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Abstract—In this paper, we present a compressed sensing basedcompressed sensing framework as a strategy to be used by loT
approach, which combines the dictionary learning (DL) mettod and  devices to reduce the amount of multimedia data they need to

the approximate message passing approach (AMP). The approB. yangmit, while ensuring that the complete data can be evedv
can be used for efficient communication in the multimedia Inernet . S .
with high fidelity at the receiver.

of Things (IoT). AMP is a signal reconstruction algorithm frame- . } o
work, which can be explained as an iterative denoising procss. Compressed sensing (CS) is a data acquisition and reconstru

On the other hand, the DL method seeks an adaptive dictionary tion approach that takes advantage of sparse signal stesdin
for realizing sparse signal representations, and providesgood redyce the size of the transmitted/stored data. Multimeldia

performance in signal denoising. We apply the dictionary larning . .
based denoising method within the AMP algorithm framework generally possesses this sparse structures. For examalges

and propose a novel DL-AMP framework. We demonstrate our aré sparse in the W_avelet representation. The COWe”W'_
framework’s effectiveness for multimedia loT devices by shwing to deal with such signal has been to acquire all the data first,

its capability in reducing required communication bandwidth for  compress it and then store it, as is done in image processing.

multimedia communication while improving reconstruction quality The CS technique was first proposed by Caneteal. [5], [6]

(by over 2 dB). in which, the original data can be accurately reconstrufrizm

_Index Terms—Internet of Things (loT), compressed sensing, only a portion of the sampled data, sampled at rates lower tha

dictionary learning, approximate message passing, sequéal gen-  the Nyquist rate. It has sparked tremendous research $ttere

eralization of K-means. as it can be leveraged to greatly reduce the sampling rates
|. BACKGROUND AND INTRODUCTION in signal processing applications, such as medical scanner

The Internet of Things (IoT) has drawn attention recent§@{@ communication, and cameras. This technique lend$ itse
as a means of connecting the proliferating embedded devié@urally to the multimedia loT domain.
to the Internet. 10T devices are forecast to grow to 33 hillio Given the popularity of CS, several approaches and mecha-
by 2035 [1]. These devices include sensing devices, sgcufiSms have been proposed to increase its efficiency. Oneof th
cameras, mobile phones, and home automation/control eevids the Approximate Message Passing (AMP) algorithm, pregos
Different from traditional wireless sensor networks (W$Nee by Donohoet al. [7], [8]. AMP is an iterative threshold based
loT is envisioned to be deployed in a larger scale and m&jgnal reconstruction algorithm that performs scalar @eng
have a much broader geographic deployment, thus increasiigin each iteration; and with proper selection of the dsing
its complexity. function, the reconstruction quality can be one of the highe

The complexity results from many challenges: a) loT dé&f all CS techniques, with very low reconstruction comptxi
vices are generally low-computation capability devicastiey The AMP framework is becoming popular, as among iterative
may run on battery or have limited power, while needing téresholding algorithms with low-reconstruction comptgxit
transmit large amounts of data (e.g., cameras and other Wighverges the fastest. One of the challenges in applyingema
data applications [2], [3], [4])—stringent energy constts; and denoisers within AMP is the difficulty in dealing with the
c) given the large number of devices that will be connecte@nsager reaction term [9], because of the divergence of the
the 10T devices will suffers from congestion, packet drapsj involved image denoiser.
transmission uncertainty. Thus, there is a need for deimgop Several important AMP related results have been reported.
special data transmission strategies that enable enefigieef In [10], the expectation-maximization Gaussian-mixtutgoa
communications, and low-power and low-cost signal prdogss rithm is presented, which is based on Gaussian mixturei-distr
operations. In this paper, we propose the use of an efficidition models. In [11], a Stein’s unbiased risk estimateR&Y

based parametric denoiser is presented along with a paiamet
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of dictionary learning denoisers. Dictionary learning (Ok an if we want to recoverz from y, the solution of the inverse
effective technique that has attracted a great deal of taiten problem satisfying (2) may not be unique. However, due to the
in image denoising. DL based methods generally achieverlowiact that the original signak is sparse in a certain basib,
reconstruction error than wavelet-based methods [12]. Agnothe optimization problem can solve the reconstruction @b
DL based methods, the method of optimal directions (MOD@bove, which is formulated as follows [18]:

