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Capacity of Large-Scale Wireless Networks Under
Jamming: Modeling and Analyses

Hong Huang†, Yousef Jaradat‡, Satyajayant Misra∗, Amjad Abu-Baker♦, Rafael Asorey-Cacheda[, Reza
Tourani∗, Mohammad Masoud‡, and Ismael Jannoud‡

Abstract—Distributed jamming has important applications not
only in the military context but also in the civilian context where
spectrum sharing is increasingly used and inadvertent jamming
becomes a reality. In this paper, we derive the capacity bounds
of wireless networks in the presence of jamming. We show
that when the density of jammers is higher than that of target
nodes by a certain threshold, the capacity of wireless networks
approaches zero as the numbers of target nodes and jammers
go to infinity. This is true even when the total power of target
nodes is much higher than that of the jammers. We provide the
optimal communication schemes to achieve the capacity bounds.
We also describe the power efficiency of wireless networks,
showing that there is an optimal target node density for power-
efficient network operation. Our results can provide guidance
for designing optimal wireless networking protocols that have to
deal with large-scale distributed jamming.

Index Terms—Capacity of wireless networks; denial of service
attack; distributed jamming.

I. INTRODUCTION

There have been many studies on the capacity of wireless
networks in a wide range of scenarios [2], [9]–[12]. However,
there is no prior work on an important scenario: wireless
networks capacity in the presence of distributed jamming.
Specifically, this scenario refers to a large-scale wireless
network with a large number of jammers distributed within
the network. We contend that this scenario is relevant and
important by considering two applications. First, in the future
battlefield where two adversary forces meet, the wireless
devices of one force may become distributed jammers to
the opposite force, and the number of nodes involved can
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be in the tens of thousands. Second, in today’s world of
spectrum sharing and proliferation of wireless devices speak-
ing different protocols, large-scale distributed jamming can
occur in inadvertent ways with varying degrees of severity.
This is evident in the concerns in the cellphone industry
about the potential interference in a large-scale deployment
of femtocells [26], since the signals from femtocells and
macrocells cause distributed jamming to each other in the
cellphone network. In this paper, we consider jamming in the
broader sense, which includes both deliberate jamming and
inadvertent jamming (interference).

In our prior work [3], we demonstrated using percolation
theory that the capacity of the wireless network is reduced
dramatically as the number of jammers increases even when
the total power of the jammers is held constant. In fact, we
showed that the capacity of the wireless network goes through
a phase transition from high capacity regime to low capacity
regime when the number of jammers increases beyond a
certain threshold, again with the total jamming power held
constant. However, this prior work provides only qualitative
analysis. In this paper, we aim to provide a quantitative
analysis to relate the capacity of the wireless network to
parameters of both the nodes and the jammers in the network.

According to Shannon’s capacity formula,
C = W log (1 + SINR), two factors determine the
capacity of a single link: the bandwidth or the degree of
freedom W and the ratio of signal to interference and noise
(SINR). In a large-scale wireless network with distributed
jamming, the number of nodes (referred to as target nodes
henceforth to distinguish from jamming nodes) provides a
measure of degree of freedom, since these target nodes can
form a distributed multiple-input multiple-output (MIMO)
antenna array to achieve capacity [7], [8], [15]. Assuming
constant transmission power, the density of target nodes
provides a measure of the degree of path loss or the received
power; whereas the density of jammers provides a measure
of the degree of interference. The densities of nodes are
related to the distances between transmitters and receivers,
and distances between jammers and receivers; thus the
interplay between the densities of target nodes and jammers
has a major impact on the capacity of the wireless networks.
In this paper, we aim to extricate the relationship between
the capacity of a wireless network and the parameters
reflecting the nodes degrees of freedom, received power, and
encountered interference.
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Our findings reveal that the dominating factors impacting
the capacity of large-scale wireless networks are the densities
of target nodes and jammers. We show that when the density
of jammers is higher than that of target nodes by a certain
threshold, the capacity of wireless networks approaches zero
as the numbers of target nodes and jammers go to infinity, even
when the total power of target nodes are much higher than
the total power of the jammers. This has serious implications
on the practical deployment of large-scale networks.

Furthermore, we find that the dependency of the network
power efficiency, which is defined as the network’s transport
capacity [2] per unit power consumed, on the target network
density exhibits a bifurcated behavior: When the target net-
work density is small, the network power efficiency is an
increasing function of target network density. When the target
network density goes beyond a threshold, the network power
efficiency becomes a decreasing function of target network
density. In other words, there is an optimal target network
density for which the power efficiency of the network is
maximized.

This paper makes three contributions: 1) We are the first
to provide the capacity bounds of wireless networks in the
presence of jamming. We discover the threshold phenomenon
described in the previous paragraph, which is consistent with
our findings in the prior work using percolation theory [3].
Also, our results reduce to the results in [15] when the
jamming signal can be treated as regular noise in the so-called
noise-like regime, the details of which will be provided later.
2) We provide optimal communication schemes for the target
network to achieve the capacity bounds. 3) We describe the
power efficiency of wireless networks, showing that there is
an optimal target node density for power-efficient network
operation. Our results can provide guidance for designing
optimal wireless networking protocols that deal with large-
scale distributed jamming.

The paper is organized as follows. In Section II, we describe
related work. In Section III, we describe the model. In Section
IV, we provide the formulation for the cut-set capacity bound.
In Section V, we describe optimal communication schemes
to achieve capacity. In Section VI, we describe the power
efficiency of wireless networks. We conclude in Section VII.

II. RELATED WORK

There are three areas of related work: capacity of wireless
networks, jamming in wireless networks, and capacity of wire-
less networks in the presence of eavesdroppers (jamming is
active, whereas eavesdropping is passive), which are described
below.

