our MILP formulation can be
used for fast comparisons even in large networks, thus is a
contribution in itself.

8 CONCLUSIONS
We studied the HA-CRNP problem for connectivity and
survivability. We proved the hardness of the problems and
proposed a 12.4-approximation algorithm for connectivity
and a 20-approximation algorithm for survivability. Because
integer linear programming formulations to find the op-
timal solution take a long time to run, we formulated a
faster running lower bound to the optimal solution using
unified-MILP. We used the lower bound to demonstrate that
the results of our approximation algorithms were not only

TABLE 8
Minimum EH-ratio in Constant Density (d2 = 0.01) Case

NHAc HAc MILPc NHAs HAs MILPs

(d=0.01) (d=0.01) (d=0.01) (d=0.01) (d=0.01) (d=0.01)

25x25 0 0 0 0 0 0

49x49 0 0 0 0 0 0

81x81 0 0 0 0 0 0

121x121 0 0 0 0.110665 0.59914 0.00063
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on average within 1.5 times that of the optimal in terms
of the number of relay nodes placed but also performed
favorably in terms of the energy harvesting potential of the
placed RNs. In the future, we intend to explore lifetime
improvements as a result of harvesting aware placement
and also study the max-max and max-min versions of the
problems to get deeper insights into the problem.
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APPENDIX A
PROOFS OF LEMMA 4.2 AND THEOREM 4.2
A.1 Proof of Lemma 4.2

We note that an RN y ∈ Yopt can be connected to no more
than five SNs. This can be proved by contradiction. Let’s
assume that y is connected to six SNs x1, . . . x6. From 2-
D geometry, we can see that the angle between at least
two adjacent (RN-SN) edges has to be less than or equal
to 60◦. Without loss of generality, let the adjacent edges be
(y, x2) and (y, x3). Since d(y, x2) ≤ r and d(y, x3) ≤ r, hence
d(x2, x3) ≤ r, resulting in an edge (x2, x3) with weight
0. Thus we can replace edge (y, x2) in Topt with the edge
(x2, x3), resulting in a tree T ′

opt, such that w(T ′
opt) < w(Topt),

which contradicts the assumption that Topt is an MST. Thus
an RN y cannot be connected to more than five SNs in Topt.

We note that an RN y ∈ Yopt can be connected to no
more than two BSs. Let y be connected to two BSs b1 and
b2 in Topt. As Topt is a tree, it cannot have the zero weight
edge (b1, b2), which would lead to a cycle. However, we can
replace (y, b2) with (b1, b2) to generate an MST with lesser
weight than Topt, which is another contradiction.

From the above analysis, we see that an RN y can
only be connected to a maximum of five SNs and one
BS, a total of six. From Equation 3.1, we know that the
weight of an RN is at most two and from Equation 3.2,
we know that the weight of an edge is the average of the
weights of the incident nodes. Hence, the weight of an
edge (y, x) ∈ E(Topt), where y ∈ Yopt and x ∈ X ∪ B, is
at most one. Therefore, for y ∈ Yopt and (y, x) ∈ E(Topt),∑

y w(y, x) ≤ 6. The theorem holds for the sum of the
weights of all such edges incident on y ∈ Yopt.

A.2 Proof of Theorem 4.2

(a) (⇒) If the CME problem has a feasible solution, then
the set of SNs and BSs are connected, hence they have to
be in the same connected component.
(⇐) If the HCG contains X ∪ B in the same connected
component, then any tree of the HCG that spans all nodes
in X ∪ B is an F-CME of the instance.
(b) If the CME problem has a feasible solution, then from
Lemma 4.1, we have,

|YA| ≤ w(TN ) ≤ w(TA). (A.1)

If we denote Tmin as the optimal solution to the STP
instance of the HCG, it is easy to see that w(TA) ≤ α ·
w(Tmin) ≤ α · w(Topt). Because TA is obtained by using the
α-approximation algorithm for STP, whose optimal solution
is Tmin. Topt is a feasible solution to the STP. Hence from
Lemma 4.4, we have

w(TA) ≤ α · w(Tmin) ≤ α · w(Topt) ≤ 8 · α · |Yopt|. (A.2)

Combining Inequalities A.1 and A.2, |YA| ≤ 8 · α · |Yopt|.

APPENDIX B
PROOFS OF LEMMA 5.4 AND THEOREM 5.2
B.1 Proof of Lemma 5.4

This proof is similar to the proof of Lemma 4.1 in [24].
We note that an RN y ∈ Yopt can be connected to at most

five SNs and one BS respectively, in Hopt. We will prove this
assertion. Using contradiction, we first prove that y can only
be connected to five SNs. Suppose y is an RN connected to
six SNs, x1, . . . , x5, and v. Without loss of generality, let
the angle between at least two adjacent edges (y, x2) and
(y, x3) be ∠x2yx3 ≤ 60◦. This is illustrated in Fig. 8 where
x2, x3, v ∈ X and need to be biconnected. Since d(y, x2) ≤ r
and d(y, x3) ≤ r, hence d(x2, x3) ≤ r, and x2 and x3 can
communicate directly. Since w(x2, x3) = 0, we can add the
edge (x2, x3) to the graph.

Since Hopt is biconnected, it contains a path from x3 to v,
let’s denote this as π(x3, v). If π(x3, v) does not go through
x2, as shown in Fig. 8(a), then Hopt contains a biconnected
component (cycle) composed of π(x3, v) and the edges
(v, y), (y, x2), and (x2, x3). We can remove edge (y, x3) to ob-
tain a biconnected subgraph H′

opt with w(H′
opt) < w(Hopt),

a contradiction.
If π(x3, v) goes through x2, as shown in Fig. 8(b), then

Hopt contains a biconnected component (cycle) composed
of π(x3, v) and the edges (v, y), and (y, x3). Here, we can
remove edge (y, x2) to obtain a biconnected subgraph H′

opt

with w(H′
opt) < w(Hopt), another contradiction. These two

scenarios prove that an RN y can be connected to only five
SNs.

