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Compressed Sensing via Dictionary Learning and
Approximate Message Passing for Multimedia

Internet of Things
Zhicheng Li†, Hong Huang‡ and Satyajayant Misra∗

Abstract—In this paper, we present a compressed sensing based
approach, which combines the dictionary learning (DL) method and
the approximate message passing approach (AMP). The approach
can be used for efficient communication in the multimedia Internet
of Things (IoT). AMP is a signal reconstruction algorithm frame-
work, which can be explained as an iterative denoising process.
On the other hand, the DL method seeks an adaptive dictionary
for realizing sparse signal representations, and providesgood
performance in signal denoising. We apply the dictionary learning
based denoising method within the AMP algorithm framework
and propose a novel DL-AMP framework. We demonstrate our
framework’s effectiveness for multimedia IoT devices by showing
its capability in reducing required communication bandwidth for
multimedia communication while improving reconstruction quality
(by over 2 dB).

Index Terms—Internet of Things (IoT), compressed sensing,
dictionary learning, approximate message passing, sequential gen-
eralization of K-means.

I. BACKGROUND AND INTRODUCTION

The Internet of Things (IoT) has drawn attention recently
as a means of connecting the proliferating embedded devices
to the Internet. IoT devices are forecast to grow to 33 billion
by 2035 [1]. These devices include sensing devices, security
cameras, mobile phones, and home automation/control devices.
Different from traditional wireless sensor networks (WSNs), the
IoT is envisioned to be deployed in a larger scale and may
have a much broader geographic deployment, thus increasing
its complexity.

The complexity results from many challenges: a) IoT de-
vices are generally low-computation capability devices; b) they
may run on battery or have limited power, while needing to
transmit large amounts of data (e.g., cameras and other big-
data applications [2], [3], [4])–stringent energy constraints; and
c) given the large number of devices that will be connected,
the IoT devices will suffers from congestion, packet drops,and
transmission uncertainty. Thus, there is a need for developing
special data transmission strategies that enable energy efficient
communications, and low-power and low-cost signal processing
operations. In this paper, we propose the use of an efficient
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compressed sensing framework as a strategy to be used by IoT
devices to reduce the amount of multimedia data they need to
transmit, while ensuring that the complete data can be recovered
with high fidelity at the receiver.

Compressed sensing (CS) is a data acquisition and reconstruc-
tion approach that takes advantage of sparse signal structures to
reduce the size of the transmitted/stored data. Multimediadata
generally possesses this sparse structures. For example, images
are sparse in the wavelet representation. The conventionalway
to deal with such signal has been to acquire all the data first,
compress it and then store it, as is done in image processing.
The CS technique was first proposed by Candeset al. [5], [6],
in which, the original data can be accurately reconstructedfrom
only a portion of the sampled data, sampled at rates lower than
the Nyquist rate. It has sparked tremendous research interest
as it can be leveraged to greatly reduce the sampling rates
in signal processing applications, such as medical scanners,
data communication, and cameras. This technique lends itself
naturally to the multimedia IoT domain.

Given the popularity of CS, several approaches and mecha-
nisms have been proposed to increase its efficiency. One of them
is the Approximate Message Passing (AMP) algorithm, proposed
by Donohoet al. [7], [8]. AMP is an iterative threshold based
signal reconstruction algorithm that performs scalar denoising
within each iteration; and with proper selection of the denoising
function, the reconstruction quality can be one of the highest
of all CS techniques, with very low reconstruction complexity.
The AMP framework is becoming popular, as among iterative
thresholding algorithms with low-reconstruction complexity, it
converges the fastest. One of the challenges in applying image
denoisers within AMP is the difficulty in dealing with the
Onsager reaction term [9], because of the divergence of the
involved image denoiser.

Several important AMP related results have been reported.
In [10], the expectation-maximization Gaussian-mixture algo-
rithm is presented, which is based on Gaussian mixture distri-
bution models. In [11], a Stein’s unbiased risk estimate (SURE)
based parametric denoiser is presented along with a parametric
SURE-AMP algorithm. In [12], the authors applied amplitude-
scale invariant Bayes estimator (ABE) and adaptive Wiener
filter within AMP, and introduced AMP-ABE and AMP-Wiener
algorithms. It is worth noting that the denoiser-based AMP
algorithms do not have high reconstruction quality and suffer
from high runtimes. To marry the best of both worlds, in
this paper, we have developed an AMP denoiser with high
reconstruction quality and acceptable runtime.