A. Capacity of Wireless Networks

The study of the transport capacity of large-scale wireless
networks started in the seminal paper [2]. Many subsequent
studies followed. Here we provide a brief outline of these

studies to convey a sense of the scope without trying to
be comprehensive. Upper bounds to the transport capacity
in relation to graphic locations and power constraints of the
nodes were provided in [6]. Departing from previous methods
based on geometry or signal-to-noise ratio (SNR), information
theoretical analyses were provided in [7], [8]. The trans-
port capacity of wireless networks was studied over fading
channels [9], in various path-loss attenuation regimes [10],
[11], and in the fixed SNR regime [12]. The gap between
the upper bound and the achievable capacity was closed
using percolation theory in [13]. Capacity regimes of wireless
networks with arbitrary size and densities were studied in [15].

B. Jamming in Wireless Networks

Much previous work on jamming was conducted in the
military context [16]. Recently, studies on jamming in civilian
wireless networks, especially wireless sensor networks, which
are especially vulnerable because of the field deployment,
began to appear in the literature [17], [24]. A game-theoretical
analysis of a transmitter and a jammer transmitting to the
same receiver was provided in [18]. Denial of service or
jamming at the MAC layer was studied in [19], [20], [29].
A linear programming formulation and distributed heuristics
were presented in [30] to maximize jamming impact on
traffic flows with the jammer resource constraint. In the
area of counter-measures to jamming, jamming detection and
mapping in wireless sensor networks was studied in [21], [23].
Error correction codes were proposed as a counter-measure to
jamming in [22]. Two methods to combat jamming, channel
surfing and spatial retreats, were proposed in [25]. An opti-
mization formulation and a heuristic for jamming and defense
strategies were presented in [26]. A protocol called DEEJAM
was proposed to combat jamming at the MAC layer in [27].
Cross-layer jamming detection and mitigation were studied in
[28]. In [3], a new type of jamming using low-power jammers
was proposed, which was shown to be very effective. In [4],
a new dimension of jamming utilizing null frequencies in
communications protocols was investigated.

C. Capacity of Wireless Networks in the Presence of Eaves-
droppers

One of the major challenges facing wireless networks is
the presence of eavesdroppers. Shannon initiated the study
of secret communications [31], which was followed by ex-
tensions to noisy channels [32], broadcast channels [33], and
Gaussian channels [34]. Recently, there has been a resurgence
of research in wireless physical layer security [35]–[40], [43].
Closer to this work, the secrecy capacity of wireless networks
was investigated in decentralized wireless networks [40],
in stochastic wireless networks with collusion [41], and in
broadcast channels [43]. Secrecy capacity scaling was studied
in reference [42].
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Fig. 1. The communication model, with the cut-set in the middle, target
senders (solid circles) at the left side, target receivers (solid circles) at the
right side, and jammers (crosses) deployed randomly throughout the network

Despite the diverse range of previous studies on jamming,
there is no prior work on the capacity of wireless networks
in the presence of jamming.

III. THE MODEL

We consider a wireless network with 8n1 target nodes
and 2n2 jamming nodes uniformly randomly deployed in
a rectangle of area 2A with length 2A1/2 and width A1/2

respectively (refer Fig.1). For the target network, half of the
nodes are randomly selected as the information sources, and
the other half as the destinations. Each source in the target
network randomly selects a destination and sends information.
The total transmission power is n1p1 (it is assumed that all
sources have equal transmission power), whereas the total
jamming power is n2p2. We do not require jammers to have
any kind of channel state information, but we assume the
target transmitters have channel state information about their
receivers by using standard estimation techniques [1]. We
consider a cut length-wise in the middle of the target network.
Asymptotically, with probability 1/2, a source node is at
the left side of the cut. Further, with probability 1/4, the
destination node of this source is at the right side, refer to
Fig.1. Similar to [15], we study the cut-set capacity C of the
target network, i.e., the sum of rates in bits/s/Hz across the cut
from left to right, which is asymptotically equal to one fourth
of the total throughput Rnetwork as n1 approaches infinity
since the network traffic goes through the cut with probability
1/4. In other words, the cut-set capacity is indicative of the
total network throughput. In particular we are interested in the
scaling law of C as n1 approaches infinity. In other words,
we are interested in the exponent e defined as

e ≡ lim
n1→∞

logC

log n1
. (1)

The cut-set capacity is upper-bounded by the capacity of
the MIMO channel between the target transmitters on the left
side of the cut and the target receivers on the right side. Given
the transmitted target signal vector X from the left side of the
cut, and the jamming signal vector Z from both sides of the

cut, the received signal vector Y on the right side of the cut
can be expressed as

Y = H1X +H2Z +No, (2)

where the individual components of X,Z,No are indepen-
dent zero-mean circularly symmetric Gaussian target signals,
jamming signals, and noises, with variances of p1, p2, and
1, respectively. Moreover, H1 and H2 are the n1 × n1 and
n1 × 2n2 channel matrices for the signals received from the
target nodes and the jammers, respectively, which are given
below

H1,i,k =

√
G1e

jθ1,i,k

d
α/2
1,i,k

, H2,i,k =

√
G2e

jθ2,i,k

d
α/2
2,i,k

, (3)

where d1,i,k and d2,i,k are the distances between target
transmitter k, jammer k and target receiver i, respectively;
θ1,i,k and θ2,i,k are the corresponding phases; G1 and G2 are
the respective gain coefficients, which we set to be 1 without
loss of generality; and α is the path loss exponent. We assume
a fast fading flat channel, and in such case θ1,i,k and θ2,i,k are
independently and identically distributed uniformly in [0, 2π].
Similar assumptions are used in [14], [15].

