
MuNCC: Multi-hop Neighborhood Collaborative Caching in

Information Centric Networks

Travis Mick
New Mexico State University

tmick@cs.nmsu.edu

Reza Tourani
New Mexico State University

rtourani@cs.nmsu.edu

Satyajayant Misra
∗

New Mexico State University

misra@cs.nmsu.edu

ABSTRACT

Caching strategies in Information-Centric Networks (ICNs)

can be classified into the categories of individual caching,

on-path caching, and collaborative caching. Each has sev-

eral drawbacks, such as high content redundancy in individ-

ual caching, unutilized caching capacity in on-path caching,

and high coordination cost in collaborative caching. De-

spite the relatively higher cost of coordination, collaborative

caching offers several advantages over the other categories,

namely low latency and better cache utilization. A collab-

orative caching mechanism with low coordination costs that

still possesses the inherent advantages has not been proposed

in the literature.

In this paper, we aim to address this missing link by pre-

senting MuNCC, a scalable collaborative caching scheme,

which utilizes a node’s neighborhood caching capacity and

has negligible communication overhead. MuNCC uses at-

tenuated Bloom filters, augmented by a two-level node cache

structure and an efficient cache redundancy elimination tech-

nique. Exhaustive simulation-based comparison of MuNCC

against the state-of-the-art shows that it reduces content re-

trieval latency by 30% to 40% while maintaining a high level

of cache utilization and incurring low overheads.

Keywords: In-network caching, collaborative
caching, ICN, next generation network.

1. INTRODUCTION

In-network caching is essential to ensure the scalabil-
ity of the future Internet, and thus has been embraced
within the Information-Centric Networking community.
By storing content close to the users, the cost of its
retrieval is reduced and user quality of experience is im-
proved. However, cache utilization must be optimized
to be effective in the face of a rapid explosion of Inter-
net content. Since caching capacity is inherently lim-
ited, this leads us to two fundamental questions: Which
content to cache? And which content to evict?
Proposed approaches to answering these questions can
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be divided into three categories: individual caching, on-
path caching, and collaborative caching. In individ-
ual caching, each node makes these decisions indepen-
dently, without input from others in the network. These
schemes are simple, but achieve low cache-hit ratios.
On-path caching attempts to optimize the placement
of a content object on the path it travels between the
provider and the consumer; though this outperforms in-
dividual caching, it still does not utilize off-path caches.
In collaborative caching, nodes cooperate either locally
or globally to determine the best content placement, op-
timized for either latency, network load, or cache utiliza-
tion. Such collaboration invariably requires significant
amounts of overhead, and can thus undermine network
goodput.
In this paper, we address the drawbacks of current

collaborative caching techniques and propose a scalable
and efficient collaborative strategy. Our contributions
include: (i) A design of a scalable cache location mech-
anism, through which nodes can be made aware of the
content available in their neighborhoods. (ii) An aug-
mentation of the least frequently used (LFU) replace-
ment policy to allow nodes to evict redundantly cached
content in a neighborhood without incurring additional
overhead. (iii) Extensive simulations to show the sig-
nificant improvement offered by our mechanism over the
existing state-of-the-art.
In Section 2, we review the state of the art in ICN

caching algorithms. Section 3 presents our systemmodel
and assumptions. We introduce the building blocks
of our Multi-hop Neighborhood Collaborative Caching
framework, MuNCC (pronounced “monk”), and the
framework itself in Sections 4 and 5 respectively. In
Section 6, we offer our simulation results and analyses.
Finally, Section 7 offers some concluding remarks and a
brief overview of future work.

2. RELATED WORK

The majority of work on caching in information-centric
networking is dedicated to evaluating the performance
of different caching schemes. In this section, we focus
on collaborative caching schemes, classifying them into



two categories based on how coordination is achieved:
on-path coordination, and global coordination.
In on-path coordination, routers on the delivery path

between a content provider and a consumer collabora-
tively decide where along that path each content should
be cached. Leave Copy Down (LCD), Move Copy Down
(MCD) [7, 8], Chunk caching Location and Searching
(CLS) [9], ProbCache [15], and the weight based algo-
rithm proposed by Ming et al. [11] fall into this category.
In global coordination, caching decisions consider all

nodes; local coordination uses similar techniques, but
considers only a subset of nodes. A hash routing tech-
nique proposed by [18] hashes content names to deter-
mine designated caches for each content; as a result,
each router is responsible for a disjoint subset of con-
tent objects. Saha et al. exploited a similar concept
in a preliminary proposal where they hashed objects
at the autonomous system (AS) level [17]. A collabo-
rative benefit-based eviction scheme to minimize traf-
fic cost was proposed in [20], wherein routers itera-
tive substitute a cached content with uncached con-
tent in such a way as to maximize the expected benefit.
Wang et al. proposed the degree centrality heuristic for
collaborative content eviction in [22], aiming to reduce
redundancy, hence increasing cache diversity but also
latency.
In addition to the aforementioned strategies, several