We can use the same reasoning to prove that an RN y
can be connected to only one BS. In Fig. 8, replace SN x2

by the BS b1, SN x3 by BS b2, and let v be an SN or an RN.
The proof follows.

00
y y

vv

x2x2

x3x3

(a) (b)

Fig. 8. Proof of Lemma 5.4

From the above analysis, we see that an RN y can
only be connected to a maximum of five SNs and one
BS, a total of six. From Equation 3.1, we know that the
weight of a RN is at most two and from Equation 3.2,
we know that the weight of an edge is the average of the
weights of the incident nodes. Hence, the weight of an edge
(y, x) ∈ E(Hopt), where y ∈ Yopt and x ∈ X ∪ B, is at
most one. Therefore, for y ∈ Yopt and (y, x) ∈ E(Hopt),∑

y w(y, x) ≤ 6. Hence the lemma holds for the sum of the
weights of all such edges incident on y ∈ Yopt.

B.2 Proof of Theorem 5.2

(a) (⇒) If the SME problem has a feasible solution, then
the set of SNs and BSs are biconnected, hence they have to
be in the same biconnected component.
(⇐) If the HCG contains X ∪ B in the same biconnected
component, then any biconnected subgraph of the HCG
that spans all nodes in X ∪ B is an F-SME of the instance.
(b) If the SME problem has a feasible solution, then from
Lemma 5.3, we have,

|YA| ≤ w(HN ) ≤ w(HA). (B.1)

If we denote Hmin as the optimal solution of the {0, 1, 2}-
SNDP instance of the HCG, it is easy to see that w(HA) ≤
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α · w(Hmin) ≤ α · w(Hopt). HA is obtained by using the α-
approximation algorithm for the {0, 1, 2}-SNDP problem,
whose optimal solution is Tmin. Hopt is a feasible solution
to the {0, 1, 2}-SNDP problem. Hence from Lemma 5.6, we
have

w(HA) ≤ α · w(Hmin) ≤ α · w(Hopt) ≤ 10 · α · |Yopt|. (B.2)

Combining Inequalities B.1 and B.2, |YA| ≤ 10 · α · |Yopt|.

APPENDIX C
ILLUSTRATIVE EXAMPLE OF THE UNIFIED-MILP
FORMULATION
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Fig. 9. Example network for the MILP formulation illustration

Fig. (9) shows a small input instance that we shall use
to illustrate our formulation for both CME and SME. The
instance consists of two SNs 0 and 1, four candidate loca-
tions 2, 3, 4, and 5, and two BSs 6 and 7. We pick t = 7 as
the common sink node for our unified-MILP formulations.
The numbers close to a candidate location represent the EH-
potential and the EH-ratio (in square brackets) respectively;
for the SNs and the BSs the corresponding values are zero.
The two steps of the MILP(f) are illustrated in Table 9.

TABLE 9
The Unified-MILP Formulation for the Illustrative Example

S1(f):

δ(f) = min f2 + f3 + f4 + f5 (6.1)

s.t.

Constraints from (6.2):

f020 + f030 − f200 − f300 = f

f141 + f151 − f411 − f511 = f

Constraints from (6.3):

f570 + f670 − f750 − f760 = f

f571 + f671 − f751 − f761 = f

Constraints from (6.4):

f020 + f320 + f420 = r20

f021 + f321 + f421 = r21

f030 + f230 + f530 = r30

f031 + f231 + f531 = r31

f140 + f240 + f540 + f640 = r40

f141 + f241 + f541 + f641 = r41

f150 + f350 + f450 + f750 = r50

f151 + f351 + f451 + f751 = r51

Constraints from (6.5):

f200 + f230 + f240 = r20

f201 + f231 + f241 = r21

f300 + f320 + f350 = r30

f301 + f321 + f351 = r31

f410 + f420 + f450 + f460 = r40

f411 + f421 + f451 + f461 = r41

f510 + f530 + f540 + f570 = r50

f511 + f531 + f541 + f571 = r51

Constraints from (6.6):

f460 + f760 = r60

f461 + f761 = r61

Constraints from (6.7):

f640 + f670 = r60

f641 + f671 = r61

Constraints from (6.8):

f410 + f510 = r10

f201 + f301 = r01

Constraints from (6.9):

f140 + f150 = r10

f021 + f031 = r01

Bound constraints from (6.10) through (6.14):

0 ≤ fuvx ≤ 1, ∀(u, v) ∈ HCG, ∀x ∈ {0, 1}

0 ≤ rux ≤ 1, ∀u ∈ {2, 3, 4, 5, 6}, ∀x ∈ {0, 1}

0 ≤ r01 ≤ 1 and 0 ≤ r10 ≤ 1

rzx ≤ fz ,∀z ∈ {2, 3, 4, 5}, ∀x ∈ {0, 1}

S2(f):

max h2 + h3 + h4 + h5 (6.15)

s.t.

All constraints from (6.2) through (6.14)

Bound constraints from (6.16) through (6.17)

f2 + f3 + f4 + f5 = δ(f)

g2 = ⌈f2⌉, g3 = ⌈f3⌉, g4 = ⌈f4⌉, g5 = ⌈f5⌉

h2 = 0.7g2, h3 = 0.4g3,

h4 = 0.6g4, h5 = 0.3g5


