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Sparse Control and Compressed Sensing in

Networked Switched Systems

Zhicheng Li, Yinliang Xu, and Hong Huang, and Satyajayant Misra

Abstract

In this paper, we study the problems of sparse control and data transmission for network switched

control systems. First, the networked control system is modeled as switched control systems. The new

stability criterion and stabilization criterion are presented based on a sparse control design methodology

and the Lyapunov stability theory. Then, according to the structure of the systems, data transmission

through the unreliable network from sensors to the controller becomes unavoidable. In the transmission,

real-time compressed sensing (CS) is effectively employed, which can reduce the size of transfer data

and increase the reliability of data transmission. The controller design method and the CS approach are

very effective, which has been explained and verified via simulation studies.

Index Terms

Sparse control, compressed sensing (CS), packetized predictive control (PPC), networked control

systems (NCS), switched systems.

I. INTRODUCTION

As is well known, controllers, plants and sensors are often connected over a network medium,

which comprise networked control systems. However, owing to the limits of the capacities

Z. Li is with Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China and also is research assistant pro-

fessor in Klipsch School of Electrical & Computer Engineering, New Mexico State University, NM, 88001, USA. Email:

lizc0451@gmail.com (Z. Li)

Y. Xu is with Sun Yat-sen University, SYSU-CMU Joint Institute of Engineering; SYSU-CMU Shunde International Joint

Research Institute, Guangzhou, 510006, China.

H. Huang is with Klipsch School of Electrical & Computer Engineering, New Mexico State University, NM, 88001, USA.

S. Misra is with Department of Computer Science, New Mexico State University, NM, 88001, USA.

November 18, 2015 DRAFT



2

and bandwidth of the physical communication network, network-induced delays, and packet

drops, the network control systems suffer from unreliable communications. Thus, packet loss is

considered in building the networked control system model. The reason for employing networked

control systems comes from their great advantages of resources sharing, low cost, simple system

maintenance, etc. It also has wide applications, for example, robots, unmanned aerial vehicles,

aircrafts, etc [1], [2]. With development of the modern computer technology, much attention has

been paid to the study of stability analysis and control design of networked control systems from

researchers in the system and control community due to the advantages and wide applications of

networked control systems, and a great number of significant results concerned with networked

control systems have been reported [3], [4], [5], [6], [7], [8], [9].

On the other hand, reducing the size of transfer data in networked control system is also

an interesting research topic. Compressed sensing (CS) is an active field that has attracted

considerable research interests in the signal processing community [10], [11] since the important

works of Candes, et al. [12] and Donoho [13]. And it is widely used in signal transmission,

compression, and recovery. The Shannon/Nyquist sampling theorem specifies that to avoid losing

information when capturing a signal, one must sample at least two times faster than the signal

bandwidth. In many applications, including digital image and video cameras, the Nyquist rate

is too high. We can capture the signals at a rate far below the Nyquist rate by using CS.

In networked control systems, communications between controllers and plants, also between

sensors and controllers, are made through unreliable and rate-limited communication links such

as wireless networks and the Internet; thus, considerations of both control and communication

aspects become necessary. In particular, packetized predictive control (PPC) has been shown

to have favorable stability and performance properties, especially in the presence of packet-

drop [14], [15], [16], [17], [18]. In PPC, the controller output is obtained through minimizing

a finite-horizon cost function on-line and in a receding horizon manner. Each control packet

contains a sequence of tentative plant inputs for a finite horizon of future time instants and is

transmitted through a communication channel. Successfully received packets are stored in the

buffer to prepare to be used if the later packets are dropped. In [19], Nagahara, et al. have

shown that the sparse packetized predictive control performs well for deterministic systems. But

many practical network systems are subject to random abrupt changes in their inputs, internal

variables and other system parameters, which can not only be represented by linear time-invariant
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systems. Thus, for accurate description of networked systems, networked switched systems are

presented and investigated in the literature [20], [21]. The effectiveness is questionable, when

networked control systems are modelled as switched systems [20], [21]. Also, in networked

control systems, sensors are often far away from the controller, and data from the sensors still

needs to be transferred. If large size of data needs to be transferred, and the network bandwidth

is not big enough, time delay and uncertainty would happen. Thus, for reducing the effectiveness

of unreliable and rate-limited communication links, we use CS method to reduce the transferred

data size in the feedback channel.

The contributions of the paper are two-folds. First, we extend the sparse packetized predictive

control method from linear time-invariant system to linear switched system in bit-rate limited

networks. Second, we introduce the compressed sensing method to the information communi-

cation in control system. At first, the switched control model is introduced. Then, based on the

result in [19], we present the sparse PPC method for networked control switched systems. Then,

motivated by the result in [22], sequential CS method is used to solve the data transmission in the

feedback channel of control systems. Finally, illustrative examples are presented to demonstrate

the effectiveness of the developed controller design method and the CS method.

