
SybilExposer: An Effective Scheme to Detect Sybil

Communities in Online Social Networks

Satyajayant Misra, Abu Saleh Md Tayeen, Wen Xu†

Abstract—The popularity of online social networks (OSNs) has
resulted in them being targeted with Sybil attacks, where an
adversary forges many fake identities (called Sybils) to disrupt
or control the normal functioning of the system. Several schemes
have been proposed to defend against Sybil attacks. Most of these
schemes work by computing the landing probability or statistical
distribution of visiting frequency of random walks. These schemes
usually have high running time cost and are highly dependent
upon the proper choice of known trusted nodes. To address these
limitations, in this paper we present SybilExposer, an efficient and
effective Sybil community detection algorithm, which relies on
the properties of social graph communities to rank communities
according to their perceived likelihood of being fake or Sybil.
Our experiments on several real-world OSN graphs illustrate that
SybilExposer has close to 100% true positive rate and nearly zero
false positive rate in identifying Sybil communities, and the best
running time complexity compared to the state of the art.

Keywords: Sybil attack, online social network, OSN security.

1. INTRODUCTION

With millions of daily active users, online social networks
(OSNs), such as Facebook, Google+, Twitter, Orkut, and Pokec

have become an integral part of our daily life. Facebook,

the biggest OSN worldwide had 1.2 billion monthly active
users, as of December 2013 [1]. These OSNs offer membership

to any users with email addresses and some basic personal

information. Their popularity and open membership nature,
make these networks candidates for several malicious attacks.

Sybil attack is one of such attacks on these systems. In Sybil

attacks, an attacker can forge multiple identities called Sybils
(or Sybil nodes) to adversely influence the functioning of the

targeted system. For instance, adversary-owned identities can
outvote the benign users in reputation or voting systems of

OSNs. Socialbot-controlled [5] user accounts can help attackers

acquire sensitive user data and distribute customized spams
in the messaging system of OSNs. It is estimated that for

Facebook, approximately 1.2% of its worldwide monthly active

users (14 million) are fake accounts [1]. Therefore, Sybil attack
is a serious threat in OSNs.

One main goal of defense against Sybil attacks is to detect
and remove Sybil identities. Recently a number of schemes

have been proposed to uncover Sybils by leveraging OSN

graphs, in which a node represents a user and the edges between
nodes correspond to the trust relationship established by the

users. The basic foundation of these schemes is based on the in-

herent difficulty of a Sybil node connecting with honest nodes.
Even when an attacker can create multiple Sybil identities in

social networks and connect them arbitrarily, because of the

trust relationship that must exist between two identities in the

† The authors are with the Computer Science department of New
Mexico State University, Las Cruces, NM. Email:{misra, atayeen,
wxu}@cs.nmsu.edu. This work was supported in part by the the U.S. NSF
grants: 1248109 and 1345232 and the U.S. ARO grant number W911NF-15-
1-0393.

real-world to be connected, an attacker will have difficulty es-

tablishing many connections with honest identities. As a result,
Sybil nodes are poorly connected to the rest of the network,

which causes the social graph to partition into two regions:

one comprised of Sybil nodes and the other of honest nodes.
Most of the Sybil defense schemes leverage the sparse cut-set

consisting of all attack edges (links between Sybil nodes and

honest nodes) to identify Sybil nodes. However, [8] confirmed
that this over-simplified social structure is not accurate in real-

world social networks. The honest region actually appears as

a collection of tightly knit local communities relatively loosely
coupled with one another rather than one large community.

Moreover, researchers have observed [15] that the success

rate of creating links to honest nodes through sending out link-

establishment requests from attacker-controlled forged profiles
and engineering bots [5] are more frequent than believed.