We focus on the AMP framework and combine it with a family
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of dictionary learning denoisers. Dictionary learning (DL) is an
effective technique that has attracted a great deal of attention
in image denoising. DL based methods generally achieve lower
reconstruction error than wavelet-based methods [12]. Among
DL based methods, the method of optimal directions (MOD)
was first presented by Enganet al. [13]. Then, Aharonet al.
presented a K-means Singular Value Decomposition (K-SVD)
algorithm [14]. Recently, Sahoo and Makur proposed a more
effective DL algorithm called Sequential Generalization of K-
means (SGK) [15], which has better performance both in runtime
and reconstruction quality. Due to the good performance of
DL methods in image denoising, we present a novel DL-AMP
algorithm within the AMP framework. In our framework, at each
iteration, the trained dictionary, obtained using a DL algorithm
used in the last step, is introduced as the initial one in the current
step. We name the different DL-AMP algorithms that incorporate
DL algorithms described above, as MOD-AMP,K-SVD-AMP
and SGK-AMP respectively—the DL-AMP family—and present
their performance in our simulation results to illustrate the
efficacy of the DL-AMP framework for CS.

Contributions: The main contributions for this paper are
third-folds. First , we propose a novel DL-AMP CS framework
developed for multimedia IoT devices. To the best of our
knowledge, we are the first to use the AMP method in the IoT
domain.Second, our framework is designed in a way that new
developments in DL denoising methods can be easily substituted
for the current DL algorithm, making the resultant algorithm
faster.Third , we demonstrate that the proposed algorithm frame-
work can reconstruct transmitted images better than the state of
art, especially for images with texture [16], [17].

The paper is organized as follows. In Section II, the basic
formulation of compressed sensing and the idea of IoT are
introduced and formulated. In Section III, the basic framework
of AMP and some DL algorithms are introduced. Finally, the
DL-AMP framework is proposed. Illustrative examples are given
to demonstrate the effectiveness of the proposed algorithms in
Section IV, and finally conclusions are presented in SectionV.

II. COMPRESSEDSENSING AND THE INTERNET OFTHINGS

In this section, we introduce some basic definitions and the
basic framework of CS.
A. The Basic Framework of Compressed Sensing

Assume that there is an orthonormal basisΨ =
[

ψ1 ψ2 . . . ψn

]

, with the vectors{ψi} as columns, and
ann-dimensional signalx, which can be expressed as

x =

n
∑

i=1

θiψi = Ψθ, (1)

where,θi is the ith coefficient. Based on the CS theory, ifx
is sparse in the basisΨ, then, under certain conditions, we can
usem non-adaptive measurements ofx to recover the signal
exactly, wherem ≪ n. Define thesem measurements asyj

(j = 1, 2...,m), which are the projections ofx. Then, them-
dimensional measurement is described by

y = Φx, (2)
wherey =

[

y1 y2 . . . ym

]T
is the measurement vector

and Φ is the sensing matrix with sizem × n. Sincem ≪ n,

if we want to recoverx from y, the solution of the inverse
problem satisfying (2) may not be unique. However, due to the
fact that the original signalx is sparse in a certain basisΨ,
the optimization problem can solve the reconstruction problem
above, which is formulated as follows [18]:

(P0) min
θ

‖θ‖0 , subject toy = Φx. (3)

It is well-known that solvingP0 is NP-complete. Surprisingly,
it was shown that one can replace thel0-norm by l1-norm, and
instead formulate the optimization problem as [19], [20], [21]:

(P1) min
θ

‖θ‖1 , subject toy = Φx. (4)

In [20], the authors showed that if the signal is sufficiently
sparse, the solutions ofP0 and P1 are the same.P1 is a
convex linear programming problem, and there are many efficient
solution techniques for this optimization problem (DL-AMP
being one).

Fig. 1. Multitude of devices that make up the IoT.

B. Data transmission in Internet of Things (IoT)

As shown in Fig. 1, the IoT will enable connections among a
wide variety of things, ranging from small sensors on one endof
the spectrum to the cloud of servers (data storage and analysis)
on the other end. With the growth of IoT, on this spectrum,
as we move closer to the sensors (and other end-devices) the
device numbers will increase by several orders of magnitude,
the bandwidth available to them will reduce by several orders
of magnitude (Tbps for cloud servers to several hundred Kbps
for end-devices), and the compute power and energy available
will be lower by several orders of magnitude. These constraints
call for serious attention to the development of mechanismsthat
reduce the computation, power, and communication loads for
the end-devices. The mechanisms should also promote collab-
orative sensing between end-devices to reduce overall energy
and bandwidth requirements. For multimedia IoT devices, these
constraints become especially stringent as they will transmit
more data and may additionally have to meet stringent real-time
requirements.