The paper is organized as follows. In section II, the networked control problem and the data

transmission problem in feedback channel are formulated, and the switched control system model

and the structure of systems are presented. In Section III, the sparse PPC controller is proven

to guarantee the practical stability of the system. In Section IV, We employ CS method to solve

the data transmission problem of networked control systems. Illustrative examples are given to

demonstrate the effectiveness of proposed methods. in Section V, and finally the conclusions are

presented in Section VI.

Notations: Rn and Rm×n represent the set of real n-vector and m× n matrices, respectively.

N0 denotes
{

1 2 3 ...
}
. The superscript ”T” stands for matrix transpose. The notation

P > 0 (≥ 0) means that the matrix P is positive (semi)definite. In denotes an identity matrix

with dimension n and 0m,n denotes an m × n dimension zero matrix. The symbol ” ∗ ” is

used to denote the symmetric terms in a block matrix P , {P}i represents the ith row of its

explicitly expressed block structure. Also define ‖N‖1 , |N1| + ... + |Nn| , ‖N‖2 ,
√
NTN,

and ‖N‖P ,
√
NTPN, where N =

[
N1 N2 · · · Nn

]
.
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II. PROBLEM FORMULATION AND MODEL REFORMULATION

In this section, the model of switched system is presented, then some relationships between

controller signals and sensor signals are introduced which will be used in the subsequent

development. We consider the following discrete-time linear plant model:

x(k + 1) = Aσ(k)x(k) +Bσ(k)u(k), (1)

where x(k) ∈ Rn is the state vector, u(k) ∈ R is the control signal, σ(k) is a piecewise constant

function of time, called switching signal which takes its values in the finite setN =
{

1 2 ... N̄
}
.

As in [23], we assume that the switching signal σ(k) is unknown, but its instantaneous value

is available in real time. Ai and Bi are known real constant matrices of appropriate dimensions

representing the nominal systems for each σ(k) ∈ N . We assume that the realization (Ai, Bi)

is reachable.

In this paper, we are interested in a networked control architecture where the controller

communicates with the plant actuator through an unreliable channel, which can be seen in

Fig. 1. The forward channel denotes the signal channel including discrete controller, unreliable

network, buffer, and control plant in Fig. 1. The feedback channel denotes the signal channel

containing sensor, unreliable network, and discrete controller. We model the forward channel

packet-drops as follows:

d(k) ,

 1, if packet-drop occurs at instant k,

0, if packet-drop does not occur at instant k.

At each time instant k, the controller uses the state x(k) of the system in (1) to calculate and

send a control packet of the form

U(x(k)) ,
[
u0(x(k)) u1(x(k)) . . . uN−1(x(k))

]T
∈ RN , (2)

to the plant input node. As in [16], in order to make the system robust against packet drops,

buffering is needed. Assume that at time instant k, we have d(k) = 0, then the data packet

U(x(k)) defined in (2) is successfully received at the plant input side. Then, we store this packet

in the buffer. If the next packet U(x(k + 1)) is dropped, then the plant input u(k + 1) is set to

u1(x(k)), the second element of U(x(k)). The elements of U(x(k)) are then successively used

until the packet is received. The sequence of buffer states b(k) satisfies that

b(k) = d(k)Sb(k − 1) + (1− d(k))U(x(k)), (3)
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Control Plant

Sensor

Discrete Controller
Unreliable 

Network

Buffer
U(x(k)) u(k)

x(k)( )x kˆ( )x k

Fig. 1. The Structure of networked switched systems

where b(0) = 0 ∈ RN and with

S ,



0 1 0 . . . 0
... . . . . . . . . . ...

0 . . . 0 1 0

0 . . . . . . 0 1

0 . . . . . . . . . 0


∈ RN×N .

The buffer states give rise to the plant inputs in (3) via

u(k) = [ 1 0 . . . 0 ]b(k). (4)

This paper is concerned with the problems of sparse controller design for networked switched

system and real-time CS data transmission in feedback channel. The purpose is to present the

effective controller design method and real-time CS method to solve the stability and data

transmission problems of networked switched systems. Using the above definition, the problems

to be studied are formulated as follows:

1) Stability Analysis and Sparse Control – we investigate under what conditions, the networked

switched control system is stable with a designed sparse controller.

2) Compressed Sensing in Feedback Channel – we introduce the concept of CS method into

control systems and also keep the data in the real time.

III. SPARSE PACKETIZED PREDICTIVE CONTROL FOR NETWORKED SWITCHED SYSTEMS

In [19], Nagahara, et al. has presented the good result of sparse packetized predictive control.