Hence the cardinality of the cut-set connecting the Sybil

region/community to the honest regions/communities is not
necessarily that small. This makes state of the art Sybil de-

tection schemes, which rely on this small cutset cardinality to

identify Sybil nodes ineffective. Furthermore, instead of one
region composed of Sybil nodes, there may exist multiple Sybil

communities which are connected to the honest nodes, thus

leaving the network vulnerable to the attackers who are con-
trolling those Sybil communities, which is so far unexplored.

Most of the recent Sybil defense mechanisms ([6], [12]
and [14]) use a number of random walks of different length

from known benign users or trusted nodes to distinguish
between Sybil nodes and honest nodes. Performing random

walks for large datasets with million to billion nodes, is a time-

consuming and computationally expensive operation. Besides,
the quality and performance of these schemes significantly

depend on the selection of the known trusted nodes in so-

cial networks, which may require user monitoring to identify
Sybil nodes. Motivated by the above issues, in this paper we

propose SybilExposer, which addresses the limitations of the

previous works. SybilExposer identifies Sybil nodes in attack
scenarios where Sybil nodes form one or more communities

and are strongly integrated with the honest communities.

Contributions: The main contributions of this paper include: a)

We propose SybilExposer, a computationally efficient algorithm

to detect Sybil communities. b) SybilExposer does not require
the initial manual identification of trusted nodes, which is non-

scalable for large OSNs. c) We perform comprehensive evalua-
tion of SybilExposer along with other state of the art algorithms

(SybilRank, SybilDefender and SybilShield) on several real-

world OSN datasets.

The rest of this paper is organized as follows. Section 2

provides the background and the related work on Sybil defense
schemes. Section 3 presents our model and assumptions. We

describe SybilExposer in Section 4. Section 5 shows the effec-

(a) (b) (c)

Honest Community

Sybil Community

Attack Edges

Foreign Edges

Fig. 1: Threat Model: (a) Single honest and single Sybil community, (b) Multiple honest and single Sybil communities, (c) Multiple honest
and multiple Sybil communities.

tiveness of SybilExposer using experiments, which is followed

by concluding remarks in Section 6.

2. BACKGROUND AND RELATED WORK

Sybil detection approaches in OSNs can be classified into
two categories: feature-based approach and social-graph-based

approach. In feature-based Sybil detection approaches, re-
searchers have focused on extracting features (acceptance

rate of incoming/outgoing requests, invitation frequency, etc.)

from users’ profiles [15] and observing user activity patterns
(Clickstream data) [13] to derive a machine-learning based

model to identify fake/Sybil user accounts. In social-graph-

based approaches, researchers have exploited the topological
properties of OSN graphs such as fast-mixing, and conductance

to identify Sybil nodes. Our work studies Sybil community

detection in the absence of user profile and interaction data, and
falls into the second category leveraging structural properties of

social graphs. Yu et al. proposed SybilGuard [17] followed by

SybilLimit [16]. Both algorithms rely on the strong assumption
of simplified social network structure and fast mixing prop-

erty [17]. However, as observed in [11] many OSNs are not
that strongly fast mixing, which reduces the effectiveness of

SybilGuard and SybilLimit.

SybilShield [12] accounts for the multi-community structure

of social networks. It employed multiple agents (verifiers) to
verify potential Sybil nodes. It demonstrated significantly less

false positives than SybilGuard, but without any improvement

in false negatives. Also, in SybilShield there are several pa-
rameters whose choice is tightly tied to the properties of social

graphs. SybilInfer [7], a centralized approach, uses a Bayesian

inference technique that assigned to each node of the network
its probability of being Sybil. It has high false negatives and

high computation overhead. In [3], the authors have identified

that the ACL (Anderson, Chung, Lang) [3] algorithm can be
used to white-list a local region in the graph, but there are

no explanations on how multiple Sybil communities can be

identified system-wide.

SybilDefender [14] calculates the statistical distribution of
the visiting frequency for nodes in the honest region using a

fixed number of short random walks originated from multiple
known trusted nodes. A node whose statistical distribution

differs from that of the calculated distribution is identified

as sybil. SybilDefender does not scale for large OSNs due
to the large overhead of computing several random walks. It

also has parameters that vary significantly for different graphs.