We consider the network area scales with the number of
target nodes in the following way: 2A = nν1 . This scaling
relationship is a generalization of the special cases of the
dense network where 2A = 1 (ν = 0), and of the extended
network where 2A = n1 (ν = 1), both of which are often
referred to in the literature. More importantly, this scaling
relationship allows the full exploration of capacity regimes
from the high SINR regime implied by the dense network
(higher density leads to shorter distance and higher received
power) to the low SINR regime implied by the extended
network. We use d1,0 and d2,0 to denote the network-wide
average distances between any target node and its nearest
target neighbor and jammer neighbor respectively. Because
nodes are uniformly distributed we have

d1,0 =

√
A

n1
=

√
n
(ν−1)
1 , d2,0 =

√
A

n2
=

√
nν1
n2
. (4)

Similar to [15], we introduce the exponent β so that nβ1 ≡
d−α1,0 , then we have β = α(1 − ν)/2. Apparently β indicates
the density of target nodes. Moreover, p1 being constant, β
indicates the level of signal-to-noise ratio (SNR) received from
the nearest target nodes, the so-called short-range SNR. In the
extended network, β = 0, and in the dense network β = α/2.

In addition, we define the exponent γ so that nγ1 ≡ d
−α
2,0 . So,

γ indicates the density of the jammers and also the level of
interference coming from the nearest jammer. The definition
of γ uses n1 rather than n2 to put γ in the same scale as
β. Also it simplifies the expression of the scaling exponent
results. Using (4), we have

nβ−γ1 =
d−α1,0

d−α2,0

=

(
n1
n2

)α/2
. (5)
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From the last expression, we see that β − γ is a function of
the ratio of the numbers of target nodes and jammers in the
network. In the special case where n1/n2 is a constant, β−γ
approaches zero as n1 approaches infinity, indicating target
nodes and jammers have similar density.

Finally, without loss of generality, we impose the constraint
that the total power of the jammers is a fraction of the total
power of the target nodes, i.e.,

n2p2 = ρn1p1 (6)

where 0 < ρ < 1 is a small constant, say 0.01. In general,
the capacity scaling results do not change as long as ρ is a
constant. From (5) and (6), we have

p1
p2

=
n
2(γ−β)/α
1

ρ
. (7)

IV. THE CUT-SET CAPACITY BOUND

We consider the ergodic cut-set capacity of the target
network in a fast fading channel environment. According
to information theory, the cut-set capacity is the maximum
mutual information between X and Y on either sides of the
cut and can be written as

C = max I(X;Y ) = max[H(Y )−H(Y |X)]

= max[H(Y )−H(Z +No)]. (8)

The mutual information depends on the covariance matrices of
the received signal Y and the jamming signal plus noise Z +
No, which can be written as the following by using Eqn. (2)

RY = E[Y Y H ] = I +H2RZH
H
2 +H1RXH

H
1 , (9)

RZ+No = E[(Z +No)(Z +No)
H ] = I +H2RZH

H
2 . (10)

In the previous expressions, we have made the noise term to
be an identity matrix without loss of generality. For given
RY and RZ+No , the mutual information in (8) is maximized
when both Y and Z+No are zero-mean circularly symmetric
complex Gaussian random vectors [5], and the cut-set capacity
in bits/s/Hz can be written as

C ≤ max
E[tr(RX)]≤n1p1
E[tr(RZ)]≤n2p2

E[log det(RY )− log det(RZ+No)].

(11)
We provide a reduced form of the above capacity upper bound
in Theorem 1.

Theorem 1: The capacity upper bound is given by:

C ≤
∫ √n1

0

∫ √n1

1

[log(1 + c2p2n
γ
1 + c1p1n

β
1x

2−α)

− log(1 + c2p2n
γ
1)]dxdy, (12)

where c1 and c2 are constants. �
Proof: Refer to Appendix A. �

Using Theorem 1, we obtain our main result as follows.

Theorem 2: The capacity scaling exponents of wireless
networks in the presence of distributed jamming are those
listed in Table I. �
Proof: Refer to Appendix B. �

Our results in Table I provide the expressions of the
capacity scaling exponent e in terms of parameters α, β,
and γ. Below, we provide some clarifying remarks for the
information conveyed in Table I.

1) There are two operation regimes: noise-like and jamming-
dominant. In the noise-like regime where p2n

γ
1 ≤ ∞ as

n1, n2 →∞, the jamming signal from nearest neighbors,
which is O(p2n

γ
1), can be bounded by a constant, which

can be treated as effective noise for a node. The network
behaves as if there exists only effective noise and the
jamming does not exist. Our results in this regime revert
to those in [15]. In the jamming-dominant regime where
p2n

γ
1 → ∞ as n1, n2 → ∞, the jamming signal

from the nearest neighbors approaches infinity as n1, n2
approaches infinity. Thus, the noise is dominated by
the jamming signal and can be ignored. This regime is
new, we will focus our discussion on this regime in the
following.

2) In the jamming-dominant regime, the scaling exponent
is upper-bounded by 1, i.e., linear scaling is the best one
can achieve.

3) In the jamming-dominant regime, the scaling exponent
is linear and an increasing function of β − γ. According
to (5), β − γ is an increasing function of the ratio
of the number of target nodes versus that of jammers.
Thus, the capacity of wireless network is predominantly
determined by the density ratio of target nodes versus
jammers. Note that the capacity exponent e has nothing to
do with ρ, the ratio of the total jamming power versus the
total power of target network, as long as ρ is a constant.