other aspects of ICN caching have received attention.
A unified approach for cache performance analysis was
proposed in [10], utilizing an extension to Che’s approx-
imation to evaluate random and LRU-based replace-
ment policies. In [13], the authors show that content-
peering between ASes leads to a stable cache configura-
tion, with or without coordination. Wang et al. inves-
tigated the impact of network topology structure, size,
content popularity, and cache replacement strategy on
optimal cache placement in [24].
We identified that most current ICN caching schemes

target either the minimization of latency, or the max-
imization of cache utilization; conversely, coordination
overhead is often neglected. Hence, we focus on design-
ing a caching framework which balances latency and
cache utilization, without inducing much overhead. We
employ cache summaries in the form of Bloom filters,
a technique previously employed in HTTP caching [4]
and wireless ad-hoc networks [14]. Probabilistic cache
summaries is not yet popular in ICN, but preliminary
designs have been proposed by Tortelli et al. [21] and
Wang et al. [23]. While interesting, these designs have
not been implemented nor simulated, thus their practi-
cal effectiveness is unknown; thus, we believe that our
work is the most thorough investigation into this type
of strategy.

3. SYSTEM MODEL AND ASSUMPTIONS

We assume that the network is composed of a set
of consumers, routers, and content providers. A con-
sumer intermittently requests content items, while each
provider serves a set of content objects, and each router
has capacity to cache some of these contents. The h-
hop neighborhood of a router includes that router and
all other routers reachable in h hops or less. We assume
that each router has a rank attribute, either assigned ar-
bitrarily or based on some metric such as betweenness
centrality, closeness centrality, or node degree [25].
We note that various models of content popularity ex-

ist, but no model is complete. In the stationary, or In-
dependent Reference Model (IRM), the popularity dis-
tribution of content items does not change over time;
the popularity is defined by the Zipf distribution [2].
However, it is more realistic to allow the popularity
of contents to vary over time (temporal model). We
will generate temporal workloads using GlobeTraff [6],
which models a mix of content objects from various cat-
egories, which each have their own popularity models
and temporal behaviors. We will account for both the
IRM and temporal models in our discussions.
Although the fundamental design of MuNCC is ap-

plicable to all ICN architectures, we will focus on the
popular NDN [5] design and nomenclature. In this pa-
per, we augment NDN by partitioning the Content Store
(CS), storing additional forwarding state in the Pend-
ing Interest Table (PIT), and altering the forwarding
algorithm in order to collaboratively cache contents and
satisfy interests.

4. BUILDING BLOCKS OF MUNCC

In our framework, a router b forwarding a request
leverages information exchanged with its direct neigh-
bors to assess whether another router in its h-hop neigh-
borhood, N (b, h), can satisfy the request from its cache.
This exchanged information provides aggregated cache
state information in b’s h-hop neighborhood and is stored
in a set of attenuated Bloom Filters (BFs). Router
b also collaborates with its direct neighbors to reduce
content redundancy in its N (b, h) through cache evic-
tion in its one-hop neighborhood. If a request cannot
be satisfied in N (b, h), then b uses its FIB to forward
the request towards the producer in the normal man-
ner. In this section, we present the two building blocks
of MuNCC: Attenuated Bloom Filter Construction and
Exchange, and Coordinated Cache Eviction.

4.1 Attenuated Bloom Filter Construction and
Exchange

First proposed by Rhea and Kubiatowicz in 2002 [16],
a k-level attenuated BF is composed of k regular BFs,
wherein the ith-level BF summarizes objects reachable
within i hops from a node. We propose an extension to
this design and discuss its construction.
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Figure 1: Two-level attenuated Bloom filter: (a) The cache summaries from which aggregate BFs are computed; (b) Level-0 BFs, which
provide the cache summary of the direct neighbor; (c) Level-1 BFs, which are the union of the level-0 summaries held by the direct
neighbor.