SybilRank [6], the best algorithm in literature, aims to derive a
ranking of all the nodes in a social graph where Sybil nodes will

most likely have the low rankings. However, SybilRank uses

log n power iterations [10], where n is the number of nodes in

the social graph. These iterations result in high computational
cost for large graphs. SybilRank also requires the selection of

several trusted seeds by manual inspection of nodes in the social

graph, thus is non-scalable.

SybilExposer, our Sybil defense algorithm addresses the

weaknesses—high computation cost, need for manual inspec-

tion, do not consider multiple sybil communities—of the exist-
ing social graph based Sybil defense schemes. It also improves

identification, it has more than 20% improvement in Sybil

communities detection compared to SybilRank. SybilExposer
can serve as a scalable first line of identification of multiple

Sybil communities in large networks with the more data-

intensive feature-based approaches following it.

3. SYSTEM AND THREAT MODEL AND ASSUMPTIONS

System and Threat Model: The OSN is modeled as an
undirected graph G = (V , E), where V represents a set of

unique users and E represents dyadic social relationships of
the users. The social graph G has order n = |V | and the

size m = |E|. We denote the degree of a node v ∈ V by

deg(v). We define two different types of degree of a node
v: inter-community degree and intra-community degree. Intra-

community degree, intra-deg(v) of v ∈ V , refers to the number

of nodes adjacent to v that also belong to the same community
as v. Inter-community degree, inter-deg(v) of v ∈ V , refers

to the number of nodes adjacent to v but not in the same

community as v. The honest nodes may form a single cluster
or multiple clusters of different sizes, which are termed as

honest communities/regions. These communities may be inter-

connected; an edge between two honest nodes in two different
honest communities is named as a foreign edge.

In our threat model, there can be one or more malicious

users in the network, each capable of launching Sybil attack
by creating a number of unique but fake identities called Sybil

identities. Communities formed by Sybil nodes are termed Sybil

communities/regions. The adversaries can create arbitrary edges
within the Sybil communities. Sybil regions are connected to

one or more honest communities by attack edges emanating

from their corresponding nodes. Fig. 1 shows a social network
topology with our threat model.

Assumptions: To our best knowledge, we are the first to

account for multiple Sybil communities in an OSN, interacting

with multiple honest communities. We assume that the online

social network provider, e.g., Facebook has access to the entire

social graph. Since an edge in social network represents a real-
world dyadic human relationship, it is difficult for a Sybil node

to directly connect to many honest nodes. Consequently, we

assume that an adversary may create many Sybil identities, but
it cannot establish arbitrarily many links with honest nodes. We

also assume that large number of fake identities can be created

into a community to initiate large-scale attacks.

4. SYBILEXPOSER DESIGN

In this section, we present our algorithm, SybilExposer. Our

algorithm uses the ratio of inter-community degree (number of
edges in a community) and intra-community degree (number

of edges emanating from a community) of each community
in the social graph to differentiate Sybil communities from

honest communities. The intuition is that usually a community

has fewer inter-community connections than intra-community
connections. Also, generally nodes from an honest community

tend to have larger number of inter-community edges with

nodes in other honest communities compared to nodes in
Sybil communities. Again, Sybil nodes may have high intra-

community degree, but they tend to have on an average fewer

connections with honest nodes in other communities. Hence the
ratio of inter-community degree to intra-community degree of

the Sybil nodes in a Sybil community will be smaller than that

of the honest nodes in an honest community. This intuition is
also the basis for the other random walk based algorithms in

the literature [12], [14], [6]. Sybil communities have few inter-
community edges with the honest communities, whereas the

honest communities have high inter-community edges among

themselves. This ensures that the random walks originating
within honest communities seldom terminate in sybil commu-

nities. Our proposed solution, SybilExposer, leverages these

observations and operates in two stages, which we present as
two algorithms. In the first algorithm (stage), we extract the

communities in the full graph by using a modified version of

the Louvain method [4]. In the second algorithm (stage), we
rank the communities by utilizing their inter-/intra-community

degree information.