4) In the jamming-dominant regime, the scaling exponent
can be negative if β−γ < (α/2−2)(1−2/α) = 3−α/2−
4/α when 2 ≤ α < 3, and if β−γ < −1/2+1/α, when
α ≥ 3. The above conditions constitute the threshold
for degrading of network capacity in the presence of
distributed jammers. In other words, the capacity of the
wireless network can go to zero as the number of nodes
approaches infinity, as long as the jammer density is
higher than the target node density by a certain thresh-
old, even when the total transmitting power of the target
nodes are much larger than that of the jammers. This
threshold phenomenon is consistent with our findings in
the prior work using percolation theory [3], and it has
grave implications to the practical deployment of target
nodes and jammers.

In the following, we provide some concrete examples. We
separate the discussion into two regimes: jamming-dominant
regime and noise-like regime.

Jamming-dominant regime: When β − γ ≥ 0, the exponent
e lies in the range [1/2, 1], with e = 1 (linear-scaling) when
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TABLE I
SCALING EXPONENT OF WIRELESS NETWORKS IN THE PRESENCE OF JAMMING

Noise-like regime
p2n

γ
1 ≤ ∞ as n1, n2 →

∞

β ≥ α/2− 1 e = 1

β < α/2− 1
β > 0 e =

{
2− α/2 + β 2 ≤ α < 3

1/2 + β/(α− 2) α ≥ 3

β ≤ 0 e =

{
2− α/2 + β 2 ≤ α < 3

1/2 + β α ≥ 3

Jamming-dominant
regime
p2n

γ
1 → ∞ as

n1, n2 →∞

β − γ ≥ α/2 + 2/α− 2 e = 1

β − γ < α/2 + 2/α− 2
β − γ > 0 e =

{
2− α/2 + (β − γ)/(1− 2/α) 2 ≤ α < 3

1/2 + (β − γ)/(α+ 4/α− 4) α ≥ 3

β − γ ≤ 0 e =

{
2− α/2 + (β − γ)/(1− 2/α) 2 ≤ α < 3

1/2 + (β − γ)/(1− 2/α) α ≥ 3

β−γ ≥ α/2+2/α−2; and e = 1/2 (Gupta-Kumar-scaling),
when α ≥ 3 and β − γ = 0 or α approaches infinity. For
example, to achieve linear capacity scaling for α = 2, we
need to have β − γ ≥ 0, which means the target network has
an equal or higher node density than the jammer network. In
contrast, for α = 4, we need to have β − γ ≥ 1/2, which,
according to (5), translates to the requirement that the target
network has a higher density than that of the jammer network.

When β − γ < 0, the exponent e lies in the range [1/2 +
β−γ, 1), with e approaching 1 when β−γ approaches α/2+
2/α−2; and e = 1/2+(β−γ)/(1−2/α) when α ≥ 3, where
e drops below the Gupta-Kumar-scaling coefficient (1/2).

Noise-like regime: This regime is similar to the jamming-
dominant regime except γ disappears in the expressions.
When β ≥ 0, the exponent e lies in the range [1/2, 1], with
e = 1 (linear-scaling) when β = α/2 − 1; and e = 1/2
(Gupta-Kumar-scaling), when β = 0 and α ≥ 3 or when α
approaches infinity. For example, to achieve linear capacity
scaling for α = 2, we need to have β ≥ 0, which requires the
target network no less dense than that of the extended network
(2A = n1). For α = 4, we need to have β ≥ 1, which requires
that the area of the target network scales at least as the square
root of the number of target nodes (2A = n

1/2
1 ), which is

much denser than the extended network.
When β < 0, the exponent e lies in the range [1/2+ β, 1),

with e approaching 1 when β approaches α/2 − 1; and e =
1/2 + β when α ≥ 3.

V. OPTIMAL COMMUNICATION SCHEMES TO ACHIEVE
CAPACITY BOUNDS

In this section, we consider communication schemes using
distributed MIMO arrays to achieve network capacity in the
jamming-dominant regime, i.e., p2n

γ
1 → ∞ as n1, n2 → ∞,

since the noise-like regime is equivalent to that without jam-
ming, according to the discussion in the previous section, and
it has been studied in [15]. Here, we modified the framework
in [15] to take the contributions from jammers into account.
The optimal communication schemes basically follow the
approach in the proof of Theorem 2. We divide the network of
2n1 target nodes into 2k cells, with each cell containing m1

target nodes. Thus, we have k = n1/m1, and each cell has
the dimension of

√
Am1/n1×

√
Am1/n1. Suppose there are

n1 source nodes, each sending one bit to their corresponding
destination nodes. We assume each cell forms a distributed
MIMO array and communicates with its neighbor cells in the
following way. As show in Figure 2, the communications in
the target network take place in three stages as follows.
• In the first stage, each source takes turns to broadcast m1

bits in the local cell, one bit for each node in the cell. At
the end of the stage, every node in the cell has the one
bit for each node in the cell. Since there are m1 nodes,
each sending out one bit to m1− 1 nodes, this stage has
a time complexity of m1(m1 − 1) = O(m2

1).
• In the second stage, bits are communicated using stan-

dard MIMO transmissions [14] between neighboring
cells. It takes O(k1/2) cell-hops for a bit in the source
cell to reach the destination cell. For routing, we draw a
straight line from the source cell to the destination cell;
the cells intersecting the line are the sequence of hops
used. Each time, only one pair of source and destination
cells is involved in transmission and therefore there is
no interference. Since there are k cells, each having to
communicate m1 bits over O(k1/2), the time complexity
is O(k1/2km1) = O(k1/2n1).

• In the third stage, each node in the destination cells takes
turns to broadcast its received bit to enable each node to
decode the MIMO transmissions received in the second
stage. Since there are m1 nodes, each sending out one
bit to m1 − 1 nodes, this stage has the time complexity
of m1(m1 − 1) = O(m2

1)

Thus, the above communication scheme has a time com-
plexity of O(m2

1 + k1/2n1). Note that the traditional multi-
hop communication scheme is a special case of the above
distributed MIMO scheme with m1 = 1, and the hierarchical
cooperation scheme in [14] is a special case where m1 = n1.