was first presented by Engas al. [13]. Then, Aharonet al. ) .
presented a K-means Singular Value Decomposition (K-SVD) (Fo) HEHHGHO’ subject toy = ®a. ®)
algorithm [14]. Recently, Sahoo and Makur proposed a moMeis well-known that solvingF, is NP-complete. Surprisingly,
effective DL algorithm called Sequential Generalizatidnke it was shown that one can replace #enorm by!/;-norm, and
means (SGK) [15], which has better performance both in nuati instead formulate the optimization problem as [19], [2QL]f

and reconstruction quality. Due to the good performance of . : o

DL methods in image denoising, we present a novel DL-AMP (P1) T 161]; - subject Foy N (I)_I' , ,(4)
algorithm within the AMP framework. In our framework, at éac " [20], the authors showed that if the signal is sufficiently
iteration, the trained dictionary, obtained using a DL aigon SParse, the solutions ofy and P, are the samep; is a
used in the last step, is introduced as the initial one in theeat convex linear p_rogrammmg_problgm_, an_d there are many efici
step. We name the different DL-AMP algorithms that incogger so[ut|0n techniques for this optimization problem (DL-AMP
DL algorithms described above, as MOD-AMR,-SVD-AMP being one).

and SGK-AMP respectively—the DL-AMP family—and present

their performance in our simulation results to illustrates t Server Tablt  Users  Satellite  Vidicon
efficacy of the DL-AMP framework for CS. m Q@b @
Contributions: The main contributions for this paper are g

third-folds. First, we propose a novel DL-AMP CS framework

developed for multimedia loT devices. To the best of our
knowledge, we are the first to use the AMP method in the IoT
domain.Second our framework is designed in a way that new

developments in DL denoising methods can be easily suteditu Mainframe computer

for the current DL algorithm, making the resultant algamth

faster.Third , we demonstrate that the proposed algorithm frame-

work can reconstruct transmitted images better than the sfa G 1

art, especially for images with texture [16], [17]. Nest Printer  Medical Mobile phone Smart phone
The paper is organized as follows. In Section Il, the basic Device

formulation of compressed sensing and the idea of loT &f§- 1. Multitude of devices that make up the IoT.

introduced and formulated. In Section lll, the basic frarodw B. Data transmission in Internet of Things (l1oT)
of AMP and some DL algorithms are introduced. Finally,
DL-AMP framework is proposed. lllustrative examples areegi
to demonstrate the effectiveness of the proposed algasitinm
Section 1V, and finally conclusions are presented in Sec#on

the s shown in Fig. 1, the loT will enable connections among a
wide variety of things, ranging from small sensors on onea@nd

the spectrum to the cloud of servers (data storage and #s)alys
on the other end. With the growth of 10T, on this spectrum,
Il. COMPRESSEDSENSING AND THE INTERNET OFTHINGS as we move closer to the sensors (and other end-devices) the

In this section, we introduce some basic definitions and tHEVIce numbers will increase by several orders of magnjtude
basic framework of CS the bandwidth available to them will reduce by several ader

A. The Basic Framework of Compressed Sensing of magnitudg (Thbps for cloud servers to several hundred I_<bps
for end-devices), and the compute power and energy awailabl
will be lower by several orders of magnitude. These conssai
call for serious attention to the development of mechanigras
reduce the computation, power, and communication loads for
n the end-devices. The mechanisms should also promote €ollab
T = Zei% = Vo, (1) orative sensing between end-devices to reduce overallggner

i=1 i i i i i
where, 6; is the i coefficient. Based on the CS theory, aif and bar_1dW|dth requwement_s. For m”'t'med'a loT dev_|ces§eah
constraints become especially stringent as they will tranhs

is sparse in the basi®, then, under certain conditions, we can » . :
. : more data and may additionally have to meet stringent -t
use m non-adaptive measurements ofto recover the signal

exactly, wherem < n. Define thesem measurements ag, re%usir?sm::ésr.nechanism that can help meet all these constraints
(j = 1,2...,m), which are the projections of. Then, them- P

dimensional measurement is described b for the following reasons [22]. The use of CS on the end-d&vic
y can help reduce the sampling rate and the amount of data to be

Assume that there is an orthonormal basis =
[ ) vy ... %, ], with the vectors{s;} as columnsand
an n-dimensional signak, which can be expressed as