CS is one mechanism that can help meet all these constraints
for the following reasons [22]. The use of CS on the end-devices
can help reduce the sampling rate and the amount of data to be
transferred, thus requiring less computation, power, and band-
width. In addition, it has been shown that the use of collaborative
CS between neighboring devices can help reduce the load on all



3

dimensions further [23], [24]. Thus, the development new and
more efficient CS techniques for IoT is important, which is our
aim in this paper. In the next section, we present our efficient
DL-AMP framework for using CS at an individual end-device.
We do not present the collaborative sensing scenario, whichwe
will study in the future.

III. C OMPRESSEDSENSING AND APPROXIMATE MESSAGE

PASSING IN IOT

A class of applications for multimedia IoT will be the transfer
of two-dimensional images. For example, video monitoring of
building perimeter and motion-activated cameras may transmit
images or JPEG-based videos to the data store or user computers.
We will illustrate our framework in the rest of the paper using
this application as a use-case. In this section, we show how the
message can be transmitted using our novel CS framework.
A. The Basic Framework of Denoiser Based Approximate Mes-
sage Passing

Before introducing the AMP framework, for better under-
standing the following definitions and lemmas are presented,
borrowing from [9].
Definition 1 [9]: Assumex0 is an original noiseless signal and
y = x0 + σǫ is the observations ofx0 with noise, whereǫ ∼
N (0, I) , I is the identity matrix andσ > 0 denotes the standard
deviation of the noise. Define thatDσ is a family of denoisers
related to the standard deviation of the noiseσ:

Dσ (x0 + σǫ) = x,
wherey = x0 + σǫ is the input, andx is a denoising estimate
of x0.
Definition 2 [9]: Dσ is called a proper family of denoisers of
level κ (κ ∈ (0, 1)) for the class of signalsC if

sup
x0∈C

E

(

‖Dσ (x0 + σǫ) − x0‖2
2

)

n
≤ κσ2,

for everyσ > 0, whereE is the expected value calculator. Note
that the expectation is with respect toǫ ∼ N (0, I) .
Lemma 1 [9]: Let C denote ak-dimensional subspace ofRn

(k < n). Also, let Dσ(y) be the projection ofy onto subspace
C denoted byPC(y). Then,

E

(

‖Dσ(x0 + σǫ) − x0‖2
2

)

n
=
k

n
σ2,

for everyx0 ∈ C and everyσ2. Hence, this family of denoisers
is a proper family of levelk/n.
Definition 3 [9]: We call a denoiser monotone if for everyx0

its risk function

R(σ2, x0) ,
E

(

‖Dσ (x0 + σz) − x0‖2
2

)

n
,

is a non-decreasing function ofσ2.
Based on the above definitions and lemma, we formulate the

AMP framework:

xt+1 = Dσt

(

xt +A∗zt
)

,

zt = y −Axt + zt−1
D

′

σt−1

(

xt−1 +A∗zt−1
)

/m,

(

σt
)2

=
‖zt‖2

2

m
,

where x0 is the original noiseless signal,xt is the estimate
of x0 at iteration t, and zt is an estimate of the residue.
Then,xt + A∗zt can be written asx0 + υt, whereυt can be
considered as i.i.d. Gaussian noise.σt is an estimate of the
standard deviation of that noise.Dσt is defined in Definition
1. D

′
σt−1 denotes the divergence of the denoiserDσt−1 . The

term zt−1
D

′
σt−1

(

xt−1 +A∗zt−1
)

/m is the Onsager correction
term, which has a major impact on the performance of the
algorithm. The explicit calculation of this term is not always
straightforward, since in many practical cases denoisers do not
have explicit formulations. Hence, it is also not possible to
calculateD

′

σt−1 . However, Metzleret al. [9] have shown that the
Onsager correction term can be approximately calculated without
requiring the explicit form of the denoiser. On the other hand, the
Denoiser-AMP also has some requirements for denoisers, which
are proper and monotone in Definition 2 and Definition 3.

B. Dictionary Learning Denoiser

In this section, we introduce some DL denoisers, such as the
K-SVD algorithm, the MOD algorithm, and the SGK algorithm.

1) Sparse Representation of Signals by Dictionary: Using
a dictionary matrixD ∈ R

n×K , which containsK prototype
signal-atoms for columns,{dj}K

j=1 , a signaly ∈ R
n can be

represented as a sparse linear combination of those atoms, which
can be described asy = Dx or y ≈ Dx, where x ∈ R

K

contains the representation coefficients of the signaly. Similar to
Equation (3), ifn < K andD is a full-rank matrix, the solution
is not unique. The fewest number of non-zero coefficients is the
sparsest representation as shown in the following:

min
x

‖x‖0 , subject toy = Dx.