The MIMO sum rate Rcell(m1) between two neighbor cells,
with m1 target nodes each, can be considered as a scaled-
down version of that of the original target network discussed
in Section III and IV, except we have to replace n1 with m1.
Applying Equation (27) and using the inequality x ≤ m

1/2
1



6

Fig. 2. The MIMO transmission is carried out in three phases. In Phase 1, bits are distributed within a cell to prepare for MIMO transmission. In Phase 2,
multiple simultaneous MIMO transmissions occur between source and destination cells. In Phase 3, bits reach their destinations within the destination cell.

within a cell, the sum rate can be written as

Rcell(m1) > c7m
1−ε
1 log(1 + c8m

1−α/2
1 n

(β−γ)(1−2/α)
1 ).

(13)
The above result is similar to the rate of the classical MIMO
system with m1 transmit and receive antennas, with m−ε1

accounting for the overhead to set up the MIMO transmission.
This rate per cell is shared by k1/2 cells on average, which use
the cell for relaying. Another way to put it is that it takes k1/2

cell-hops on average for a packet to travel from the source cell
to the destination cell. Therefore, each source cell can achieve
a throughput of Rcell/k1/2; and since there are k cells in the
network, the throughput of the entire network can be written
as

Rnetwork(m1) > c7k
1
2m1−ε

1 log(1 + c8m
1−α2
1 n

(β−γ)(1−2/α)
1 )

= c7n
1
2
1m

1
2−ε
1 log(1 + c8m

1−α2
1 n

(β−γ)(1−2/α)
1 )

≡ c7n
1
2
1m

1
2−ε
1 log(1 + SINRcell(m1)). (14)

In Equation (14), if SINRcell(m1) > 1 for all m1, or β−γ >
α/2 + 2/α − 2, the network throughput is an asymptotically
increasing function of m1 and is maximized by making m1 =
n1, thus achieving linear scaling, which corresponds to the
first row in Table I. If SINRcell(m1) < 1 for all m1, or
β − γ < α/2 + 2/α − 2 and β − γ < 0, using the fact that
log(1 + x) < x, Equation (14) can be approximated by

Rnetwork(m1) > c9m
(3−α)

2 −ε
1 n

1
2+

β−γ
1−2α

1 . (15)

Depending on whether α < 3 or α > 3, the network
throughput is an increasing or decreasing function of m1 and
is maximized by making m1 = n1 or m1 = 1, respectively,
thus achieving the scaling laws in the last two rows in
Table I. If SINRcell(m1) > 1 for some but not all m1,
or β − γ > α/2 + 2/α − 2 and β − γ > 0, we have two
cases. In the case where α < 3, using the approximation in
Equation (15), it is clear to see that the network throughput is
an increasing function of m1 and is maximized by making
m1 = n1, thus achieving the scaling law in the second

row in Table I. In the case where α > 3, the network
throughput is maximized around the value of m1, where
SINRcell(m1) = 1 is satisfied, or

m1 = n
2(β−γ)
α+4/α−4

1 . (16)

Plugging (16) into (15) we have

Rnetwork(m1) > c9m
−ε
1 n

1
2+

(β−γ)
α+4/α−4

1 (17)

which achieves the scaling law in the fifth row of Table I.
We summarize the optimal communication schemes to

achieve capacity in Table II. Which communication scheme
or cell size to use depends on the interplay between path
loss, MIMO multiplexing gain, and the relative strength of
the target and jamming signals. When path loss is small
(α < 3), network-wide MIMO transmission is used regardless
of the other parameters. When path loss is large (α > 3),
network-wide MIMO transmission is not optimal and there
is a certain optimal MIMO cell size to achieve capacity,
including the case of an one-node cell which is the classical
multi-hop scheme where the jamming signals dominates the
target signals (β − γ < 0).

VI. POWER EFFICIENCY OF WIRELESS NETWORKS

In this section, we are concerned with power efficiency of
wireless networks. For this purpose, inspired by the highly
useful concept of work from physics, we define the commu-
nication work (Wc, referred to as transport capacity in [2])
as the product of the number of bits transported per second
(Rnetwork) in the network and the distance traveled by the
bits (x):

Wc ≡
∫
Rnetwork dx. (18)

We define the power efficiency (η) as the work performed per
unit power consumed:

η ≡ Wc

n1p1
. (19)
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TABLE II
MIMO COMMUNICATION SCHEMES (CELL SIZE M1) TO ACHIEVE CAPACITY

β − γ ≥ α/2 + 2/α− 2 m1 = n1

β − γ+ <
α/2 + 2/α− 2

β − γ > 0 m1 =

n1 2 ≤ α < 3

n
2(β−γ)
α+4/α−4

1 α ≥ 3

β − γ ≤ 0 m1 =

{
n1 2 ≤ α < 3

1 α ≥ 3

We also define the exponent eη associated with η as the
following:

eη ≡ lim
n1,n2→∞

log η

n1
. (20)

The exponent eη provides an asymptotic measure of the power
efficiency of a communication scheme. A positive eη indicates
the network becomes more power-efficient as the number of
target nodes increases, whereas a negative eη indicates the
network becomes less power-efficient as the number of target
nodes becomes larger.