Y= @:% (2) transferred, thus requiring less computation, power, asdb
wherey = [ Y1 Y2 .. Um ] is the measurement vectorwidth. In addition, it has been shown that the use of collabeg
and ® is the sensing matrix with sizem x n. Sincem <« n, CS between neighboring devices can help reduce the load on al



dimensions further [23], [24]. Thus, the development new amwhere x, is the original noiseless signak’ is the estimate
more efficient CS techniques for 10T is important, which is owf z, at iterationt, and 2’ is an estimate of the residue.
aim in this paper. In the next section, we present our efficiehhen, ' + A*z* can be written asg + v, wherev? can be
DL-AMP framework for using CS at an individual end-deviceconsidered as i.i.d. Gaussian noisg. is an estimate of the
We do not present the collaborative sensing scenario, wliech standard deviation of that nois®,: is defined in Definition
will study in the future. 1. D/,_, denotes the divergence of the denoi&.—.. The
termz='D’, , (z!7! + A*2'71) /m is the Onsager correction
[1l. COMPRESSEDSENSING AND APPROXIMATE MESSAGE  term, which has a major impact on the performance of the
PASSING INIOT algorithm. The explicit calculation of this term is not alyga

A class of applications for multimedia 10T will be the traesf Straightforward, since in many practical cases denoiseraal
of two-dimensional images. For example, video monitorifig &ave explicit formulations. Hence, it is also not possibbe t
building perimeter and motion-activated cameras may tnimns calculateD .. However, Metzleet al. [9] have shown that the
images or JPEG-based videos to the data store or user casipufgnsager correction term can be approximately calculatétbwt
We will illustrate our framework in the rest of the paper lgsinrequiring the explicit form of the denoiser. On the otherdhahe
this application as a use-case. In this section, we show hew Penoiser-AMP also has some requirements for denoisersfwhi
message can be transmitted using our novel CS framework. &€ proper and monotone in Definition 2 and Definition 3.

A. The Basic Framework of Denoiser Based Approximate Mes- B Djctionary Learning Denoiser
sage Passing ) ) i )
Before introducing the AMP framework. for better under- In this section, we introduce some DL denoisers, such as the
) 9 L ' K-SVD algorithm, the MOD algorithm, and the SGK algorithm.
standing the following definitions and lemmas are presented . - .
1) Sparse Representation of Signals by Dictionary: Using

borrowing from [9]. - . K . :
Definition 1 [9]: Assumez is an original noiseless signal and® dictionary matrixD € R K which .contalnsK prototype
signal-atoms for columns{d;}: a signaly € R™ can be

y = xzo + oc is the observations aof, with noise wheree ~ i j=17 7 =9 .
N (0,1), I is the identity matrix and > 0 denotes the Standardrepresented as a sparse linear combination of those atdmtd) w

. - N K
deviation of the noise. Define tha,, is a family of denoisers Cn e described ag = Dx or y ~ Dz, wherex € R
related to the standard deviation of the naise contains the representation coefficients of the sign&imilar to

Equation (3), ifn < K and D is a full-rank matrix, the solution
_ D, (a_:o +o0¢€) = z, N _ is not unique. The fewest number of non-zero coefficienthés t
wherey = zo + oc is the input, andr is a denoising estimate sparsest representation as shown in the following:
of xg.
Definition 2 [9]: D, is called a proper family of denoisers of min ||z]|,, subject toy = Dz.
xT

level . (x € (0,1)) for the class of signale” if If the noise is considered, the form of the sparsest reptaten

& (IDs (2o +06) —mol3) :
sup - < Ko”, min ||z||,, subject to|ly — Dz, <e.
roeC ) x
for everyo > 0, V\{her_eéo is the expected value calculator. Note Generally speaking, the DL denoising method contains two
that the expectation is with respectde~ N (0, ). stages, one is sparse representation, the other is digtiona

Lemma 1 [9]: Let C' denote ak-dimensional subspace &" ypdate. Define?” is a set of coefficient matrices afilis a set of