If the noise is considered, the form of the sparsest representation
is

min
x

‖x‖0 , subject to‖y −Dx‖2 < ǫ.

Generally speaking, the DL denoising method contains two
stages, one is sparse representation, the other is dictionary
update. DefineX is a set of coefficient matrices andD is a set of
all dictionaries including unit column-norms. The notation ‖P‖F

stands for the Frobenius norm, defined as‖P‖F =
√

∑

ij P
2
ij ,

wherePij is an element ofP . The solution is obtained iteratively
by alternating between these two stages as follows:

1) Sparse representation: Define a set of training signalsY =
[

y1 y2 . . . yn

]

, and obtainX(l) for eachyi in Y as

X(l) = arg min
X∈X

∥

∥

∥Y −D(l−1)X(l−1)
∥

∥

∥

2

F
, (5)

whereX(l) =
[

x
(l)
1 x

(l)
2 . . . x

(l)
n

]

is the sparse represen-

tation in thelth iteration.
2) Dictionary update: For the obtainedX(l), updateD(l) such

that

D(l) = arg min
D∈D

∥

∥

∥Y −DX(l)
∥

∥

∥

2

F
. (6)

Based on this concept, we introduce some DL algorithms in the
next subsection.

2) Dictionary Learning (DL) Algorithms:
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a) Method of Optimal Directions (MOD) Dictionary
Learning Algorithm: The method of optimal directions (MOD)
is a DL algorithm, which is presented in [13]. The advantage of
the MOD method is the simplicity of its mechanism for updating
the dictionary. MOD is a coder independent dictionary training
algorithm, which can be used for all sparse representation
applications. Assume that the sparse coding for each example
is known, then we define the errorsei = yi−Dxi, for all i. The
overall representation mean square error is given by

‖E‖2
F =

∥

∥

[

e1 e2 ... en

]∥

∥

2

F
= ‖Y −DX‖2

F . (7)
Here all theyi, columns of the matrixY , are concatenated and
similarly the representative coefficient vectorsxi are gathered to
build the matrixX . We can updateD, such that the above error
is minimized, with the assumption of fixedX . One can obtain
the relation(Y −DX)XT = 0, by taking the derivative of (7)
with respect toD, and then it leads to

D(l+1) = Y X(l)T · (X(l)X(l)T )−1. (8)
In each iteration, we first obtainX(l) by a givenD(l), then
D(l+1) can be updated by using the formula in (8).

b) K-mean Singular Value Decomposition (K-SVD) Dic-
tionary Learning Algorithm: K-SVD algorithm breaks the
global minimization problem (6) intoK sequential minimization
problems in the dictionary update stage. Every columndk in
D and its corresponding row of coefficientsXrow,k in X are
evaluated and updated in the algorithm. Thus the error term in
(7) can be rewritten as

∥

∥

∥E(l)
∥

∥

∥

2

F
=

∥

∥

∥

∥

∥

∥



Y −
∑

j 6=k

d
(l)
j X

(l)
row,j



 − d
(l)
k X

(l)
row,k

∥

∥

∥

∥

∥

∥

2

F

.

Let’s define
E

(l)
k , Y −

∑

j 6=k

d
(l)
j X

(l)
row,j,

then we have
{

d
(l)
k , X̂

(l)
row,k

}

= argmin
dk,X

(l−1)
row,k

∥

∥

∥E
(l−1)
k − dkX

(l−1)
row,k

∥

∥

∥

2

F
. (9)

In [14], the proposed algorithm employs SVD to find the closest
rank-1 matrix (in Frobenius norm) that approximatesE(l−1)

k

subject to
∥

∥

∥d
(l)
k

∥

∥

∥

2
= 1. SVD decomposition is performed on

E
(l)
k = U∆V T ; d(l)

k is taken as the first column ofU, andX̂(l−1)
row,k

is obtained as∆1V1, where∆1 is the first diagonal element of
∆, andV1 is the first column ofV.

c) Sequential Generalization of K-Means Dictionary
(SGK) learning Algorithm: K−means and sequential algorithms
consume lesser resources [15]. In the algorithm, whenX

(l)
row,k is

unchanged, the loss of sparsity and structure ofX̂(l) will be
eliminated. Note that̂X(l) is defined in (9). Thus, the sequential
update problem is posed as

d
(l)
k = arg min

dk

∥

∥

∥E
(l−1)
k − dkX

(l−1)
row,k

∥

∥

∥

2

F
. (10)

The solution to (10) can be obtained in the same way as (8)

d
(l)
k = E

(l−1)
k X

(l−1)T
row,k

(

X
(l−1)
row,kX

(l−1)T
row,k

)−1

.