A. Definitions

Definition 4.1. (Partition modularity [4]) Partition modularity

of an OSN G(V, E) measures the number of links inside
communities as compared to the number of links between

communities. It is a scalar value in the range [-1, 1]. It can
be defined as

Q =
1

2m

∑

i,j∈V

[

Aij −
kikj

2m

]

δ(ci, cj), (4.1)

where Aij represents the weight of the edge between i and j,

ki =
∑

j Aij is the sum of weights of all edges attached to
vertex i, ci is the community to which vertex i is assigned, the

δ function, δ(ci, cj) defined for a pair of community (ci, cj),
is 1 if ci = cj and 0 otherwise, and m = 1

2

∑

i,j∈V Aij . �

Definition 4.2. (Gain in modularity [4]) The gain in mod-

ularity ∆Q for a graph G = (V, E), obtained by moving an
isolated node i into a community C can be computed as

∆Q =

[
∑

in
+2ki,in

2m
−

(
∑

tot
+ki

2m

)2]

−

[
∑

in

2m
−

(
∑

tot

2m

)2

−

(

ki

2m

)2]

, (4.2)

where
∑

in
is the sum of link weights of C,

∑

tot
is the sum

of link weights of all links incident to nodes in C, ki is the

sum of weights of all links incident on node i, ki,in is the sum

of weights of links from i to nodes in C, and m is the sum of
weights of all links in the network. �

Definition 4.3. (Node Diversity) For v ∈ V in the OSN graph
G = (V, E), the node diversity, ND(v), is defined as ND(v) =
inter-deg(v)/intra-deg(v), where ND(v) ≥ 0, and ND(v) = 0
when v is only connected to nodes within its community. �

Definition 4.4. (Community Diversity) Let Ci be the i-th
community in the OSN graph, G = (V, E), and v ∈ V and v ∈
Ci. Then CD(Ci), the community diversity of community Ci

is defined as CD(Ci) =
∑

v∈Ci

inter-deg(v)/
∑

v∈Ci

intra-deg(v);

CD(Ci) ≥ 0, and CD(Ci) = 0 when Ci is isolated. �

B. First stage: Community Extraction algorithm

In the first stage, we modify the Louvain method [4], a
community detection algorithm that clusters the graph into

communities by iteratively optimizing the graph’s partition

modularity (ref. Definition 4.1). This method is a combination
of two phases. In the first phase, which comprises of Steps 5

to 24 of Algorithm 1, initially each node represents a com-

munity. The algorithm iteratively merges the communities in a
way that increases the partition modularity (Steps 9 to 23).

Steps 25 to 28 constitute the second phase. In this phase, a

new graph G′ = (V ′, E′) is constructed, where each node v′′

represents a community in G′ and each edge e′′ = (u′′, v′′)
represents the inter-community edges between two commu-

nities Cu′′ and Cv′′ . The weight of each e′′ is the sum of
weights of edges between Cu′′ and Cv′′ . Then the first phase

is re-applied for the newly created graph. The two phases of

this algorithm are repeated until the cardinality of C can no
longer be reduced. The computational cost of each iteration in

this method is O(m). However, due to the rapid merging of
communities this method requires a small number of passes,

hence the total running time on amortization is O(m).
C. Second stage: Community Ranking algorithm