But they only discuss the switched control concerned about packet loss, and do not consider

about abrupt changes of the internal variables of the system. In this section, we generalize the
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idea in [19] to the networked switched systems and also consider abrupt changes of the internal

variables of the systems. First, we propose to use the dynamic l1/l2 optimization. The controller

optimization cost function is as follows:

J(U, x(k)) , ‖x(N |k)‖2Pσ(k) +
N−1∑
i=0

‖x(i|k)‖2Q + µ

N−1∑
i=0

|ui| , (5)

where Pσ(k) > 0, Q > 0, µ > 0, i ∈
{

0 1 . . . N
}

in x(i|k), and x(i|k) is predicted plant

states, which are calculated by (1).

Now we introduce the matrices:

Γ ,


Bσ(k) 0 . . . 0

Aσ(k+1)Bσ(k) Bσ(k+1) . . . 0
...

... . . . ...∏N−1
i=1 Aσ(k+i)Bσ(k)

∏N−2
i=1 Aσ(k+i+1)Bσ(k+1) . . . Bσ(k+N−1)

 , (6)

Υ ,


Aσ(k)∏1

i=0Aσ(k+i)
...∏N−1

i=0 Aσ(k+i)

 , Q̄σ(k) = blockdiag
{
Q . . . Q Pσ(k)

}
,

according to the definition of the above matrices in (6), we can rewrite the optimization cost

function as follows:

J(U, x(k)) =
∥∥Gσ(k)U −Hσ(k)x(k)

∥∥2
2

+ µ ‖U‖1 + ‖x(k)‖2Q ,

where Gσ(k) , Q̄
1/2
σ(k)Γ, Hσ(k) , −Q̄1/2

σ(k)Υ.

Similar to [16], we analyze practical stability of l1/l2 PPC with bounded packet drops for the

networked switched system. For this purpose, the value function is analyzed as follows:

V (x) , min
U
J(U, x). (7)

Then the following theorems and lemmas are presented.

Theorem 1: Let r > 0, Q̃ > 0, i, j ∈ N and Ki = K̄iP̃i is the closed-loop state-feedback

control gain, then P̃i > 0 is the solution for the following Linear Matrix Inequality (LMI):
−P̃i + Q̃i K̄T

i B
T
i + P̃ATi K̄T

i

∗ −P̃j 0

∗ ∗ −1
r

 < 0, (8)
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where Q = P̃−1i Q̃iP̃
−1
i , Pi = P̃−1i > 0, and u(k) = Kσ(k)x(k).

Proof: Construct the Lyapunov function as V̄ (x) = xT (k)Pσ(k)x(k). Then we obtain

∆V̄ (x) = xT (k + 1)Pσ(k+1)x(k + 1)− xT (k)Pσ(k)x(k).

According to the system in (1) and the inequality in (8), we have

∆V̄ (x) = xT (k)
[(
Aσ(k) +Bσ(k)Kσ(k)

)T
Pσ(k+1)

(
Aσ(k) +Bσ(k)Kσ(k)

)
− Pσ(k)

]
x(k)

≤ −xT (k)
[
Q+ rKT

σ(l)Kσ(l)

]
x(k) ≤ 0.

According to the Lyapunov stability theory, the system with the controller is stable. �

Lemma 1 [16]: For any x ∈ Rn, we have

λmin(Q) ‖x‖22 ≤ V (x) ≤ φ(‖x‖2),

where

φ(‖x‖2) , a1 ‖x‖2 + (a2 + λmax(Q)) ‖x‖22 , G
+
σ(k) ,

(
GT
σ(k)Gσ(k)

)−1
GT
σ(k),

a1 , max
σ(k)∈N

µ
√
nλmax

(
G+
σ(k)Hσ(k)

)
, a2 , max

σ(k)∈N
λ2max

[(
Gσ(k)G

+
σ(k) − I

)
Hσ(k)

]
.

Having established the above results, we introduce the iterated mapping f i with implicit

(open-loop optimal) input

U(x) =
[
u0(x) . . . uN−1(x)

]T
= arg min

U
J(U, x),

by

f i(x) ,
i−1∏
j=0

Aσ(j)x+
i−1∑
l=0

i−1∏
j=i−l−1

Aσ(j)Bσ(l)ul(x), i = 1, 2, .., N.

This mapping describes the plant state evolution during periods of consecutive packet drops.

Assumption 1: (Packet-drop). The number of consecutive packet-drop is uniformly bounded by

the prediction horizon minus one, i.e., we have mi ≤ N − 1,∀i ∈ N0.

In practice, the likelihood of this many consecutive packet drops is low but still possible. If

this rare event occurs, the designed controller can not guarantee the stability of the networked

system, but then the fault diagnosis of the system would activate. The issues related to fault

diagnosis is out of the scope of this paper.