The termd(l)
k replacesd(l−1)

k before updating the next atom in
the sequence, and it can account for the overlap amongX

(l)
row,k ’s

clustersRk, whereRk = {i : yi = Dek}. For terminating the
algorithm, we repeat this process for allK atoms sequentially
(procedure similar toK-means).
C. Description of the Combined Framework

In this section, we present the detailed structure of the DL-
AMP framework, and further explain some details about it.
First, we need to prove that the DL denoising algorithms satisfy
requirements for AMP.

Theorem 1: The DL denoising method is a proper family of
denoisers of levelκ (κ ∈ (0, 1)) for the class of signalsC.

Proof: Similar to [13], [14], [15], [25], we have the denoised
signal as follows:

Dσ(X+σǫ) =



λI +
∑

ij

RT
ijRij





−1 

λY +
∑

ij

RT
ijDXij



 ,

whereσ is the standard deviation of that noise,ǫ ∼ N (0, I), and
D is the trained dictionary. The matrixRij is ann×N matrix
that extracts the (ij) block from the signal, and each patch of
signals is described asXij = RijX of size

√
n × √

n in each
location. The matrixY is the signal with noise, which can be
written as

Y = X + σǫ. (11)
Then, we have

E

(

‖Dσ(X + σǫ) −X‖2
2

)

(12)

= E







∥

∥

∥

∥

∥

∥

“

λI +
P

ij R
T
ijRij

”−1

×

“

λ (Y − X) +
P

ij R
T
ij

`

DXij − Xij

´

”

∥

∥

∥

∥

∥

∥

2

2






.

Assume thatD is well trained, then we have

Yij ≈ DXij . (13)
Then using (11), (12), and (13), we obtain

E ‖Dσ(X + σǫ) −X‖2
2

= E

∥

∥

∥

∥

∥

∥

∥



λI +
∑

ij

RT
ijRij





−1 

λσǫ+
∑

ij

RT
ijRijσǫ





∥

∥

∥

∥

∥

∥

∥

2

2

= σ2,

resulting in

E ‖Dσ(X + σǫ) −X‖2
2

n
=

1

n
σ2. (14)

According to Definition 1 and Lemma 1, we have that the DL
denoising method is a proper family of denoisers of levelκ (κ ∈
(0, 1)) for the class of signalsC. This completes the proof �

Theorem 2: The DL denoiser is a monotone donoiser.
Proof: According to the formula in (14), we have

R(σ2, X) =
E ‖Dσ(X + σǫ) −X‖2

2

n
=

1

n
σ2.

Suppose that forσ1 < σ2, we have

R(σ2
1, X) =

1

n
σ2

1 <
1

n
σ2

2 = R(σ2
2, X). (15)

Then, according to (15) and Definition 2, it is easy to prove
that the DL denoiser is a monotone denoiser. This completes the
proof. �



5

Algorithm 1 DL-AMP Framework
1: procedure x=DL-AMP(Φ, y,N )
2: set the initial solutionx0 = 0,
3: set the initial residualz0 = y,
4: set the initial standard deviation of noiseσ0 = 1

m
‖z0‖2

2,
5: for j = 0, 1, 2, ..., do
6: rj = xj + ΦT zj ,
7:

(

xj+1, D
∗
j

)

= DL (rj , σj , Dj , N) ,

8:
(

div, D∗∗
j

)

= DL′
(

rj , σj , D
∗
j , N

)

,
9: zj+1 = y − Φxj+1 + 1

m
div ·zj,

10: σj+1 = 1
m
‖zj+1‖2

2,
11: Dj+1 = D∗∗

j ,
12: end for
13: Output approximate solutionx.
14: end procedure

Theorem 1 and Theorem 2 show that the DL methods satisfy
the denoiser properties of AMP Algorithm. Algorithm 1 shows
the procedures of DL-AMP algorithm. We present some key
remarks about the algorithm in the following:

1)
(

xj+1, D
∗
j

)

= DL(rj , σj , Dj, N) in Algorithm 1 is the DL
denoiser likeK-SVD, MOD, or SGK methods, whererj is the
iteration term,σj is the standard deviation of noise,Dj is the
dictionary in current step.D∗

j is the refreshed trained dictionary
in the current step, andN is the dictionary training iteration
time.