We will use the notation Bb to represent the BF sum-
marizing a node b’s own cache, and Bb

(c,i) to represent

the ith level of the attenuated BF stored by b for inter-
face (b, c). The Level i BF corresponding to interface
c summarizes the set of contents that c can reach in i
hops, and thus b can reach in (i+ 1) hops. One h-level
attenuated BF is stored for each interface of b; for the in-
terface (b, c), b stores the set of BFs Bb

(c,0), . . . ,B
b
(c, h−1);

thus, b obtains a cache summary for its entire h-hop
neighborhood. The BF Bb

(c,0) = Bc summarizes content

stored in c’s own cache, while each BF Bb
(c,i) for i > 0 is

an aggregated BF. If c has direct neighbors d1, . . . , dn
(including b), then Bb

(c,i) = Bc
(d1,i−1) ∪ · · · ∪Bc

(dn,i−1) for
each 0 < i < h.
The construction of an attenuated BF occurs in h

iterations. First, each node b transmits its cache sum-
mary Bb to its neighbors. This outgoing BF is tagged
with a b’s rank, Ra(Bb), assigned according to Sec-
tion 3. A neighbor c stores the incoming BF as Level
0 of the attenuated BF for interface (c, b). Each node
aggregates the Level 0 BFs it received in the first step
by taking their union. The aggregate BF then takes the
maximum rank among the rank values of all received
Level 0 BFs. This aggregate BF is transmitted to the
neighbors, which store it as Level 1 of the attenuated
BF for their incoming interface. Each set of received
BFs is aggregated and transmitted in the same fash-
ion, until all h levels of the attenuated BFs have been
populated.
Fig. 1 illustrates the generation of the attenuated BF

with h = 2. We will focus on the state of the network as
perceived by node b. The cache summary (BF) of each
node is shown in Fig. 1(a) (e.g. Bb for b). In Fig. 1(b),
we show the Level-0 BFs for each interface of b; these
are the cache summaries of b’s direct neighbors: Ba, Bd,
and Bc respectively. Finally, Fig. 1(c) shows the Level-
1 BFs. Here, b stores for each interface the aggregate
summary of the caches of the corresponding neighbor’s
neighbors. For interface (b, c), b stores Bb

(c,1) = Bb ∪

Be ∪Bf ; for (b, a) it stores Bb
(a,1) = Bb; and for (b, d) it

stores Bb
(d,1) = Bb ∪Bg ∪Bh.

False Positive Analysis: A BF is a probabilistic mem-
bership verification data structure which has no false
negatives; that is, a negative reply to a membership
query guarantees that the item is not indexed. Con-
versely, a positive reply to a membership query has a
small false-positive probability (i.e., an item is not re-
ally in the set represented by the BF, but the query on
the BF returns true). Lemma 4.1 formalizes the false
positive probability of a conventional BF.

Lemma 4.1. Assuming that the probability of each
bit in the BF being set is independent, a BF of m bits,
k hash functions, and n indexed content objects has false
positive probability given by:

Pfp(BF ) =
(

1−
[

1− (1/m)
]kn

)k

.

Proof. The proof is available in [12].

In MuNCC, each router creates an h-level attenuated
BF, per interface. Upon receiving a content request,
a router first checks for the content in its own cache.
If the content is not in the CS, the router checks the
Level-0 BFs it has collected, followed by Level-1 BFs,
and so on. This continues until either a match is found
and the content is retrieved, or all h levels of the at-
tenuated BF are exhausted. Because the BF can return
a false positive, match in the BF does not guarantee
the successful retrieval of the content. A false positive
increases request satisfaction latency and induces extra
traffic in the neighborhood, and is therefore undesirable.
Theorem 4.1 formalizes the probability of at least one
false positive occurring during a particular node’s BF
lookups.

Theorem 4.1. Given a node b with a set of inter-
faces L, the probability of at least one false positive while
searching for a content in its BFs is given by,

Pfp(b) = 1−
(

1−
{

1−
[

1− (1/m)
]kn}k)|L|·h

.

Proof. The probability of a BF not having a false
positive is given by 1 − Pfp. The probability of none



of the |L| · h BFs of b BFs having a false positive is
(1 − Pfp)

|L|·h. Hence the probability of one or more
false positives is 1 − (1 − Pfp)

|L|·h, equivalent to the
above result.