(k <n). Also, let D, (y) be the projection ofj onto subspace aJl dictionaries including unit column-norms. The notatjgP|| ,.
C' denoted byPc(y). Then,

stands for the Frobenius norm, defined|@| . = />, P,
£ (HDU(IO + 0€) — ong) i whereP;; is an element of. The solution is obtained iteratively
= —0?, by alternating between these two stages as follows:
for everyz, € C and everys2. Hence, this family of denoisers 1) Sparse representation: Define a set of training sighials
is a proper family of levek /n. [v1 w2 ... wn |,and obtainX(® for eachy, in Y as
Definition 3 [9]: We call a denoiser monotone if for eveny )
its risk function X = arg min Hy _ D(l—l)X(l—l)H 7 (5)
& (IDy (20 + 02) — a0l = )
o (T 0z)—x )
R(0?,z0) & 0 ol ’ where X = [ A AR } is the sparse represen-
is a non-decreasing function of. " tation in the!™ iteration.
Based on the above definitions and lemma, we formulate the2) Dictionary update: For the obtainéd®, updateD") such
AMP framework: that
2
e = Dy (af + A2 D® = argmin HY — DX(”H . (6)
o a, De9 F
= y— A+ 27D (T AT m, Based on this concept, we introduce some DL algorithms in the
[ next subsection.

2) Dictionary Learning (DL) Algorithms:

m



a) Method of Optimal Directions (MOD) Dictionary clustersRy, where Ry = {i:y; = Dey}. For terminating the
Learning Algorithm: The method of optimal directions (MOD) algorithm, we repeat this process for @&l atoms sequentially
is a DL algorithm, which is presented in [13]. The advantafje @procedure similar td<-means).
the MOD method is the simplicity of its mechanism for upd@tinC. Description of the Combined Framework
the dictionary. MOD is a coder independent dictionary fragn
algorithm, which can be used for all sparse representatiﬂ
applications. Assume that the sparse coding for each exal
is known, then we define the errars= y; — Dx;, for all i. The
overall representation mean square error is given by

In this section, we present the detailed structure of the DL-
P framework, and further explain some details about it.
rst, we need to prove that the DL denoising algorithmssbati
requirements for AMP.
Theorem 1: The DL denoising method is a proper family of
IEIZ=|[ e e - en ”|2F = Iy = DX|%. (7) denoisers of levek (x € (0,1)) for the class of signal§’.

Here all they;, columns of the matri¥’, are concatenated and Proof: Similar to [13], [14], [15], [25], we have the denoised
similarly the representative coefficient vectassare gathered to Signal as follows:

build the matrixX . We can updaté, such that the above error -1
is minimized, with the assumption of fixed. One can obtain T T

s . - D,(X+oe)= | M+ » R, Rij AY 4+ )Y R.DX;|,
the relation(Y — DX) X™ = 0, by taking the derivative of (7) (XFoe) %: 7 %: 7
with respect toD, and then it leads to whereo is the standard deviation of that noisey N (0, I), and

DY — y xOT . (x 1 x (OT)=1, (8) D is the trained dictionary. The matrik;; is ann x N matrix

In each iteration, we first obtaiX ) by a given D(), then that extracts theif) block from the signal, and each patch of
DU+ can be updated by using the formula in (8). signals is described a¥;; = R;; X of size \/n x y/n in each

b) K-mean Singular Value Decomposition (K -SvVD) Dic- location. The matrixY” is the signal with noise, which can be
tionary Learning Algorithm: K-SVD algorithm breaks the Written as

global minimization problem (6) intd” sequential minimization tan we have YV =X+oe (11)
problems in the dictionary update stage. Every coludpnin ’
D and its corresponding row of coefficient§,.  in X are & (||D(,(X + o€) — X||§) (12)
evaluated and updated in the algorithm. Thus the error tarm i . 5
: T _
(7) can be rewritten as . ( M+ R Rz’j) %
) ? (A = X) + 5y, RS (DX - X))
HEa)H — Yy =S d®x0 ] - X0, 2
E oA o Assume thatD is well trained, then we have
Let’s define " o 4
Ek = Y - Zd] Xrow,j? Y;7 ~ DXU (13)

Then using (11), (12), and (13), we obtain

then we have ik )
2 & ||Dy(X 4 0€) — Xl
l (1 . - l—
{di)vao)w,k} = argmin ]Ezi ! —defow,lzZHF- ©) 1
dk7Xro;,k
In [14], the proposed algorithm employs SVD to find thel cllcbses = &\ M+ Z RZ;'Rij Aoe + Z R;-“Z-Rijae
rank-1 matrix (in Frobenius norm) that approximatEé_ ) ij ij )
subject toHdS)H = 1. SVD decomposition is performed on - ;2