2) The
(

div, D∗∗
j

)

= DL′(rj , σj , D
∗
j , N) in Algorithm 1 is

the derivation of DL algorithm, where

div = lim
∆t→0

DL(rj + ∆t, σj , Dj , N) −DL(rj , σj , Dj , N)

∆t
,

andD∗
j is the trained dictionary in the previous step,D∗∗

j is the
trained dictionary in the current step.

3) It is worth noting that there are two steps to refresh the
dictionary (Step 7 and Step 8) in every iteration, that’s whywe
useDj, D

∗
j , andD∗∗

j to distinguish the trained dictionary in an
iteration.

Lena

Boat Cameraman

House

Fig. 2. 256 × 256 natural images for reconstruction.

IV. EXPERIMENTAL RESULTS FORMULTIMEDIA IMAGES

To demonstrate the efficacy of the DL-AMP framework in
IoT, we evaluate its performance in an imaging application and
compare the performance of our proposed method with other

TABLE I
PSNR OF256 × 256 IMAGES RECONSTRUCTIONS WITH NO

MEASUREMENT NOISE.

Boat 20% 30% 40% 50% 60% 70%

l1-AMP [7] 13.065 13.55 14.77 14.87 15.90 17.93

EM-GM-GAMP [10] 14.04 14.32 15.90 16.14 16.90 18.32

SURE-AMP [11] 14.44 15.00 16.20 16.26 17.27 18.94

SGK-AMP 29.85 32.76 35.37 37.73 39.84 42.03

House 20% 30% 40% 50% 60% 70%

l1-AMP [7] 14.33 14.87 15.33 15.53 17.14 17.64

EM-GM-GAMP [10] 15.29 15.78 15.85 17.09 18.91 19.56

SURE-AMP [11] 15.63 16.29 16.59 17.02 18.95 19.82

SGK-AMP 37.35 39.80 41.46 42.89 44.42 45.85

Lena 20% 30% 40% 50% 60% 70%

l1-AMP [7] 14.33 14.87 15.33 15.53 17.14 17.64

EM-GM-GAMP [10] 15.29 15.78 15.85 17.09 18.91 19.56

SURE-AMP [11] 15.63 16.29 16.59 17.02 18.95 19.82

SGK-AMP 34.47 37.69 40.71 42.90 45.15 47.15

Cameraman 20% 30% 40% 50% 60% 70%

l1-AMP 14.33 14.87 15.33 15.53 17.14 17.64

EM-GM-GAMP [10] 15.29 15.78 15.85 17.09 18.91 19.56

SURE-AMP [11] 15.63 16.29 16.59 17.02 18.95 19.82

SGK-AMP 30.82 32.91 34.94 36.96 39.14 41.36

existing methods. There are many different types of images
multimedia IoT applications can generate. For making a broad
comparison we chose a broad set of images to compare our
framework with other algorithms in the literature. For compari-
son, we use the MOD, and SGK, DL algorithms for the DL-
AMP framework and we compare the results with EM-GM-
GAMP [10], l1-AMP [7], SURE-AMP [11], NLM-AMP [26],
Bilateral-AMP [9], Gauss-AMP [9], BM3D-AMP [27], and fast-
BM3D-AMP [27] algorithms. We observed the runtime ofK-
SVD-AMP to be very slow, so have not used it for comparison.
Our results show that although the speed of a DL-AMP algorithm
is slow, the quality of the reconstructed image is better than most
of the other popular algorithms in the literature.

Fig. 2 shows four256 × 256 pixels nature images (Lena,
House, Boat, Cameraman) borrowed from [11] and used to
compare with the corresponding results of the SGK-AMP, and
l1-AMP, EM-GM-GAMP, and SURE-AMP. Fig. 3 shows six
128×128 pixels images with texture information (Nebula texture,
Brick wall, Wood texture, Carpet, Fingerprint 1, Fingerprint 2),
which are compressed, transferred, and reconstructed to test a
majority of the algorithms. For comparing with the state of art
results, we introduce the following definition:
Definition 4: Mean squared error (MSE) is defined as follows:

MSE =
1

mn

m−1
∑

i=0

n−1
∑

j=0

[IM (i, j) −R (i, j)]
2
,

wheren andm are the size of image in pixels,IM is the original
image,R is the reconstructed image.
Definition 5: Peak signal-to-noise ratio (PSNR) is defined as

PSNR = 10 · log10

(

MAX2
IM

MSE

)

,
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Nebula texture Brick wall Wood texture

Carpet Fingerprint 1 Fingerprint 2

Fig. 3. 128 × 128 pixels texture images for reconstruction.

whereMAXIM is the maximum possible pixel value of the
image.