In the second stage, communities generated in the first stage
are ranked in increasing order according to their likelihood of

being Sybil. As we discussed in the beginning of this section,

the ratio of inter-community degree to intra-community degree
of Sybil communities would be much smaller than the ratio

for honest communities. In other words, an honest community

has greater diversity (connections with other communities) than
a Sybil community, thus community diversity can be used

as a candidate of ranking index. We further observed that in

some cases, small honest communities may have few inter-
community edges and more intra-community edges resulting in

a lower community diversity than some Sybil communities; but
in this case their node diversity may be larger. So we multiply

the average node diversity by the community diversity and

use the product value as the ranking index. The average node
diversity also helps normalize the results of community size. It

is likely to produce a smaller rank value for Sybil communities

than for honest communities.
Algorithm 2 presents the community ranking algorithm. We

find the total node diversity (Steps 5 to 8). Then we compute the

Algorithm 1 Community Extraction

Input: G = (V, E), where G is the social graph

Output: C ={C1, C2, . . . , Ck}, where Ck is the k-th commu-

nity
1: Create G′(V ′, E′) = G(V, E).
2: For each edge, e′ ∈ E′, assign weight w(e) = 1.
3: Assign modularity difference, Qdiff = 0.000001. {As

per [4]}
4: repeat

5: Assign each node i ∈ V ′ a unique community number

Ci. {community number can start with 1}
6: C = {C1, C2, . . . , C|V ′|}.
7: Compute new modularity, Qnew as per Equation 4.1.

8: repeat

9: Current modularity, Qcurrent = Qnew.
10: for each node i ∈ V ′ do

11: max∆Q = 0, maxNbr = null.
12: for each node j ∈ NG(i) do

13: Compute modularity gain, ∆Qij from adding i
to Cj as per Equation 4.2.

14: if ∆Qij ≥ 0 and ∆Qij > max∆Q then

15: max∆Q = ∆Qij .

16: maxNbr = j.
17: end if

18: end for

19: if max∆Q > 0 then

20: CmaxNbr ← CmaxNbr ∪ Ci.

21: end if

22: end for

23: Compute new modularity, Qnew as per Equation 4.1.

24: until Qnew −Qcurrent ≤ Qdiff .

25: Create a new graph G′′ = (V ′′, E′′), where v ∈ V ′′

represents Cv ∈ C. {communities set is now smaller}
26: Each edge e′′ = (u, v) ∈ E′′ represents the inter-

community connections between nodes in communities

Cu and Cv .

27: Assign weight, w(e′′) = cardinality of inter-community
edges between Cu and Cv.

28: G′(V ′, E′) = G′′(V ′′, E′′).
29: until the cardinality of C can no longer be reduced.
30: Output C.

community diversity, CD(Ci) and determine the rank value,
r(Ci) of community Ci in Steps 10 and 11. Steps 2 to 11

are repeated until we determine the rank values of all the

communities. Step 13 sorts the communities in descending
order of rank values. Then, we refine the ranking further as

follows. Isolated Sybil communities can not adversely affect

the network. So we remove all communities with zero rank
values (Step 14).

Since small communities with small number of inter-

community connections can have limited adverse effects on

the network at best, and it is difficult to differentiate small
Sybil from small honest communities, we drop them from the

ranking. We filter out those communities by setting thresholds

Thsize, on the community size, and Thintr, on the total number
of foreign edges of a community in Step 15. We discuss

the choice of these threshold values that we obtain from an

Algorithm 2 Community Ranking

Input: G = (V, E), where G is the social graph, C =
{C1, C2, . . . , Cn}, where Cn is the n-th community and

Cn ⊂ V , Thsize, Thintr, τ .
Output: S = {C1, C2 . . . Ck}, where S ⊂ C and Ck is the

k-th probable Sybil community.
1: for each Ci ∈ C do

2: r(Ci)← 0. {initialize rank of Ci}
3: CD(Ci)← 0, TND(Ci)← 0.
4: for each node v ∈ Ci do

5: intra-deg(v) = |Itav|, where Itav = {(v, u)|v, u ∈ Ci

and (v, u) ∈ E}.
6: inter-deg(v) = |Itev|, where Itev = {(v, u)|v ∈

Ci, u ∈ Cj and (v, u) ∈ E}.