Example: Assume node b has 6 interfaces and h = 4.
Considering the Bloom filter size m = 15KB, and using
k = 5 hash functions to index n = 5000 contents, the
probability of at least one false positive at node b is
given by:

Pfp(b) = 1−
(

1−
{

1−
[

1−
1

m

]kn}k)|L|·h

= 1−
(

1−
{

1−
[

1−
1

12× 104

]5000×5}5)6×4

= 0.0056

Size of Cache Summaries: We chose the size of the
BFs in MuNCC to be proportional to the number of
contents that can be cached in the network as a whole.
Specifically, we designed the BF to index a number of
contents M = CfN at the false positive rate F = 0.05,
where N is the size of the global content catalog, f
is the maximum proportion of these content objects
that can be cached, and C is an arbitrary scalar, which
may be tuned to reduce false positives. We chose the
number of hashes k =

⌈

log2
1
F

⌉

and number of bits

m =
⌈

M · ln 1
F
/ ln2 2

⌉

for each BF, in accordance with
the error-bounding method given by Almeida et al. [1].
Cache Turnover Management: Given the inevitabil-

ity of cache turnover, a mechanism is required to remove
stale items from cache summaries. Deletion operations
are typically omitted from traditional BFs, as they in-
troduce false negatives. Counting BFs provide a loss-
less delete operation, but are much larger and would
thus increase overhead. In order to achieve a delete
operation with minimal overhead, each level of each
interface in MuNCC has both a “positive” BF and a
“negative” BF as opposed to one standard BF. Thus,
each node b’s cache summary Bb = (B+

b , B
−
b ), and each

Level-i aggregated cache summary of interface (b, c),
Bb
(c,i) = (Bb+

(c,i),B
b−
(c,i)). Node b will add cached items

to B+
b and add evicted items to B−

b . This pair of BFs
will then be used by the neighbors of b to compute ag-
gregate cache summaries.
The aggregation of the two-part BFs consists of the

union of positive filters and the intersection of negative
filters; e.g., the aggregation Bb

(c,1) of B
c
(b,0),B

c
(e,0),B

c
(f,0)

is defined as Bb+
(c,1) = Bc+

(b,0) ∪Bc+
(e,0) ∪Bc+

(f,0) and Bb−
(c,1) =

Bc−
(b,0) ∩ Bc−

(e,0) ∩ Bc−
(f,0). To check for the membership of

a content o in the BF Bb
(c,1), b would check that (o ∈

Bb+
(c,1)) ∧ (o /∈ Bb−

(c,1)). This implementation of deletion

still induces false negatives, though much fewer than
when simply unsetting bits in a flat BF.
Because we transmit cache summaries intermittently,

there remains a possibility that b’s neighbor c has evicted

a content i from its cache, but the corresponding nega-
tive BF at b, Bb−

(c,0), is not updated yet. Thus b may still

send c a request for i. Since c does not have the content
anymore, c notifies b with a NACK. This is considered
a false positive at b, which has the same effect as the
intrinsic false positive of the BF. To prevent additional
false positives, b will update Bb−

(c,0) upon receipt of the
NACK.
The overall false positive probability of b requesting

a content from c is presented in Corollary 4.1.

Corollary 4.1. The probability of a false positive when
b requests a content from c after indexing Bb

(c,0) is:

Pfp(B
b
(c,0)) = 1−

(

(1− Pfp(B
b
(c,0)))(1 − Pevic(Bc))

)

where Pevic(Bc) is the probability of the desired content
being evicted from node c’s cache.

This probability accounts for both the intrinsic BF
false positive as well as premature eviction of the con-
tent from c’s cache. Either event would result in an
insertion to Bb−

(c,0).

4.2 Coordinated Cache Eviction

Limited cache size implies that eviction is inevitable.
Coordinated eviction increases caching diversity and thus
the overall cache-hit ratio, though at the cost of increas-
ing the average retrieval distance for popular contents.
We have designed a coordinated eviction scheme which
increases diversity while ensuring that evicted contents
remain available nearby, thereby minimizing this cost.
In MuNCC, redundancy elimination can be initiated

when a node b receives a Level-0 (non-aggregate) cache
summary from its neighbor c. Node b decides whether
to begin evicting by comparing its own rank with the
rank tag of the BF received from c. The strategy may
be configured to evict at b either when b’s rank is higher
or lower than rank of c; if eviction is to proceed, then
b iterates through its cache to find items also present
in the received BF, Bb

(c,0) and evict any that match.
Generally, eviction at the node of lower rank gradually
moves content towards the core of the network, while
eviction at higher rank node pushes the content towards
the edge.
Eviction without advertising an update may cause

neighbors to continue requesting the item, resulting in
false positives as explained in Section 4.1. To reduce the
number of eviction-related false positives, we employ a
two-layer content store which allows each node to pro-
vide some guarantee of availability for content items it
has advertised but wishes to evict. We partition the
CS into a primary cache, which uses the majority of
the capacity (∼ 90%), and a smaller secondary cache
(∼ 10%). The items in the primary cache are adver-
tised in cache summaries, while the secondary cache is
used to ensure the availability of the contents advertised
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Figure 2: Request forwarding procedure: a’s query for a content
results in success in its D = 2 level BF: (1) a sends request to b

with D = 2. (2) b sends request to c with D = 1. (3) c does not
have content hence sends NACK to b. (4) b then sends request
to d with D = 1. (5) d sends request to e with D = 0. (6, 7, 8)
e serves the request from its cache, and the content propagates
back to a.