Since the cut-set capacity (C = ne1) is asymptotically equal
to one fourth of the network throughput (Rnetwork) as we
mentioned in Section II, and the distance traveled by the bits
is of the order of A1/2, using the fact 2A = nν1 = n

1−2β/α
1 ,

we have

eη = lim
n1,n2→∞

log Wc

n1p1

log n1
= lim
n1,n2→∞

log
ne1A

1
2

n1p1

log n1
= e− 1/2− β/α. (21)

Plugging the values of e from Table I we obtain Table III,
from which we can draw three conclusions. Here, we focus
on the jamming-dominant regime, since the noise-like regime
is not particularly interesting.

First, the dependency of the power efficiency exponent
eη on the target network density (β) exhibits a bifurcated
behavior: when β − γ < α/2 + 2/α− 2, eη is an increasing
function of β (the positive sign of β in Table III). The
maximum eη is obtained when β−γ = α/2+2/α−2 and thus
eη = 1/2 − β/α. In other words, there is an optimal target
network density for which the power efficiency of the network
is maximized. When β − γ > α/2 + 2/α − 2, eη becomes
a decreasing function of β (the negative sign of β in Table
III). This is because the network consumes unnecessarily more
power (larger n1) than required for linear capacity scaling,
leading to inefficiency.

Second, the dependency of the power efficiency exponent
eη on the jammer network density (γ) is relatively simpler:
in the noise-like regime the dependency is none; and in the
jamming-dominant regime, eη is a decreasing function of γ.

Third, the maximum value, eη = 1/2−β/α, is a decreasing
function of β/α. In other words, small values of β and large
values of α lead to higher power efficiency. This means
that the network is more power-efficient when the network

density is lower and the path loss exponent is higher, which
corresponds to the condition of low interference.

VII. CONCLUSION

In this paper, we provide the scaling laws for the capacity
of wireless networks in the presence of distributed jamming.
We have shown the various capacity regimes delineated by
the values of α, β and γ. We have also described the optimal
communication schemes to achieve capacity bounds and the
power efficiency of wireless networks. Our results can provide
guidance for designing optimal wireless networking protocols
that deal with large-scale distributed jamming.

APPENDIX A
THE PROOF OF THEOREM 1

Proof: First, we rescale the distances by d1,0 and obtain

d̂1,i,k = d1,i,k/d1,0, d̂2,i,k = d2,i,k/d1,0,

Ĥ1,i,k =
ejθi,k

d̂
α/2
1,i,k

, Ĥ2,i,k =
ejθi,k

d̂
α/2
2,i,k

.

The scaling changes the original network of area 2A1/2×A1/2

to that of area 2
√
n1 ×

√
n1, which in effect normalizes the

network to the extended network. The cut-set capacity can be
written as

C ≤ max
E[tr(RX)]≤n1p1
E[tr(RZ)]≤n2p2

E[log det(I + d−α1,0 Ĥ2RZĤ
H
2

+ d−α1,0 Ĥ1RXĤ
H
1 )− log det(I +H2RZH

H
2 )]. (22)

We make the covariance matrices to be the identity matrices
scaled by power levels, which reflects our assumptions of
equal power allocation among the nodes and independent
random phases in a fast fading channel [15].

Let A and B be two semi-positive definite matrices. Equa-
tion (11) has the following form:

log detA− log detB = log detAB−1.

Using Hadamard’s inequality,

detAB−1 ≤
n∏
i=1

Ai,i

n∏
i=1

B−1i,i
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TABLE III
SCALING EXPONENT OF POWER EFFICIENCY OF WIRELESS NETWORKS IN THE PRESENCE OF JAMMING

Noise-like regime
p2n

γ
1 ≤ ∞ as n1, n2 →

∞

β ≥ α/2− 1 eη = 1/2− β/α

β < α/2− 1
β > 0 e =

{
3/2− α/2 + β(1− 1/α) 2 ≤ α < 3

β(1/(α− 2)− 1/α) α ≥ 3

β ≤ 0 e =

{
3/2− α/2 + β(1− 1/α) 2 ≤ α < 3

β(1− 1/α) α ≥ 3

Jammer-dominate regime
p2n

γ
1 →∞ as n1, n2 →

∞

β − γ ≥ α/2 + 2/α− 2 e = 1/2− β/α

β − γ < α/2 + 2/α− 2
β − γ > 0 e =

{
3/2− α/2− β/α+ (β − γ)/(1− 2/α) 2 ≤ α < 3

−β/α+ (β − γ)/(α+ 4/α− 4) α ≥ 3

β − γ ≤ 0 e =

{
3/2− α/2− β/α+ (β − γ)/(1− 2/α) 2 ≤ α < 3

−β/α+ (β − γ)/(1− 2/α) α ≥ 3

which is valid for any semi-positive definite matrix, and
therefore valid for any linear combination of the form as
appears within the log function in (11). We can rewrite (11)
as

C ≤
∑
i

log
(
1 + d−α1,0 p2(Ĥ2Ĥ

H
2 )i,i + d−α1,0 p1(Ĥ1Ĥ

H
1 )i,i

)
− log

(
1 + d−α1,0 p2(Ĥ2Ĥ

H
2 )i,i

)
. (23)

Now, we proceed to calculate the diagonal terms of the
channel matrices. We fix the coordinate system such that the
network is located in the area of [0, n1/21 ]× [−n1/21 , n

1/2
1 ]. Let

d̂1(x, y;xi, yi)(d̂2(x, y;xi, yi)) denote the distance between a
target (jammer) node located at (x, y) and a target (jammer
node) located at (xi, yi); and ci denote a certain constant (this
convention is used in the remainder of the paper). In the scaled
network, the density of target nodes is 1 (normalized to the
extended network), and that of jammers is n2/n1. Using the
fact that the nodes are uniformly randomly distributed, we can
use integration in place of summation to calculate the diagonal
terms of the squared channel matrices as follows