Theorem 2: (Practical stability) Assume that Q > 0, Pj > 0, j ∈ N satisfies (8), with

r =
µ2

4ε
, ε > 0.
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Then for any x ∈ Rn, we have

‖x(k)‖2 ≤ ρ
i+1
2

√
φ(‖x(k0)‖2)
λmin(Q)

+ Λ,

where i ∈ N0 is such that k ∈ {ki + 1, ..., ki+1} ,

Λ ,

√
1

1− ρ

(
ε

λmin(Q)
+ ε

)
,

ρ , 1− λmin(Q)

a1 + a2 + λmax(Q)
,

ε > 0.

Proof: Set i ∈ {1, ..., N − 1} and consider the sequence

Ũ =
{
ui(x) ui+1(x) ... uN−1(x) ũN ... ũN+i−1

}
,

where ũN+j(j = 0, 1, ..., i− 1) is given by

ũN+j = Kσ(N+j)x̃N+j, x̃N+j+1 = Aσ(N+j)x̃N+j +Bσ(N+j)ũN+j,

with Kσ(N+j) in Theorem 1 and where x̃N = fN(x). Then we can obtain

J(Ũ , f i(x)) = ‖x̃N+i‖2Pσ(N+i)
+

N−1∑
l=i

{∥∥f l(x)
∥∥2
Q

+ µ |ul(x)|
}

+
N+i−1∑
l=N

{
‖x̃l‖2Q + µ |ũl|

}
(9)

= V (x)−
i−1∑
l=0

{∥∥f l(x)
∥∥2
Q

+ µ |ul(x)|
}

+ ‖x̃N+i‖2Pσ(N+i)
−
∥∥fN(x)

∥∥2
Pσ(N)

+
N+i−1∑
l=N

{
‖x̃l‖2Q + µ |ũl|

}
= V (x)−

i−1∑
l=0

{∥∥f l(x)
∥∥2
Q

+ µ |ul(x)|
}

+
N+i−1∑
l=N

{
‖x̃l+1‖2Pσ(l+1)

− ‖x̃l‖2Pσ(l) + ‖x̃l‖2Q + µ |ũl|
}
.

According to the closed-loop systems form:

x̃l+1 =
(
Aσ(l) +Bσ(l)Kσ(l)

)
x̃l,

ũl = Kσ(l)x̃l, l = N,N + 1, ..., N + i− 1,
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where Kσ(l) can be obtained by Theorem 1. The last sum term in (9) has the upper bound:

‖x̃l+1‖2Pσ(l+1)
− ‖x̃l‖2Pσ(l) + ‖x̃l‖2Q + µ |ũl|

= x̃Tl Ψσ(l)x̃l −
µ2N

4ε

(∣∣Kσ(l)

∣∣− 2ε

µN

)2

+
ε

N
,

where

Ψσ(l) =
(
Aσ(l) +Bσ(l)Kσ(l)

)T
Pσ(l+1)

(
Aσ(l) +Bσ(l)Kσ(l)

)
− Pσ(l) +Q+

µ2N

4ε
KT
σ(l)Kσ(l).

According to Theorem 1, the inequality in (8) is equivalent to Ψσ(l) < 0. Then we have

J(Ũ , f i(x)) ≤ V (x)−
i−1∑
l=0

{∥∥f l(x)
∥∥2
Q

+ µ |ul(x)|
}

+ ε

≤ V (x)− λmin(Q) ‖x‖22 + ε,

according the fact that f 0(x) = x and the inequality in (7), we have

V (f i(x)) ≤ J(Ũ , f i(x)) ≤ V (x)− λmin(Q) ‖x‖22 + ε. (10)

For the case i = N, we consider the sequence Ũ =
{
ũN ũN+1 . . . ũ2N−1

}
. If we define∑N−1

l=N = 0, then the inequality in (10) follows as in the case i ≤ N − 1.

On the other hand, according to Lemma 1, for x 6= 0, we have

0 < V (x) ≤ a1 ‖x‖2 + (a2 + λmax(Q)) ‖x‖22 . (11)

Without loss of generality, we discuss two cases.

Case 1: Assume that 0 < ‖x‖2 ≤ 1. Then ‖x‖22 ≤ ‖x‖2 and hence

V (x) ≤ (a1 + a2 + λmax(Q)) ‖x‖2 .

According to the formula in (10), we obtain:

V (f i(x)) ≤ V (x)− λmin(Q) ‖x‖22 + ε

≤
(

1− λmin(Q) ‖x‖2
V (x)

)
V (x)− λmin(Q)

(
‖x‖22 − ‖x‖2

)
+ ε

≤ ρV (x) + ελmin(Q) + ε,

where

ρ , 1− λmin(Q) ‖x‖2
a1 + a2 + λmax(Q)

,
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ε is a positive constant parameter. According to the fact that 0 < λmin(Q) ≤ λmax(Q), a1 > 0

and a2 > 0, it follows that 0 < ρ < 1.