in the past. If a content needs to be evicted from the
primary cache, it will be transferred to the secondary
cache instead of being deleted immediately.
Both the primary and secondary caches utilize the

least frequently used (LFU replacement policy; thus,
if the secondary cache becomes full, the least popular
content will be evicted permanently. Although some ad-
vertised contents may still be evicted, this mechanism
prevents the majority of eviction-related false positives.
In the event that a node b queries its neighbor c for a
content which has been evicted despite this, b can up-
date its copy of the attenuated BF on (b, c), as explained
in Section 4.1; thus, future requests for that object will
not be forwarded to c.

5. MUNCC: THE COORDINATED CACHING

STRATEGY

In this section, we finalize the design details of MuNCC
and explain its forwarding procedure.

5.1 Routing Decisions

Algorithms 1 and 2 abstractly describe the forward-
ing decisions at a node b; Algorithm 1 (Request Han-
dler) receives incoming requests and calls Algorithm 2
(Request Helper) as needed to route a request within
a particular level of the neighborhood. In MuNCC, we
tag interest packets with a maximum distance field, D,
which specifies the number of hops across which the in-
terest may propagate. The value of D can be either ∞

Algorithm 1 Request Handler at b

1: function requestHandler(i, D)
2: if D = ∞ then

3: requestServed = false
4: for D′ = 0 to (h− 1) do

5: if requestHelper(i, D′) = true then

6: requestServed = true
7: break

8: if not requestServed then

9: forward request toward content provider
10: wait for response
11: cache the response if appropriate
12: send response to previous hop

13: else if requestHelper(i, D) = false then

14: send NACK to previous hop

or an integer in the interval [0, h]. When a requester
generates a new interest, it sets D = ∞, indicating that
the request may be forwarded as far as needed in order
to be served. Though similar to a time-to-live (TTL),
D is different and does not replace the TTL used at the
network layer.
When D = ∞, each router will attempt to serve an

interest first from its own cache, and then from its neigh-
borhood, before forwarding the request towards the con-
tent provider (Algorithm 1, Lines 2–12). If a node b has
a cache miss, it checks the BFs Bb

(n1,0)
, . . . ,Bb

(nk,0)
, sum-

marizing the caches of its direct neighbors n1, . . . , nk

(Algorithm 1, Lines 4–7). If the content is not found
within these Level-0 cache summaries, then the next
level of BFs Bb

(n1,1)
, . . . ,Bb

(nk,1)
is checked. Each level

0, . . . , (h−1) of the attenuated BF is checked iteratively
until the content is found. At each level, the BFs are
checked in order of decreasing rank (Algorithm 2, Line
7). When a match occurs, the interest is re-tagged with
a value of D corresponding to the level of the attenu-
ated BF where the item was found and forwarded to
the appropriate peer (Algorithm 2, Line 9). If all filters
return no match, the request is routed toward the con-
tent source (D’s value remains ∞) and the next router
performs the same procedure (Algorithm 1, Lines 8–12).
If a request arrives at a router with D = 0, the router

only attempts to serve the request from its own cache
(Algorithm 1, Line 13; Algorithm 2, Lines 2–5). When
0 < D ≤ h, the router should only check the (D − 1)th

level of its attenuated Bloom filters (Alg. 2, Lines 7–
15). If D 6= ∞ and all valid options to serve the request
have been exhausted, a NACK is generated to indicate
a failed probe (Algorithm 1, Line 14). The NACK is
sent to the previous hop to inform it that the request
could not be satisfied.
A node receiving a NACK will update the appropriate

BF (corresponding to the interface on which the inter-
est was forwarded, and its D field) in order to reflect
that the content is no longer available through that in-
terface. Depending on whether the node has exhausted

Algorithm 2 Request Helper at b

1: function requestHelper(i, D′)
2: if D′ = 0 then

3: if c in local cache then

4: send response to previous hop
5: return true
6: else

7: for each neighbor p, in decreasing Ra(Bb
(p,D′

−1)
) do

8: if i in Bu
(p,D′

−1)
then

9: forward request to p with D = D′ − 1
10: wait for response
11: if response is a NACK then

12: remove i from Bb
(p,D′

−1)