(Ĥ1Ĥ
H
1 )i,i =

∑
k

|Ĥ1,i,k|2 =
∑
k

d̂−α1,i,k

=

∫ √n1

0

∫ −1
−√n1

d̂1(x, y;xi, yi)
−α dxdy

= c1x
2−α
i , (24)

(Ĥ2Ĥ
H
2 )i,i =

∑
k

|Ĥ2,i,k|2 =
∑
k

d̂−α2,i,k

=
n2
n1

∫ √n1

0

∫ √n1

−√n1

d̂2(x, y;xi, yi)
−α dxdy

= c2
n2
n1

(
d2,0
d1,0

)2−α

. (25)

Note that when α = 2, the integral is actually proportional
to log n1. We ignore this detail because it does not affect the
exponents in the scaling law. Also note that the integration
range of x in (24) is from −n1/21 to −1 because we are
summing up the contributions from the target transmitters at

the left side of the cut to the ith target receiver at the right
side of the cut. To avoid divergence in integration but without
affecting the scaling behavior, we set the lower integration
limit of x to 1 (recall that the average distance between the
nearest target nodes in the rescaled network is 1). Similarly,
the integration range of x in (25) is from −n1/21 to n

1/2
1

because we are summing up jamming signals from both sides
of the cut. Again, to avoid divergence we placed the restriction
min [d2(x, y;xi, yi)] = d2,0 in (25). Plugging (24) and (25)
into (23) and using the relationships in (4), we obtain

C ≤
∫ √n1

0

∫ √n1

1

[log(1 + c2p2d
−α
2,0 + c1p1d

−α
1,0x

2−α)

− log(1 + c2p2d
−α
2,0 )]dxdy. (26)

Remark: The contribution from the jammers in (26),
c2p2d

−α
2,0 , is on the same order of magnitude as the contri-

bution from the nearest jammer to the target receiver alone,
i.e., c2p2d−α2,0 . Using the definitions of β and γ we rewrite
(26) as

C ≤
∫ √n1

0

∫ √n1

1

[log(1 + c2p2n
γ
1 + c1p1n

β
1x

2−α)

− log(1 + c2p2n
γ
1)]dxdy. (27)

APPENDIX B
THE PROOF OF THEOREM 2

Before proceeding with the proof, we state the following
elementary fact

lim
n1→∞

∫ √n1

x0

x2−αdx =


n
(3−α)/2
1 2 ≤ α < 3

log n1 α = 3

x3−α0 /(α− 3) α > 3

(28)

where x0 is a positive number.
We consider two major capacity regimes depending on

whether p2n
γ
1 ≤ ∞ or p2n

γ
1 → ∞ as n1, n2 → ∞, which

delineates the boundary between the noise-like regime and the
jamming-dominant regime.
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B.1. The noise-like regime: p2n
γ
1 ≤ ∞ as n1, n2 →∞

In this case, the contribution from jamming nodes in (27)
is upper-bounded by a constant, say c3 − 1, as n1 and n2
approaches infinity. In terms of scaling behavior, this case
is equivalent to that where only noise is present. The scaling
law results we obtained are identical to that in [15]. Below we
look into different capacity regimes delineated by the values
of β, which indicate the target node density and reflect the
short-range SNR.
B.1.a The case of β ≥ α/2− 1

Using Equation (27) and the fact 1 ≤ x ≤ n1/21 we obtain

C >

∫ √n1

0

∫ √n1

1

[log(c3 + c1p1n
β−α2 +1
1 )]dxdy

C <

∫ √n1

0

∫ √n1

1

[log(c3 + c1p1n
β
1 )]dxdy

or

n1 log(c3 + c1p1n
β−α2 +1
1 ) < C < n1 log(c3 + c1p1n

β
1 ) (29)

e = lim
n1→∞

logC

log n1
= 1 (30)

B.1.b The case of β < α/2− 1

There are two sub-cases delineated by whether β > 0 or
not.
B.1.b.i The case of β > 0

In this case, there exists x0 in [1, n
1/2
1 ] such that

c1p1n
β
1x

2−α
0 = c3 or x0 =

(
c1p1n

β
1

c3

) 1
α−2

. (31)

We can break the integration in (27) into two parts delimited
by x0. In the second part, we use the fact log(1 + x) < x,
which is tight for small values of x. Thus, we have

C >

∫ √n1

0

∫ x0

1

[log(c3 + c1p1n
β
1x

2−α)]dxdy

+

∫ √n1

0

∫ √n1

x0

[log(c3 + c1p1n
β
1x

2−α)]dxdy

=


c4
√
n1x0 log n1 + c5

√
n1p1n

β
1n

(3−α)
2

1 2 ≤ α < 3

c4
√
n1x0 log n1 + c5

√
n1p1n

β
1 log n1 α = 3

c4
√
n1x0 log n1 + c5

√
n1p1n

β
1x

(3−α)
0 α > 3

e = lim
n1→∞

logC

log n1
=

{
2− α

2 + β 2 ≤ α < 3
1
2 + β

(α−2) α ≥ 3
(32)

B.1.b.ii The case of β ≤ 0

Using log(1 + x) < x for small values of x, we have

C ≤
∫ √n1

0

∫ √n1

1

[log(c3 + c1p1n
β
1x

2−α)]dxdy

≤
∫ √n1

0

∫ √n1

1

[(c1p1n
β
1x

2−α)/c3]dxdy

=


c6
√
n1p1n

β
1n

(3−α)
2

1 2 ≤ α < 3

c6
√
n1p1n

β
1 log n1 α = 3

c6
√
n1p1n

β
1 α > 3

e = lim
n1→∞

logC

log n1
=

{
2− α

2 + β 2 ≤ α < 3
1
2 + β α ≥ 3

(33)