Case 2: Assume that ‖x‖2 > 1, then ‖x‖2 < ‖x‖
2
2 and according to (11), we have

V (x) < (a1 + a2 + λmax(Q)) ‖x‖22 .

According to the formula in (10), one have

V (f i(x)) ≤

(
1− λmin(Q) ‖x‖22

V (x)

)
V (x) + ε

≤ ρV (x) + ε ≤ ρV (x) + ελmin(Q) + ε.

If x = 0, then above inequality still holds, because V (0) = 0. Thus, combining Case 1 and Case

2, we have the following inequality

V (f i(x)) ≤ ρV (x) + ελmin(Q) + ε. (12)

Furthermore, we fix i ∈ N0 and note that at time instant ki, the control packet is successfully

transferred to be buffered. Then until the next packet is received at time ki+1, mi consecutive

packet-drops occur. By the PPC strategy, the control input becomes u(ki + l) = ul(x(ki)),

l = 1, 2, ...,mi, and the states x(k), k = ki + 1, ..., ki + mi, are determined by these open-loop

controllers. By Assumption 1, we have mi ≤ N − 1, then, according to the formula in (12), we

obtain:

V (x(k)) ≤ ρV (x(ki)) + ε+ ελmin(Q), (13)

for k ∈
{
ki + 1 ki + 2 ... ki +mi

}
, and also for ki+1 = ki +mi + 1, we have

V (x(ki)) ≤ ρV (x(ki)) + ε+ ελmin(Q).

Then, it is easy to see that

V (x(ki)) ≤ ρiφ ‖x(k0)‖2 +
1

1− ρ
(ε+ ελmin(Q)) . (14)

Combining the formulas in (13) and (14), we have

V (x(k)) ≤ ρi+1φ (‖x(k0)‖2) +
1

1− ρ
(ε+ ελmin(Q)) ,
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for k ∈
{
ki + 1 ki + 2 ... ki+1 − 1

}
, and this inequality holds also for k = ki+1. Finally,

by using the lower bound of V (x) provided in Lemma 1, we have

‖x(k)‖2 ≤

√
V (x(k))

λmin(Q)
≤ ρ

i+1
2

√
φ(‖x(k0)‖2)
λmin(Q)

+ Λ.

This completes the proof. �

Remark 1: According to Theorem 2, the controller can be obtained by using FISTA algorithm

[24] or OMP algorithm [25].

In this section, we present the sparse PPC method to reduce the effect of packet drops in

the forward channel. Also the sensing signals in feedback channel still need to pass through the

unreliable network. If packet drops happen, the control system would be unstable. The following

section will address this problem.

IV. COMPRESSED SENSING IN FEEDBACK CHANNEL

In this section, we will use CS method in the feedback channel of control systems. In [16], it

develops a sequential CS framework based on sliding window processing to deliver the jointly

correlated sensor data streams. For networked control systems, the feedback signals also need

to go through the unreliable network. Thus, we need address the data transmission problem in

the following subsections.

A. Data Structure and Performance Metrics of Compressed Sensing Reconstruction

Before proceeding further, the following definitions are presented for later development.

Definition 1: Compression ratio ρ represents the level of compression:

ρ =
M

N
,

where N is the size of data transmission before using CS method, and M is the size of transferred

data after using CS method.

Definition 2: Signal to noise ratio (SNR) is used to evaluate the reconstructed signal’s quality:

SNR = 10 log10

N∑
i=1

x2i
(x̂i − xi)2

,

where the noise is defined by the difference between the original signal (xi) and the reconstructed

signal (x̂i).
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Definition 3: Root Mean Square Reconstruction Error (RMSE) represents the average value of

squared reconstruction error or loss in signal’s quality:

RMSE =

√√√√ 1

N

N∑
i=1

(xi − x̂i)2,

where N is the number of samples or length of the signal, xi is the original signal, and x̂i is

the reconstructed signal from the compressed measurements using a recovery algorithm.

Definition 4: Mean Absolute Error (MAE):

MAE =
1

N

N∑
i=1

|xi − x̂i| .

where N is the number of samples or length of the signal, xi is the original signal, and x̂i is the

reconstructed data. MAE is often a preferred criterion for time series comparison. It measures

the average magnitude of the reconstruction errors, which assigns relatively higher weights to

large errors than RMSE. MAE follows linear scoring or assigns equal weights to reconstruction

error at each example.

Definition 5: Maximum Error Deviation (MED):

MED = max
i=1,...,N

|xi − x̂i| .

where N is the number of samples or length of the signal, xi is the original signal, and x̂i is

the reconstructed data. MED accounts for the worst case error encountered at any time sample.