13: else

14: send response to previous hop
15: return true
16: return false
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Figure 3: Effect of rank metric on cache-hit ratios and content retrieval latencies with cache-to-population ratios {0.25%, 0.5%, 2%, 5%}
under the temporal popularity workload on real-world graphs. Error bars indicating 95% confidence intervals are illustrated.

its forwarding options, it may then attempt to route the
request elsewhere in its neighborhood, route toward the
content provider, or send a NACK back to the previous
hop. An example of the forwarding behavior is given in
Fig. 2.
In MuNCC, a node will never cache a content if it

was found in a neighborhood cache. However, the node
may choose to cache a content if the corresponding re-
quest was forwarded toward the producer. In this case,
the augmented LFU policy described in Section 4.2 will
make the ultimate caching decision. It is possible that
several nodes on the path will cache the same content
as it is forwarded back to the requester; in this scenario,
the collaborative eviction mechanism from Section 4.2
will help eliminate the redundancies.

5.2 Refreshing Cache Summaries

Due to cache turnover, BFs must be refreshed inter-
mittently to prevent false positives. In the case of a
false positive in a positive BF, a node may route a re-
quest toward a neighbor which cannot serve it, or in
the case of a false positive in a negative BF it will route
toward the content source when the request could ac-
tually be served by a neighbor. To prevent this, we
define regularly occurring epochs; at a new epoch, ev-
ery node b recomputes its cache summary Bb from the
content cached at that time. Thus, at the beginning of
the epoch, each positive filter will only consist of items
which are currently cached, while each negative filter
will be empty. After reconstructing the cache summary,
h rounds of transmission and aggregation are performed
as described in Section 4.1. At the end of this proce-
dure, all nodes in the neighborhood will have up-to-date
aggregate summaries.
In order to keep caches fresh between epochs, we also

schedule several sub-epochs. At the beginning of a sub-
epoch, a node does not compute its cache summary
from scratch. Rather, the node continually updates its
cache summary as it caches and evicts contents, then at
the sub-epoch transmits the updated BF to its peers.
Again, there are h iterations in order to update the en-

tire neighborhood. When the sub-epoch occurs, each
node may also clear its secondary cache, as it has now
informed its neighbors about the eviction decisions it
intended to make.
In our design, we do not immediately delete the con-

tent, but rather mark it as “stale.” This allows new
contents to be moved to the secondary cache if neces-
sary, but prevents the secondary cache space from being
underutilized.
We have also optimized the BF transmission proce-

dure such that a node need not transmit its cache state if
no changes have occurred. If this is the case, a neighbor
can carry the previous cache state into the new epoch or
sub-epoch. Similarly, aggregate cache state summaries
do not need to be recomputed or transmitted if no up-
dates have been received from neighbors.

6. SIMULATION AND ANALYSES

6.1 Simulation Setup

We implemented MuNCC in the Icarus simulator [19]
and compared its effectiveness against Leave Copy Down
(LCD) [8], ProbCache [15], and two of the best hash-
routing schemes proposed by Saino et al. [18]: Symmet-
ric Hash Routing (HR Symm) and Hybrid Asymmetric-
Multicast Hash Routing (HR Hybrid-AM). Each strat-
egy was backed by an LFU-replacement content store;
for MuNCC, we used the two-level LFU cache described
in Section 4.2. Caches were installed on all routers in
the network and cache indexing was performed at the
content level.
A total of eight topologies were used in our evalua-

tions. Four were real-world ISP-like topologies (nodes,
edges): WIDE (30, 33), GEANT (53, 61), TISCALI
(240, 810), and SPRINT (604, 2268). Four were scale-
free topologies generated with BRITE [3] following a 2-
level hierarchical Barabasi-Albert model (m = 2) (nodes,
edges): Topo1 (250, 492), Topo2 (500, 972), Topo3 (750,
1447), Topo4 (1000, 1897). Each result was averaged
over eight distinct runs.
Both stationary (IRM) and temporal popularity work-
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(a) Cache-hit ratio: WIDE
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(b) Cache-hit ratio: GEANT
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(c) Cache-hit ratio: TISCALI
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(d) Cache-hit ratio: SPRINT
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Figure 4: Comparison of cache-hit ratios and content retrieval latencies with cache-to-population ratios {0.25%, 0.5%, 2%, 5%, 10%}
under the stationary popularity workload on real-world graphs. Error bars indicating 95% confidence intervals are illustrated.

loads were tested. The stationary scenarios used a cata-
log ofN = 3·105 content objects with popularity defined
by the Zipf distribution (α = 0.8). A total of 1.2·106 re-
quests were generated in these scenarios. The first 6·105

requests were used to allow caches to converge and were
not used for gathering statistics; the remaining 6 · 105

requests were logged and used to gather statistics. In
the temporal scenarios, we used workloads generated by
GlobeTraff [6] with the default parameters. Each work-
load consisted of about 2.1 · 105 content objects. All
requests were used for statistics in the temporal work-
loads, as content popularity does not converge.
In the stationary scenarios, we set the parameter C =