E,(Cl) =UAVT, dkl) is taken as the first column of, andf(f(lw_vl,z resulting in

is obtained as\1V;, whereA; is the first diagonal element of )
A, andV; is the first column ofV. Dy (X +oe) = X5 1,
C) uential Generalization of K-Means Dictionar “ 0 (14)
e Y According to Definition 1"and Lemma 17,1we have that the DL

(SGK) learning Algorithm: /X —means and sequential algorlj[hmsolenoising method is a proper family of denoisers of levék

consume lesser resources [15]. In the algorithm, Méﬁ”f 1S (0,1)) for the class of signal§’. This completes the proof]

unchanged, the loss of sparsity and structureXsf will be Theorem 2: The DL denoiser is a monotone donoiser.
eliminated. Note thak (V) is defined in (9). Thus, the sequential pqoy- According to the formula in (14), we have

update problem is posed as )
_8IDo(X +o9 -~ X[ _ 1 ,

row,k row,k“ row,k

: - ) R(0? X)
dY = arg min HE(l D g x¢ 1)H . 10 ’
4§ gdk k kP row k|| p (10) Suppose that fos; < oo, We have "
The solution to (10) can be obtained in the same way as (8) 1 1
-1 R(U%X) = _Uf < —0’% = R(O’g,X) (15)
d,(f) _ El(czf1)X(zf1)T (X(zf1)X(zf1)T) . n n

0 (1) _ ~ Then, according to (15) and Definition 2, it is easy to prove
The termd,’ replacesd;, ~ before updating the next atom inthat the DL denoiser is a monotone denoiser. This complates t
the sequence, and it can account for the overlap arﬂq@gy xS proof. O



Algorithm 1 DL-AMP Framework

1: procedure z=DL-AMP(®, y,N)

2: set the initial solutionzy = 0,

set the initial residuaty = v,

set the initial standard deviation of noisg = %
for j =0,1,2,...,do

ri =x; + (I)TZJ‘,

(2j11,D5) = DL (rj,04,Dj,N),

(diV,D;*) =DL' (rj,crj,D;f,N) ,

Zip1 =Y — Py + o div oz,

© o NGO R W

100 o1 =%zl
11: DjJrl = D;*,
12: end for

13: Output approximate solution:.
14: end procedure

TABLE |
PSNR OF256 x 256 IMAGES RECONSTRUCTIONS WITH NO
MEASUREMENT NOISE

Boat 20% 30% | 40% | 50% | 60% | 70%
11-AMP [7] 13.065 | 13.55 | 14.77 | 14.87 | 15.90 | 17.93
EM-GM-GAMP [10] | 14.04 | 14.32 | 15.90 | 16.14 | 16.90 | 18.32
SURE-AMP [11] 14.44 | 15.00 | 16.20 | 16.26 | 17.27 | 18.94

SGK-AMP 29.85 | 32.76 | 35.37 | 37.73 | 39.84 | 42.03
House 20% 30% | 40% | 50% | 60% | 70%
11-AMP [7] 14.33 | 14.87 | 15.33 | 15.53 | 17.14 | 17.64

EM-GM-GAMP [10] | 15.29 | 15.78 | 15.85| 17.09 | 18.91 | 19.56
SURE-AMP [11] 15.63 | 16.29 | 16.59 | 17.02 | 18.95 | 19.82

SGK-AMP 37.35 | 39.80 | 41.46 | 42.89 | 44.42 | 45.85
Lena 20% 30% | 40% | 50% | 60% | 70%
11-AMP [7] 14.33 | 14.87 | 15.33 | 1553 | 17.14 | 17.64

EM-GM-GAMP [10] | 15.29 | 15.78 | 15.85 | 17.09 | 18.91 | 19.56
SURE-AMP [11] 15.63 | 16.29 | 16.59 | 17.02 | 18.95 | 19.82

Theorem 1 and Theorem 2 show that the DL methods satisfy_ SSK-AMP 8447 | 3769 | 4071 | 4290 | 45.15 ] 47.15
the denoiser properties of AMP Algorithm. Algorithm 1 shows _ Cameraman 20% | 30% | 40% | 50% | 60% | 70%
the procedures of DL-AMP algorithm. We present some key  1-AMP 1433 | 1487 | 1533 | 1553 | 17.14 | 17.64

remarks about the algorithm in the following:

1) (zj41,D;) = DL(rj, 04, Dy, N) in Algorithm 1 is the DL
denoiser likeX-SVD, MOD, or SGK methods, wherg; is the
iteration term,o; is the standard deviation of nois®), is the

EM-GM-GAMP [10] | 15.29 | 15.78 | 15.85| 17.09 | 18.91 | 19.56
SURE-AMP [11] 15.63 | 16.29 | 16.59 | 17.02 | 18.95 | 19.82
SGK-AMP 30.82 | 3291 | 34.94| 36.96 | 39.14 | 41.36

dictionary in current stepD? is the refreshed trained dictionary
in the current step, and is the dictionary training iteration existing methods. There are many different types of images

time.