From these definitions, theMSE andPSNR are congruent
indices, and thus, we only usePSNR as the evaluation index
from here on.
A. Noiseless Signal Recovery

The performance of our algorithms are compared with results
in [7], [10], [11] by testing on the four256×256 pixels images in
Fig. 2. The peak signal-to-noise ratio (PSNR) for reconstruction
of the images under various sampling ratios are reported in
Table I. We do not have access to the codes ofl1-AMP, EM-GM-
GAMP, SURE-AMP, so we have compared the PSNR results of
these algorithms in [11] to our implementation of SGK-AMP.
Our PSNR results are much better than those ofl1-AMP, EM-
GM-GAMP, SURE-AMP, which highlights the efficacy of the
DL-AMP framework over other AMP frameworks.

We use128 × 128 pixels images in Fig. 3 to compare with
the results in [9]. Table II lists the results of NLM-AMP,
Bilateral-AMP, Gauss-AMP, BM3D-AMP, fast-BM3D-AMP and
the results of MOD-AMP and SGK-AMP presented in this paper.
The 20% sampling ratio implies that only 20% of the size of
the original image was transferred and used for reconstruction
of the original image. For 20%, 30% and 40% sampling ratios,
the performances of MOD-AMP and SKG-AMP algorithms are
better than any other algorithms barring only two cases. The
performance of BM3D-AMP and fast-BM3D-AMP are compara-
ble at lower sampling ratios to the DL-AMP algorithms (MOD-
AMP and SGK-AMP), but the difference becomes significant
with 40% sampling ratios.

Also, Fig. 4 and Fig. 5 show the PSNR of the images in Fig. 2
and Fig. 3 respectively for different sampling ratios, using the
SGK-AMP algorithm. In Fig. 4, the PSNR of all images increase
consistently with the increase in sampling ratio, except for house
where the rise is slow. The interesting observation is that for most
of the images SGK-AMP has an acceptable PSNR (≥ 25 dB)
when the sampling ratio is 40% or less. The PSNR of the house
image rises slowly on account of the higher inherent noise of
the image. In Fig. 5, the brick and carpet pictures are the ones
where the PSNR is low and climbs slowly. These images also
have a lot of inherent noise in them and are low quality to start
with.
B. Noisy Signal Recovery

In the last subsection, we identified that the performance
of SGK-AMP and MOD-AMP is better than the other AMP
approaches. The two DL-AMP approaches perform similarly, but

0.2 0.3 0.4 0.5 0.6 0.7
25

30

35

40

45

50

Sampling ratio m/n

PS
NR

 [d
B]

 

 

Lena
House
Boat
Cameraman

Fig. 4. The sampling ratio and PSNR of images in Fig. 2 (SGK-AMP algorithm)

MOD-AMP has higher running time, so in this subsection we use
only SGK-AMP to compare with the other non-DL algorithms.
In this section, we study the reconstruction of noisy signals. As
representative images from the nature and the texture groups, we
chose Boat and Fingerprint 1. For creating measurement noise in
the signal we added an additive white Gaussian noise (AWGN)
to the images. Fig. 6 and Fig. 7 show thePSNR of different
methods with different sampling ratios for AWGN of10 dB.
Fig. 8 and Fig. 9 show the same comparison with AWGN of
strengthSNR = 20dB. These figures imply that if the sampling
ratio is under 20%, the BM3D-AMP is the best method. But if
the sampling ratio is more than 20%, the SGK-AMP algorithm
has the best performance. The gap in performance with just a
small increase in sampling ratio is significant in favor of our
algorithms.

0.1 0.2 0.3 0.4 0.5 0.6 0.7
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NR
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Brick wall
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Fig. 5. The sampling ratio and PSNR of images in Fig. 3 (SGK-AMP algorithm)

C. Runtime comparison

It is known that the DL algorithm is a slow. We did running
time performance measurements of the algorithms on a Dell

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
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20

21

22

23

24
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26

Sampling ratio m/n

PS
N

R
 [d

B]

 

 

NLM−AMP
Bilateral−AMP
Gauss−AMP
BM3D−AMP
Fast−BM3D−AMP
SGK−AMP

Fig. 6. Fingerprint 1 for reconstruction with AWGN (SNR = 10 dB).
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TABLE II
PSNR OF128 × 128 IMAGES RECONSTRUCTIONS WITH NO MEASUREMENT NOISE.