1.25; in the temporal scenarios, we set C = 1.79 to com-
pensate for the higher rate of cache turnover. These val-
ues of C also imply that the size of the BF is the same
for a given network-wide cache size, under both the tem-
poral and stationary workloads. With a network-wide
cache-to-population ratio of 10% (the largest used in
our simulations), the number of hashes k = 5 and each
BF was less than 30 kilobytes in length, as given by the
formula in Section 4.1.
For each run, we configured our strategy with h = 4,

epoch intervals of 1800 seconds, and 10 sub-epochs per
epoch. In all cases, cache capacity was distributed uni-
formly amongst all routers and the caches were initially
empty.

6.2 Effect of Various Rank Metrics

MuNCC uses the ranks of nodes to make eviction
decisions. As stated in Section 3, these ranks can be
assigned arbitrarily. In our simulations, we explored

the effectiveness of three different rank attributes: be-
tweenness centrality (bet), closeness centrality (clo),
and degree (deg). For each choice of metric, we tested
two variations: positive (+) and negative (-). Under the
positive variation, redundancy elimination is performed
at the lower-ranked node; thus, high-rank nodes (typ-
ically core routers) are treated preferentially. For the
negative variation, redundancy elimination happens at
higher-rank nodes, thus the lower-rank nodes (typically
edge routers) are preferred.
For this evaluation, we used the temporal popularity

workload with {GEANT, TISCALI} graphs and network-
wide cache fractions equivalent to {0.25%, 0.5%, 2%, 5%}
of the global content catalog. Fig. 3 shows the effect of
metric choice on observed cache-hit ratios and request
fulfillment latency. MuNCC/4/bet+(-) refers to the con-
figuration with h = 4 and betweenness as the rank met-
ric, preferring core nodes (edge nodes). Same naming
convention is used for closeness centrality (clo) and de-
gree centrality (deg). In the majority of scenarios, there
is no major difference between the tested metrics. How-
ever, positive (+) metrics sometimes marginally increase
the cache-hit ratio, while negative (-) metrics some-
times reduce latency slightly. We conclude that while
a positive or negative metric may be preferred based
on whether cache-hit ratio or latency is the priority,
choosing a centrality metric (which is often expensive
to compute) over a degree metric (which is inexpensive)
provides no significant benefit.

6.3 Comparison with State of Art

Now we will compare the performance of MuNCC
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(a) Cache-hit ratio: WIDE
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(b) Cache-hit ratio: GEANT
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(c) Cache-hit ratio: TISCALI
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(d) Cache-hit ratio: SPRINT
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Figure 5: Comparison of cache-hit ratios and content retrieval latencies with cache-to-population ratios {0.25%, 0.5%, 2%, 5%, 10%}
under the temporal popularity workload on real-world graphs. Error bars indicating 95% confidence intervals are illustrated.

with LCD, ProbCache, HR Symm, and HR Hybrid AM.
For this comparison, we used the cache fractions {10%, 5%,
2%, 0.5%, 0.25%} and selected degree as our rank metric
with eviction at the higher-ranked nodes (deg-).
Fig. 4 presents the comparison for the real-world graphs

under the stationary popularity workload. In terms of
cache-hit ratio we did not perform as well as HR Symm,
which has the best cache utilization in the literature. In
three out of four topologies, we outperformed HR Hy-
brid AM, wherein a request may not be relayed to its
designated cache if the resultant path stretch is greater
than a certain threshold. In every scenario we outper-
formed ProbCache and LCD, which do not utilize neigh-
borhood caches.
Though HR Symm obtained a higher cache-hit ra-

tio, MuNCC was superior in latency reduction, as it
leveraged neighborhood caches instead of preferring a
potentially-distant authoritative cache. The average la-
tency under our strategy was consistently within one
millisecond of LCD (which has the lowest latency in
the majority of cases), as both LCD and MuNCC place
popular content in caches near consumers. In general,
we achieve between 30% and 40% reduction in latency
compared to HR Symm by avoiding path stretch.
Fig. 5 presents the comparison for the real-world graphs

under the temporal popularity workload. Here, we out-
performed HR Hybrid AM on most topologies. Inter-
estingly, we also outperformed HR Symm on GEANT
with cache-to-population ratios less than 5%, as well as
on SPRINT with cache-to-population ratios less than
2%. Here, the HR schemes suffer from slow conver-
gence due to popularity dynamicity and the use of the

LFU replacement policy; LFU’s effects are more visi-
ble on HR due to the compounding effect of redirection
toward authoritative caches. Again, we outperformed
ProbCache and LCD in all cases. In terms of latency,
we outperformed all strategies in almost all scenarios.
In Fig. 6, we show the cache-hit ratio and latency

statistics collected on the scale-free graphs under the
temporal popularity workload. Qualitatively, these re-
sults are very similar to the corresponding results on
real-world graphs. In all scale-free scenarios, our strat-
egy provided the lowest latency.