7: ND(v) =
inter-deg(v)

intra-deg(v)
.

8: TND(Ci)← TND(Ci) + ND(v).
9: end for

10: CD(Ci) =
∑

v∈Ci

inter-deg(v)/
∑

v∈Ci

intra-deg(v).

11: r(Ci)←
TND(Ci)
|Ci|

× CD(Ci) .

12: end for

13: Sort r values in descending order.
14: Remove all isolated communities Ci from the list (r(Ci) =

0). {isolated communities}
15: Remove all communities Ci from the ranked list where

|Ci| ≤ Thsize and
∑

v∈Ci

inter-deg(v) ≤ Thintr.

16: Traverse the list starting from the bottom (C0) and set pivot

point at Ci−1, if r(Ci)− r(Ci−1) ≥ τ .
17: Set S = {Ci−1, . . . , C0}, and return S.

extensive training set in the next section. In Step 16, the

algorithm proceeds from the bottom of the ranked list and fixes

the pivot point at the previous rank value when the increase
from the previous rank value to the current rank value is greater

than a threshold τ , an input in this algorithm. Again, we discuss

the choice of τ in the next section. In Step 17, communities
with rank values less than or equal to the pivot are marked as

Sybil communities, and returned as the Sybil set S.

D. Computational complexity

The computational complexity of SybilExposer is O(n +
c log c), where n is the total number of nodes in the social graph

and c is the total number of extracted communities. Overall, the
running time complexity of the Steps 1 through 11 is O(n),
because even though the computation of diversities is done per

cluster or community, essentially it is performed per node in
Steps 5 to 8. The cost for sorting the communities in descending

order of value is O(c log c). To find the pivot rank value the
cost is O(c), where c << n. Thus, the overall computational

complexity is O(n+c log c). In comparison, the best algorithm

in the literature, SybilRank, has a complexity of O(n log n).

5. EVALUATION

We evaluate the effectiveness of SybilExposer by performing
experiments on several real-world SN datasets [9] of varying

size, and analyzing the results in terms of true positive rate,

500 1000 1500 2000 2500 3000

0

0.2

0.4

0.6

0.8

1

Attack Edges

T
P

R

SybilDefender

SybilShield

SybilRank

SybilExposer

(a) ca-AstroPh

500 1000 1500 2000 2500 3000

0

0.2

0.4

0.6

0.8

1

Attack Edges

T
P

R

SybilDefender

SybilShield

SybilRank

SybilExposer

(b) Facebook

500 1000 1500 2000 2500 3000

0

0.2

0.4

0.6

0.8

1

Attack Edges

T
P

R

SybilDefender

SybilShield

SybilRank

SybilExposer

(c) soc-Epinions1

1000 2000 3000 4000 5000 6000

0

0.2

0.4

0.6

0.8

1

Attack Edges

T
P

R

SybilDefender

SybilRank

SybilExposer

(d) Pokec

Fig. 2: True Positive Rate for different graphs (collaboration graph: ca-AstroPh and social-interaction graph: Facebook, Epinion, Pokec) with
varying number of attack edges.

false positive rate, and running time. We compare SybilEx-
poser against the best three current algorithms: SybilRank [6],

SybilShield [12], and SybilDefender [14].