2) The (div, D*) = DL'(rj,0;, D}, N) in Algorithm 1 is

the derivation of DL algorithm, where

div = lim

DL(Tj + At,O'j,Dj,N) — DL(Tj,O’j,Dj,N)

At—0 . Lo i At ) e
and D7 is the trained dictionary in the previous stdp;* is the

trained dictionary in the current step.

3) It is worth noting that there are two steps to refresh t

multimedia loT applications can generate. For making a dbroa
comparison we chose a broad set of images to compare our
framework with other algorithms in the literature. For carip

son, we use the MOD, and SGK, DL algorithms for the DL-
AMP framework and we compare the results with EM-GM-
GAMP [10], I;-AMP [7], SURE-AMP [11], NLM-AMP [26],
Bilateral-AMP [9], Gauss-AMP [9], BM3D-AMP [27], and fast-
HRM3D-AMP [27] algorithms. We observed the runtime Af-

dictionary (Step 7 and Step 8) in every iteration, that's wie/ SVD-AMP to be very slow, so have not used it for comparison.

useD;, D;, and D;* to distinguish the trained dictionary in an

iteration.

Lena House

Cameraman

Fig. 2. 256 x 256 natural images for reconstruction.

IV. EXPERIMENTAL RESULTS FORMULTIMEDIA IMAGES

Our results show that although the speed of a DL-AMP algorith
is slow, the quality of the reconstructed image is betten thast
of the other popular algorithms in the literature.

Fig. 2 shows four256 x 256 pixels nature images (Lena,
House, Boat, Cameraman) borrowed from [11] and used to
compare with the corresponding results of the SGK-AMP, and
[,-AMP, EM-GM-GAMP, and SURE-AMP. Fig. 3 shows six
128 x 128 pixels images with texture information (Nebula texture,
Brick wall, Wood texture, Carpet, Fingerprint 1, Fingenrg),
which are compressed, transferred, and reconstructedstaate
majority of the algorithms. For comparing with the state df a
results, we introduce the following definition:

Definition 4: Mean squared erroM SE) is defined as follows:

m—1n—1
1 .. .
MSE = % Z Z [IM (7’5.]) - R(Za])]Qa
i=0 j=0
wheren andm are the size of image in pixelg) is the original
image, R is the reconstructed image.
. Definition 5: Peak signal-to-noise raticd®S N R) is defined as

To demonstrate the efficacy of the DL-AMP framework in

0T, we evaluate its performance in an imaging applicatiod a
compare the performance of our proposed method with other

MAX?
PSNR = lO-logm( IM),

MSE
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Fig. 3. 128 x 128 pixels texture images for reconstruction. Fig. 4. The sampling ratio and PSNR of images in Fig. 2 (SGKFAMgorithm)

where M AX;), is the maximum possible pixel value of the

image. MOD-AMP has higher running time, so in this subsection we use
From these definitions, th&/ SE and PSNR are congruent only SGK-AMP to compare with the other non-DL algorithms.

indices, and thus, we only useSN R as the evaluation index In this section, we study the reconstruction of noisy signAk

from here on. representative images from the nature and the texture grouge

A. Noiseless Signal Recovery chose Boat and Fingerprint 1. For creating measuremeng mois

The performance of our algorithms are compared with resulfi signal we added an additive white Gaussian noise (AWGN)
in [7], [10], [11] by testing on the fou256 x 256 pixels images in t0 the images. Fig. 6 and Fig. 7 show th& N R of different
Fig. 2. The peak signal-to-noise ratiB.§ N R) for reconstruction methods with different sampling ratios for AWGN ab dB.
of the images under various sampling ratios are reported fifg- 8 and Fig. 9 show the same comparison with AWGN of
Table I. We do not have access to the codels &MP, EM-GM-  strengthSN R = 20dB. These figures imply that if the sampling
GAMP, SURE-AMP, so we have Compared the PSNR results r@tlo is under 20%, the BM3D-AMP is the best method. But if
these algorithms in [11] to our implementation of SGK-AMPthe sampling ratio is more than 20%, the SGK-AMP algorithm
Our PSNR results are much better than thosé, &AMP, EM- has the best performance. The gap in performance with just a
GM-GAMP, SURE-AMP, which highlights the efficacy of thesmall increase in sampling ratio is significant in favor ofr ou
DL-AMP framework over other AMP frameworks. algorithms.