B.2. The jamming-dominant regime: p2n
γ
1 → ∞ as

n1, n2 →∞
In this case, the contribution from jamming signals is

dominant and the noise can be ignored, using (7) we have

C ≤
∫ √n1

0

∫ √n1

1

[log(1 +
c1n

(β−γ)(1−2/α)
1 x2−α

c2ρ
)]dxdy

(34)
Below we look into different capacity regimes delineated by
the values of β − γ, which reflect the relative received signal
levels of the target nodes and the jammers.
B.2.a. The case of β − γ > (α/2− 1)/(1− 2/α)

Using Equation (27) and the fact 1 ≤ x ≤ n1/21 we obtain

C >

∫ √n1

0

∫ √n1

1

[log(1 +
c1n

(β−γ)/(1−2/α)−α2 +1
1

c2ρ
)]dxdy

C <

∫ √n1

0

∫ √n1

1

[log(1 +
c1p1n

(β−γ)/(1−2/α)
1

c2ρ
)]dxdy

or

C > n1

(
log(1 +

c1n
(β−γ)/(1−2/α)−α2 +1
1

c2ρ
)

)

C < n1

(
log(1 +

c1n
(β−γ)/(1−2/α)
1

c2ρ
)

)

e = lim
n1→∞

logC

log n1
= 1 (35)

B.2.b. The case of β − γ < (α/2− 1)/(1− 2/α)
Again, there are two sub-cases delineated by whether β −

γ > 0 or not.
B.2.b.i The case of β − γ > 0

In this case, there exists x0 in [1, n
1/2
1 ] such that

c1n
(β−γ)(1−2/α)
1 x2−α

c2ρ
= 1 or x0 =

(
c1n

(β−γ)(1−2/α)
1

c2ρ

) 1
α−2

(36)
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We can break the integration (34) into two parts delimited by
x0. Using the (28) and the fact log(1+x) < x, which is tight
for small values of x, we have

C ≤
∫ √n1

0

∫ x0

1

[log(1 +
c1n

(β−γ)(1−2/α)
1 x2−α

c2ρ
)]dxdy

+

∫ √n1

0

∫ √n1

x0

[log(1 +
c1n

(β−γ)(1−2/α)
1 x2−α

c2ρ
)]dxdy

=



c4
√
n1x0 log n1 + c5

√
n1p1n

(β−γ)(1−2/α)
1 ·

n
(3−α)

2
1 2 ≤ α < 3

c4
√
n1x0 log n1 + c5

√
n1p1n

(β−γ)(1−2/α)
1 ·

log n1 α = 3

c4
√
n1x0 log n1 + c5

√
n1p1n

(β−γ)(1−2/α)
1 ·

x
(3−α)
0 α > 3

e = lim
n1→∞

logC

log n1
=

{
2− α

2 + (β − γ)(1− 2/α) 2 ≤ α < 3
1
2 + (β − γ)(α+ 4/α− 4) α ≥ 3

(37)
B.2.b.ii The case of β − γ ≤ 0

Using Equation (34) and the fact log(1 + x) < x, which is
tight for small values of x we have

C ≤
∫ √n1

0

∫ √n1

1

[log(1 +
c1n

(β−γ)(1−2/α)
1 x2−α

c2ρ
)]dxdy

≤
√
n1

∫ √n1

1

(
c1n

(β−γ)(1−2/α)
1 x2−α

c2ρ
)dx

=


c6
√
n1n

(β−γ)(1−2/α)
1 n

(3−α)
2

1 /ρ 2 ≤ α < 3

c6
√
n1n

(β−γ)(1−2/α)
1 log n1/ρ α = 3

c6
√
n1n

(β−γ)(1−2/α)
1 /ρ α > 3

e = lim
n1→∞

logC

log n1
=

{
2− α

2 + (β − γ)(1− 2/α) 2 ≤ α < 3
1
2 + (β − γ)(1− 2/α) α ≥ 3

(38)
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Alvariño position, Xunta de Galicia, Spain. Currently, he is a professor
at the Defense University Center, University of Vigo. His interests include
content distribution, high-performance switching, video transcoding, peer-to-
peer networking and wireless networks.

Satyajayant Misra (SM’5, M’09) is an associate
professor in computer science at New Mexico State
University. His research interests include wireless
networks and the Internet, supercomputing, and
smart grid architectures and protocols. He has been
involved in several IEEE journal editorial boards
and conference executive committees (Communi-
cations on Surveys and Tutorials, Wireless Com-
munications Magazine, MOBICOM 2015, ANTS
2014, SECON 2010, INFOCOM 2012). He has
authored more than 40 peer-reviewed IEEE/ACM

journal articles and conference proceedings. One of his co-authored papers
was a runner-up to the best-paper award at IEEE ICNP 2010.

Reza Tourani received his B.S. in computer en-
gineering from IAUT, Tehran, Iran, in 2008, and
M.S. in computer science from New Mexico State
University, Las Cruces, NM, USA, in 2012. From
2013, he started his Ph. D. at New Mexico State
University. His research interests include cyber-
physical system architecture and security protocols,
cache optimization, future Internet architecture, and
security and privacy in information-centric network-
ing.



12

Mohammad Masoud is an assistant professor in
computer and communication engineering at Al-
zaytoonah University of Jordan. His research in-
cludes work in the design and measurement of com-
puter network and their applications, P2P networks,
routing protocols and ad hoc networks.

Ismael Jannoud is an Associate professor in
computer and communication engineering at Al-
zaytoonah University of Jordan, Jordan, and Damas-
cus University, Syria. His research includes work in
the digital image processing, computer vision, pat-
tern recognition, multimedia processing, and com-
puter networks.