As Fig. 1, we define that x̄1(k), x̄2(k), ..., x̄n(k) are the sensor signals, which need to be

transferred through the unreliable network. Our purpose is to transfer the data x̄i(k), i = 1, 2, ..., n

through the unreliable network and get x̂i(k), i = 1, 2, ..., n. Using CS method, we can reduce the

size of transferred signals. Also even some data is dropped, the signals can still be reconstructed

perfectly. Thus, let X̄(k) ∈ Rn×W denote a data window at time instant k with window size

W ≥ 1. It consists of W consecutive readings of all n sensors at time instants {k −W + 1, ..., k}

as

X̄(k) =


x̄1(k −W + 1) · · · x̄1(k)

... . . . ...

x̄n(k −W + 1) · · · x̄n(k)

 ,

November 18, 2015 DRAFT



13

where x̄i(k) is the reading of sensor i = 1, 2, ..., n at time step k. We define the ith row of X̄(k)

is as follows:

x̃Ti (k) ,
[
x̄i (k −W + 1) . . . x̄i(k)

]
,

which contains the data of the ith sensor at time instants
{
k −W + 1 . . . k

}
. And also

define

x̌(k) ,
[
x̄1(k) . . . x̄n(k)

]T
,

as the sensors’ readings at a time instant step k. Then, we can describe X̄(k) as

X̄(k) =
[
x̌(k −W + 1) . . . x̌(k)

]
=
[
x̃1(k) . . . x̃n(k)

]T
.

Assume that there exist a basis ΨS ∈ Rn×n for the spatial domain and also a basis ΨT ∈ RW×W

for the temporal domain. Then, each column of X̄(k) has a compressible representation:

x̌(k) = ΨSθS(k),

where θS(k) ∈ Rn contains the spatial transform coefficients at slot k. Also each row of X̄(k)

has a compressible representation:

x̃i(k) = ΨT θT,i(k),

where θT,i(k) ∈ RW contains the temporal transform coefficients of sensor i. Then we can

rewrite X̄(k) as

X̄(k) =
[
x̌ (k −W + 1) . . . x̌(k)

]
, (15)

= ΨS

[
θS(k −W + 1) . . . θS(k)

]
= ΨSΘS(k),

X̄(k) =
[
x̃1(k) . . . x̃n(k)

]T
=
[
θT,1(k) . . . θT,n(k)

]T
ΨT
T = ΘT

T (k)ΨT
T . (16)

Kronecker sparsifying basis can succinctly combine the individual sparsifying basis of each

signal dimension into a single transformation matrix. Thus, we can merge the transformations

in (15) and (16), and represent X̄(k) as

X(k) = vec(X̄(k)) = vec (ΨSΘS(k)) (17)

= vec
(
ΨSZ(k)ΨT

T

)
= (ΨT ⊗ΨS) vec(Z(k)) = Ψz(k),
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where X(k) =
[
x̌T (k −W + 1) . . . x̌T (k)

]T
∈ RnW is the vector-reshaped data window,

Ψ = (ΨT ⊗ΨS) ∈ RnW×nW is the Kronecker sparasifying basis, and z(k) = vec(Z(k)) =

vec
(
ΘS(k)Ψ−TT

)
∈ RnW contains the joint transformation domain coefficients. Note that Z(k)

can be interpreted as the matrix representation of spatial domain coefficients ΘS(k) in temporal

basis ΨT , we have ΘT
S (k) = ΨTZ

T (k). Then, X(k) has a 2D-separable transform Z(k) =

Ψ−1S X(k)Ψ−TT , where Ψ−1S operates on the columns of X(k), and Ψ−TT on its rows.

Remark 2: In this method, the choice of the basis ΨT and ΨS are very important. We can

choose them as Fourier transformation basis, Discrete Cosine transformation basis, or Wavelet

basis, etc, which depends on the signal’s property.

B. Compressed Sensing Encoding

Let us discuss the CS encoding process. At each time instant k > 1, the measurements are

taken with respect to the current sensors’ readings x̌(k). Thus, the sink acquires M(k) linear

CS measurements ỹ(k) =
[
ȳ1(k) . . . ȳM(k)(k)

]T
∈ RM(k) as

ỹ(k) = Φ̃(k)x̌(k), k ≥ 1, (18)

where Φ̃(k) ∈ RM(k)×n, M(k) < n, is the measurement matrix for time instant k. Considering

(18), the measurement ensemble with respect to each data window X(k) has the following

block-diagonal structure:
ỹ(k −W + 1)

...

ỹ(k)

 =


Φ̃(k −W + 1) . . . 0

... . . . ...