We usel28 x 128 pixels images in Fig. 3 to compare with
the results in [9]. Table Il lists the results of NLM-AMP,

== Nebula

Bilateral-AMP, Gauss-AMP, BM3D-AMP, fast-BM3D-AMP and o] Y] Brick wall
the results of MOD-AMP and SGK-AMP presented in this pape - = Carpet

The 20% sampling ratio implies that only 20% of the size ¢ _ 19, Fingerprine.

the original image was transferred and used for recongbruct =

of the original image. For 20%, 30% and 40% sampling ratio

the performances of MOD-AMP and SKG-AMP algorithms ar

better than any other algorithms barring only two cases. T

performance of BM3D-AMP and fast-BM3D-AMP are compara f
15

: Sampliqg ratio m/q

ble at lower sampling ratios to the DL-AMP algorithms (MOD- 81 02 03 04 05 06 07
AMP and SGK-AMP), but the difference becomes significairig. 5. The sampling ratio and PSNR of images in Fig. 3 (SGKmalgorithm)
with 40% sampling ratios.

Also, Fig. 4 and Fig. 5 show the PSNR of the images in Fig.@. Runtime comparison

and Fig. 3 respectively for different sampling ratios, gsthe |t js known that the DL algorithm is a slow. We did running
SGK-AMP algorithm. In Fig. 4, the PSNR of all images increasgme performance measurements of the algorithms on a Dell

consistently with the increase in sampling ratio, excephfiuse
where the rise is slow. The interesting observation is thatfost
of the images SGK-AMP has an acceptable PSN¥R26 dB)

26 | === NLM-AMP

when the sampling ratio is 40% or less. The PSNR of the hot W Bilateral-AMP

image rises slowly on account of the higher inherent noise 2|7 Gauss-amp PPt

the image. In Fig. 5, the brick and carpet pictures are thesor ¥ L3 FastBMID-AWP *,-""_\'\,\;:\fx'\\'\“‘

where the PSNR is low and climbs slowly. These images al 222 vl
have a lot of inherent noise in them and are low quality totste %22 il
with. 2 et T e

B. Noisy Signal Recovery B ey

In the last subsection, we identified that the performan 1T Sampling ratio m/n

of SGK-AMP and MOD-AMP is better than the other AMP 81 o015 02z o025 03 o035 04 045 05
approaches. The two DL-AMP approaches perform similatly, bFig. 6.  Fingerprint 1 for reconstruction with AWGN (SNR = 18)d