20% Sampling Nebula Brick wall Wood Carpet Fingerprint1 Fingerprint2

NLM-AMP [26] 25.978 21.362 24.853 16.573 19.666 21.309

Bilateral-AMP [9] 21.290 20.093 23.359 15.933 16.307 17.515

Gauss-AMP [9] 24.890 20.406 24.026 14.746 14.993 16.404

BM3D-AMP [27] 27.772 21.460 25.673 16.866 20.820 21.934

fast-BM3D-AMP [27] 27.703 21.370 25.514 16.168 20.672 22.079

MOD-AMP 27.930 21.640 25.835 16.704 20.770 22.605

SGK-AMP 27.800 21.703 25.599 16.975 20.841 22.858

30% Sampling Nebula Brick wall Wood Carpet Fingerprint 1 Fingerprint 2

NLM-AMP [26] 28.282 21.669 26.016 17.504 20.153 21.944

Bilateral-AMP [9] 22.148 20.853 24.999 16.585 17.130 18.855

Gauss-AMP [9] 25.204 20.765 24.375 15.106 15.356 16.790

BM3D-AMP [27] 29.322 22.902 27.177 18.872 22.688 24.617

fast-BM3D-AMP [27] 29..221 22.748 26.890 17.908 21.600 22.876

MOD-AMP 29.654 23.444 27.777 19.378 23.719 25.614

SGK-AMP 29.669 23.276 27.805 19.468 23.869 25.446

40% Sampling Nebula Brick wall Wood Carpet Fingerprint 1 Fingerprint 2

NLM-AMP [26] 29.384 22.245 27.169 18.577 22.428 26.350

Bilateral-AMP [9] 24.622 21.833 26.055 17.201 18.286 20.177

Gauss-AMP [9] 25.382 20.960 24.512 15.262 15.530 17.036

BM3D-AMP [27] 29.322 22.902 28.984 19.557 25.793 27.562

fast-BM3D-AMP [27] 29.221 22.748 28.714 18.451 23.424 26.609

MOD-AMP 31.229 24.807 29.510 20.637 26.039 27.915

SGK-AMP 31.261 24.748 29.557 20.717 25.894 27.719

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
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Fig. 7. Boat for reconstruction with AWGN (SNR = 10 dB).

Precision T1500 running an Intel(R) CoreTM i7-870 with 4 GB
RAM, and the Matlab R2015a environment. Table III shows the
runtimes of NLM-AMP, Bilateral-GAMP, Gauss-AMP, BM3D-
AMP, fast-BM3D-AMP, and our methods’ results. As stated
before, MOD-AMP is slow. SGK-AMP algorithm has much
lower runtime (faster), which grows slowly with higher sampling
ratios. From Table III, SGK-AMP takes longer for reconstruction
than the non-DL AMP algorithms. However, if reconstruction
quality is of importance and higher runtime can be tolerated, then
the DL-AMP algorithms should be preferred. This is especially
true for data coming from IoT devices. With the potential for
packet losses and low bandwidth, reconstruction quality isvery
important. Running time is secondary–the algorithms run ona
server that has no computation or energy constraints.
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Fig. 8. Fingerprint 1 for reconstruction with AWGN (SNR = 20 dB).

TABLE III
AVERAGE RUNTIME IN SECONDS OF128X128PIXELS IMAGES

RECONSTRUCTION WITH NO MEASUREMENT NOISE.

Average Runtimes 10% 20% 30% 40% 50%

NLM-AMP [26] 52.9 47.9 39.8 36.0 32.5

Bilateral-GAMP [9] 16.1 17.6 18.2 19.1 20.0

Gauss-AMP [9] 7.9 8.4 10.3 12.0 14.2

BM3D-AMP [27] 26.4 25.1 25.1 27.0 27.3

fast-BM3D-AMP [27] 16.3 16.3 14.9 15.7 17.2

SGK-AMP 136.0 113.3 124.2 144.9 172.8

MOD-AMP 217.5 679.6 2396.0 2880.3 4072.2
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Fig. 9. Boat for reconstruction with AWGN (SNR = 20 dB).

V. CONCLUSIONS ANDFUTURE WORK

In this paper, we proposed a novel DL-AMP based CS
framework for multimedia IoTs. First, we introduced the basic
framework of AMP algorithms, and some dictionary learning
algorithms. Then, we proved that DL algorithms satisfy the
requirement of AMP. Finally, we presented new DL-AMP al-
gorithms based on the proposed DL-AMP framework. With
experiments we showed that the quality of the reconstructed
signals are better with the DL-AMP framework (SGK-AMP)
than those obtained with other algorithms in the literature. The
DL denoisers’ runtime is usually longer than other denoisers,
however, the resultant improvement in reconstruction makes the
DL-AMP framework suitable for multimedia IoT devices. In the
future, we will explore DL methods with lower runtimes and
also collaborative CS with the DL-AMP framework.
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