0 . . . Φ̃(k)



x̌(k −W + 1)

...

x̌(k)

 . (19)

Accordingly, by forming the measurement vector y(k) =
[
ỹT (k −W + 1) . . . ỹT (k)

]T
∈

R
∑k
τ=k−W+1M(τ), and the block-diagonal measurement matrix

Φ̄(k) = diag
(

Φ̃(k −W + 1) . . . Φ̃(k)
)
∈ R

∑k
τ=k−W+1M(τ)×nW ,

the measurement ensemble in (19) can be compactly written as

y(k) = Φ̄(k)X(k). (20)

Note that the measurement matrices Φ̃(k) ∈ RM(k)×n, k = 1, 2, ..., have different structures and

varying number of measurements M(k).
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Fig. 2. Illustration of the sliding window processing with respect to sensing data and transfer data

Remark 3: As Fig. 2 shows, in the traditional method, the data x̌(k − W + 1), ..., x̌(k) are

transferred through the unreliable networks, and the transfer data size of x̌(k) is n at time

instant k. Now, using the CS encoding, we only need to transfer ỹ(k−W + 1), ..., ỹ(k) instead

of the data x̌(k −W + 1), ..., x̌(k). The transfer data size of ỹ(k) is M(k), which is usually

much smaller than n.

C. Compressed Sensing Decoding

By exploiting the joint spatio-temporal compressibility (17), each data window X̄(k) can be

recovered from measurements (20) by solving the l1-minimization problem

ẑ(k) := arg min
z̃
‖z‖1 , s.t. y(k) = Φ̄(k)Ψz, (21)

reconstructing x̂(k) = Ψẑ(k), and reshaping it as X̂(k) =
[
x̂(k −W + 1) . . . x̂(k)

]
, where

x̂(k) =
[
x̂1(k) . . . x̂n(k)

]T
are the estimates of the sensors’ readings at time instant k. Thus,

each decoding instant (21) produces estimates for the current sensors’ readings and the W − 1

previous ones.

Remark 4: Fig. 2 shows that every time when obtaining the current time ỹ(k), we combine

ỹ(k − 1), ..., ỹ(k −W + 1), and reconstruct the signal x̌(k −W + 1), ..., x̌(k). Then, we obtain

feedback data x̌(k). The method has the following advantages. First, the transfer size of sensory
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data is reduced. Second, since the transfer data size is reduced, it can reduce network congestion

and thus reduce the delay of data transfer.

Remark 5: It is worth noting that the effectiveness of the approach depends heavily on the

choices of bases for the temporal and spatial compression. For a control system, the signals

always go through the facilities like plants, sensors and so on. Since these facilities serve as

low-pass filters for signals, the high frequency part of the signals can not pass through these

facilities. Thus, the signals are always sparse in Fourier basis and discrete cosine basis and even

the discrete wavelet basis, which can result in a more compact representation.

V. ILLUSTRATIVE EXAMPLE

In this section, we consider two examples to demonstrate the effectiveness of the proposed

methods.

Example 1: We consider a networked control of a mechanical system as Fig. 3. In the system,

M1 and M2 is the mass of the cars and also represent the cars in the following discussion. y1

and y2 is the displacement of M1 and M2 respectively. k is stiffness of the spring, and b is

damped coefficient. Traditionally, to simplify the problem, b is always assumed to be constant.

But in practice, b always changes by temperature and other environment conditions. Thus, for

accurate description of this system, we assume that the damped coefficient b always changes in

two modes (b1 = 0.6Nm/s, b2 = 0.3Nm/s). All of the surface frictions are ignored, and F

is an external force and also a control input signal in the system. Set M1 = 1kg, M2 = 2kg,

k = 10N/m and the sampling period T = 10ms. According to Newton’s mechanics laws, and

we get the discrete model of the networked switched system as follows:

x(k + 1) = Aσ(k)x(k) +Bσ(k)u(k)

where

A1 =


0.9991 0.0009 0.01 0

0.0004 0.9996 0 001

−0.1791 0.1791 0.9931 0.0069

0.0896 −0.0896 0.0034 0.9966

 , A2 =


0.9991 0.0009 0.01 0

0.0004 0.9996 0 001

−0.0896 0.0896 0.9931 0.0069

0.0896 −0.0896 0.0034 0.9966

 ,

B1 =
[

0 0 0.01 0
]
, B2 =

[
0 0 0.01 0

]
.
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Fig. 3. The mechanical system

Set x(0) = [1, 1, 1, 1], N = 5, µ = 10.7167 is a punishment coefficient of the control input ui in

(5). Set ε = 28, and we have r = 4.1042 according to Theorem 2. Choose Q = I, and according

to Theorem 1, we get

P1 =


133.71 116.92 79.96 −24.85

∗ 132.15 86.31 −27.17

∗ ∗ 347.91 −160.18

∗ ∗ ∗ 90.64

 , P2 =


133.80 116.84 79.30 −24.53

∗ 132.20 86.89 −27.46

∗ ∗ 346.19 −159.29

∗ ∗ ∗ 80.17

 .
Then, the sparse controller can be obtained as form of (4) by Theorem 2. Fig. 4 shows that

the open-loop system is not stable. Fig. 5 shows that the closed-loop system with the sparse

controller in (4) is stable. Fig. 6 shows the situation of packet drop d(k). For comparison, we

also synthesize PPC with the conventional l2 cost function:

J2(U, x(k)) , ‖x(N |k)‖2Pσ(k) +
N−1∑
i=0

‖x(i|k)‖2Q + µ
N−1∑
i=0

‖ui‖2 . (22)

Using the proposed method with the cost function in (5) and the method with the cost functions

in (22), we can get two groups of controller measurements u(t) with l1/l2 gain controller and l2

gain controller. The control value obtained by l1/l2 optimization include 52 zero values of 1000

data, whereas the conventional l2 ones contain only 30 zeros values.

Example 2: In this example, we use a load frequency control model to demonstrate the

effectiveness of the CS method in feedback control channel. We linearize the power system
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Fig. 4. The states of open-loop networked switched systems

Fig. 5. The states of closed-loop networked switched systems with l1/l2 gain controller.

November 18, 2015 DRAFT



19

Fig. 6. The packet loss of networked switched systems.

as the example in [26]. The range of system parameter variations in this example problem is

selected as follows:

1

TT1
∈
[

2.778 4.167
]
,

1

TG1

∈
[

10.417 15.625
]
,

1

R1TG1

∈
[

3.617 8.138
]
,

1

TT2
∈
[

2.525 3.788
]
,

1

TG2

∈
[

11.574 17.361
]
,

1

R2TG2

∈
[

3.968 8.929
]
,

1

TT3
∈
[

2.381 3.571
]
,

1

TG3

∈
[

11.905 17.857
]
,

1

R3TG3

∈
[

3.968 8.929
]
.

The nominal plant models of the system for the three areas are considered in this example.

We assume that there are no parameter uncertainty and load disturbances, and obtain the state-
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feedback gains as:

K1 =
[
−39.71 −19.60 −0.69 0.95 −31.84

]
, (23)

K2 =
[

18.26 29.12 6.12 −11.62 −3.18
]
,

K3 =
[
−34.00 −16.94 −0.45 0.96 −26.33

]
.

For the parameters in the nominal plant models of three areas, Fig. 7 shows that the closed-

loop system is stable. And also there are 15 states in the systems. Assume that all of the states

information needs to be transferred through the unreliable network. Table I shows that the CS

result in different metrics with different compressed ratio by using DCT basis. The 10 dB

SNR value is commonly used in the literature as a quality threshold [27]. In Table I, when

ρ = 6
15

= 40%, the SNR = 12.35. Then using the CS method in last section, we transfer and

reconstruct the sensing signals of control the systems with ρ = 40%. Fig. 8 shows that the by

CS method, the closed-loop system is still stable, which demonstrates the effectiveness of the

presented method.

Remark 6: To recover data in an unreliable network, we only need to increase compression

ratio accordingly. For example, we set nominal ρ = 10
15
, which means that the size of ỹ(k) is 10.

According to the CS theory, even if only 6 data of ỹ(k) is received, we can still reconstruct the

whole data x̌(k) (since the actual ρ = 6/15 = 40%). Thus, the method is demonstrated to have

strong robustness in the control system feedback data transmission.

VI. CONCLUSIONS

This paper has investigated the problems of PPC controller design and data transmission for

networked switched control systems. Considering the model of networked switched systems,

the PPC control method has been presented, and also the stable theorem has been proposed

and proven. Then, considering the feedback channel, sensors’ data is transferred through the

unreliable networks by CS method. Illustrative examples are used to demonstrate the effectiveness

of the proposed controller design method and the data transmission method. The proposed CS

method offers three main benefits. First, it can reduce the size of transfer data. Second, if

packet drop happens, the data can still be recovered in high probability. Third, the energy for

transferring data is reduced since less amount of data needs to be transferred. In future work, we
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Fig. 7. The state of closed-loop system with all data transferred.

Fig. 8. The states of closed-loop sysstem with only 40% data size transferred by CS.
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TABLE I

SOME PERFORMANCE METRICS FOR DIFFERENT COMPRESSION RATIO ρ

M ρ SNR RMSE MAE MED

12 12
15

30.79 0.0043 0.0013 0.0961

11 11
15

25.67 0.0066 0.0019 0.2167

10 10
15

22.22 0.0098 0.0025 0.2723

9 9
15

20.79 0.0111 0.0029 0.2753

8 8
15

17.58 0.0161 0.0043 0.4975

7 7
15

15.72 0.0225 0.0062 0.5821

6 6
15

12.35 0.0296 0.0079 0.8988

5 5
15

9.83 0.0378 0.0097 0.8467

will investigate more complex networked system model such as time delay networked system

model, and also we will consider the impact from the practical environment factors.
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