TABLE I
PSNR OF128 x 128 IMAGES RECONSTRUCTIONS WITH NO MEASUREMENT NOISE

20% Sampling Nebula | Brick wall | Wood | Carpet| Fingerprintl | Fingerprint2
NLM-AMP [26] 25.978 21.362 | 24.853| 16.573 19.666 21.309
Bilateral-AMP [9] 21.290 20.093 | 23.359| 15.933 16.307 17.515
Gauss-AMP [9] 24.890 20.406 | 24.026 | 14.746 14.993 16.404
BM3D-AMP [27] 27.772 21.460 | 25.673| 16.866 20.820 21.934
fast-BM3D-AMP [27] | 27.703 21.370 | 25.514| 16.168 20.672 22.079
MOD-AMP 27.930 21.640 | 25.835| 16.704 20.770 22.605
SGK-AMP 27.800 21.703 | 25.599| 16.975 20.841 22.858
30% Sampling Nebula | Brick wall | Wood | Carpet| Fingerprint 1| Fingerprint 2
NLM-AMP [26] 28.282 21.669 | 26.016| 17.504 20.153 21.944
Bilateral-AMP [9] 22.148 20.853 | 24.999 | 16.585 17.130 18.855
Gauss-AMP [9] 25.204 20.765 | 24.375| 15.106 15.356 16.790
BM3D-AMP [27] 29.322 22,902 | 27.177| 18.872 22.688 24.617
fast-BM3D-AMP [27] | 29..221| 22.748 | 26.890| 17.908 21.600 22.876
MOD-AMP 29.654 23.444 | 27.777| 19.378 23.719 25.614
SGK-AMP 29.669 23.276 | 27.805| 19.468 23.869 25.446
40% Sampling Nebula | Brick wall | Wood | Carpet| Fingerprint 1| Fingerprint 2
NLM-AMP [26] 29.384 22.245 | 27.169| 18.577 22.428 26.350
Bilateral-AMP [9] 24.622 21.833 | 26.055| 17.201 18.286 20.177
Gauss-AMP [9] 25.382 20.960 | 24.512| 15.262 15.530 17.036
BM3D-AMP [27] 29.322 22.902 | 28.984 | 19.557 25.793 27.562
fast-BM3D-AMP [27] | 29.221 22.748 | 28.714| 18.451 23.424 26.609
MOD-AMP 31.229 24.807 | 29.510| 20.637 26.039 27.915
SGK-AMP 31.261 24,748 | 29.557 | 20.717 25.894 27.719
22 o NIM-AMP ‘ ‘ ‘ ‘ ‘_.-"* i
21-| W' Bilateral-AMP PSS . T |
(mim GAUSS—AMP Lae K 26} | m— NLM—AMP P e
207| = @= BM3D-AMP PPt w“" ] W Bilateral-AMP Lot @
1o.| '@ Fast-BM3D-AMP| ** IPUPTT LAk i 250 | == Gauss—AMP B T AN
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Fig. 7. Boat for reconstruction with AWGN (SNR = 10 dB).
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Fig. 8. Fingerprint 1 for reconstruction with AWGN (SNR = 28X

Precision T1500 running an Intel(R) C3Mé i7-870 with 4 GB
RAM, and the Matlab R2015a environment. Table Ill shows the
runtimes of NLM-AMP, Bilateral-GAMP, Gauss-AMP, BM3D-
AMP, fast-BM3D-AMP, and our methods’ results. As stated

TABLE Il
AVERAGE RUNTIME IN SECONDS OFL28X128PIXELS IMAGES
RECONSTRUCTION WITH NO MEASUREMENT NOISE

before, MOD-AMP is slow. SGK-AMP algorithm has much

lower runtime (faster), which grows slowly with higher sding
ratios. From Table Ill, SGK-AMP takes longer for reconstioic

than the non-DL AMP algorithms. However, if reconstruction
quality is of importance and higher runtime can be tolerateeh

the DL-AMP algorithms should be preferred. This is espégial
true for data coming from 10T devices. With the potential for

Average Runtimes 10% | 20% 30% 40% 50%
NLM-AMP [26] 52.9 | 479 39.8 36.0 325
Bilateral-GAMP [9] 16.1 17.6 18.2 19.1 20.0
Gauss-AMP [9] 7.9 8.4 10.3 12.0 14.2
BM3D-AMP [27] 26.4 25.1 25.1 27.0 27.3
fast-BM3D-AMP [27] | 16.3 16.3 14.9 15.7 17.2
SGK-AMP 136.0 | 113.3 | 124.2 144.9 172.8
MOD-AMP 217.5| 679.6 | 2396.0 | 2880.3 | 4072.2

packet losses and low bandwidth, reconstruction qualityeiy
important. Running time is secondary—the algorithms ruraon
server that has no computation or energy constraints.
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V. CONCLUSIONS ANDFUTURE WORK
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In this paper, we proposed a novel DL-AMP based clgl]

framework for multimedia IoTs. First, we introduced the ibas
framework of AMP algorithms, and some dictionary learnin
algorithms. Then, we proved that DL algorithms satisfy th

2]

requirement of AMP. Finally, we presented new DL-AMP al-

gorithms based on the proposed DL-AMP framework. Witf23]
experiments we showed that the quality of the reconstructed
signals are better with the DL-AMP framework (SGK-AMP)y;
than those obtained with other algorithms in the literatdiee

DL denoisers’ runtime is usually longer than other denaise

however, the resultant improvement in reconstruction rmake

DL-AMP framework suitable for multimedia loT devices. Ireth

i

25]

future, we will explore DL methods with lower runtimes and?®!
also collaborative CS with the DL-AMP framework.
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