6.4 False Positives and Cache Exchange Over-
head

In this subsection, we demonstrate the low impact
of false positive events and cache exchange overhead in
MuNCC. We will use the deg- rank metric and the tem-
poral popularity workload with the set of cache fractions
{0.5%, 2%, 5%} on the real-world graphs. The fractions
of requests affected by false positives and the overhead
transmission rates for each scenario are given in Ta-
ble 1. The false positive incidence shown in this table
includes both false positives caused by the probabilis-
tic nature of the BF and false matches due to outdated
cache summaries (e.g., when an eviction occurred af-
ter the latest BF exchange). Note that in all cases less
than 1% of requests experience a false positive. Here,
we have presented overhead in terms of BF transmis-
sions per-second per-node. Actual overhead bandwidth
scales with the chosen BF size; however, note that even
in the worst case (SPRINT, 5%), the effective overhead
bandwidth induced by each node will be less than 100
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(a) Cache-hit ratio: Topo1
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(b) Cache-hit ratio: Topo2
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(c) Cache-hit ratio: Topo3
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(d) Cache-hit ratio: Topo4
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Figure 6: Comparison of cache-hit ratios and content retrieval latencies with cache-to-population ratios {0.25%, 0.5%, 2%, 5%, 10%}
under the temporal popularity workload on scale-free graphs. Error bars indicating 95% confidence intervals are illustrated.

bytes per second.
We observe that on WIDE and GEANT, increasing

cache fractions decreases the incidence of false positives.
However, the behavior is different on the larger graphs
TISCALI and SPRINT, where the incidence peaks at
2% cache size. In every case, increased cache size leads
to an increase in overhead. This may be attributed
to lower-popularity content being more turbulent, and
thus more likely to be evicted; then, BFs which would
otherwise have been unchanged must be refreshed ev-
ery sub-epoch due to the increased number of evictions.
The SPRINT topology, which has a greater average
node degree than the other topologies, has the great-
est overhead. In a real deployment, overhead may be
reduced by tuning the parameters h and C, as well as
the epoch and sub-epoch lengths. We have not tuned
these parameters to each graph in our simulations; the
same parameters are used in every case.

Table 1: Request false positive incidence and overhead transmis-
sions per second per node under the temporal popularity work-
load.

False Positive Rate Overhead Rate
0.5% 0.001372 0.000497

WIDE 2% 0.000819 0.000949
5% 0.000668 0.001170
0.5% 0.003139 0.000725

GEANT 2% 0.002315 0.001250
5% 0.002120 0.001527
0.5% 0.004133 0.000415

TISCALI 2% 0.004948 0.000809
5% 0.004093 0.001139
0.5% 0.006620 0.001422

SPRINT 2% 0.006979 0.002333
5% 0.004843 0.002962

7. CONCLUSION AND FUTURE WORK

In this paper we introduced MuNCC, a coordinated
caching strategy which employs attenuated Bloom fil-
ters to aggregate cache states within the h-hop neigh-
borhoods of each router. This allows neighbors’ caches
to be utilized to serve requests with low latency and
overhead. We leverage redundancy elimination to im-
prove cache diversity in a neighborhood and achieve
competitive cache-hit ratios. Simulation results show
that MuNCC achieves latency levels comparable to sim-
ple on-path caching schemes while increasing cache hit
ratio to levels comparable to network-wide content hash-
ing.
Where other schemes have achieved higher cache hit

ratios, they require significant communication overhead
or induce path stretch that makes them unsuitable for
real-world deployment. As MuNCC achieves low la-
tency while keeping overhead at a minimum, it would
be more practical than such schemes. We envision that
Internet Service Providers could eventually employ a
mechanism like MuNCC in order to improve user qual-
ity of experience (QoE) as well as reduce costs by re-
ducing the need to transit other networks.
MuNCC can be further improved to reduce its coordi-

nation overhead and reduce false positive rates, as well
as potentially increase cache-hit ratios. Such avenues
may be explored in future work.
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