A. Datasets and Experiment Setup

Table I shows some properties of the social graphs used

in our experiments. Note that l0 and R are parameters for
SybilDefender. In the experiments, we simulate two types of

TABLE I: Social graph Datasets used in our Experiments

Dataset Nodes Edges l0 R

ca-AstroPh 18,772 198,110 6 100
Facebook 63,731 817,035 20 500

soc-Epinions 75,879 508,837 24 500
soc-Pokec 1,632,803 30,622,564 540 1000

attack strategies to construct the Sybil communities: Single-

Community strategy (SC), where only one Sybil community
exists in the OSN; and Multi-Community (MC) strategy, where

there are multiple Sybil communities. As per the literature

([6], [12], [14]), to generate the Sybil regions for both attack
strategies, we choose the Barabasi-Albert (BA) scale-free model

(small-world property) [2]. Each newly added Sybil node pref-

erentially attaches to m other Sybil nodes with the attachment
probability depending on their respective node degrees. Similar

to [6], we chose m = 4 for all Sybil communities. The number
of attack edges for a Sybil region is represented as g. An attack

edge is created by connecting a Sybil node from the region and

an honest node, both chosen randomly.

In our experiments, for all graphs with less than 1 million

nodes we chose the number of attack edges as g ∈ {500, 1000,
1500, 2000, 2500, 3000}. In the MC strategy, we built 3 Sybil

communities of the same size. The Sybil community had 5000

nodes for all graphs with nodes less than 1 million. But for the
graph with nodes 1 million or greater, the Sybil community had

10,000 nodes and the number of attack edges was chosen as

g ∈ {1000, 2000, 3000, 4000, 5000, 6000}. In every graph, we
created 5 instances of Sybil communities for each attack edge

configuration and averaged the results.

In SybilExposer, we used thresholds Thsize and Thintr to

discard small sized honest communities with limited number of

total inter-community connections. From our observation over
a subset of the graphs, setting Thsize = 50 and Thintr =
50 for graphs with n ≤ 50, 000 and setting Thsize = 100
and Thintr = 100 for graphs with n > 50, 000, works well.
By using learning on a few of the datasets, we identified the

value of τ to be 0.01, which represents the minimum difference

between two consecutive ranks for placement of the pivot. For
SybilRank, we follow the method used in the paper to select the

trusted seeds (ts), thus |ts| = 50. One trusted seed was chosen

randomly from the top-10 honest nodes with highest degrees
and the remaining 49 seeds were chosen randomly.

For SybilDefender, we compared with the community detec-
tion algorithm whose parameters are as follows: l0, R and β.

We used β = 0.95 on all datasets; the other two parameters

were scaled down based on dataset size to appropriate values,
following the mechanism in [14] (ref. Table I).

B. Experiment Results

We ran all the algorithms on a machine with 8GB memory

and an Intel Core i7 2.93 GHz processor. We define the true

positive rate (TPR) as the percentage of Sybil nodes correctly
identified to be Sybil and the false positive rate (FPR) as the

percentage of the honest nodes falsely identified to be Sybil.
For the pair-wise verification procedure, SybilShield, it was

infeasible to examine all pairs of verifier and suspect nodes to

obtain the exact TPR and FPR. So to estimate the rates in each
experiment we randomly select 100 verifier, honest suspect, and

Sybil suspect nodes respectively.

1) Single-Community (SC) Attack Strategy: Figure 2 shows
the results of TPR for different datasets in the SC attack

scenario when the number of attack edges increased from 500

to 3000. The TPR of SybilDefender degrades drastically with
the increase of attack edges for all graphs. This is because

of its strong reliance on the random walks not traversing

the limited attack edges between the Sybil and the honest
regions to identify Sybil nodes. With increasing attack edges,

the probability of random walks reaching the honest region

from a Sybil node also increase. This results in more Sybil
nodes being identified as honest nodes, thus reducing the TPR.

SybilShield’s TPR follows a similar trend. As the attack edges

increase, the probability of intersections of the random walks
from the verifiers and suspect nodes increase in SybilShield.

This reduces the TPR. Note that, due to the very high running
time of SybilShield (even for 100 suspect nodes) we were not

able to represent its performance on the Pokec graph.

On an average the TPR of SybilRank was 71%-78%, while in

SybilExposer it is lower bounded by 80% and goes up to almost

100%. SybilRank uses ts = 50 trusted nodes to propagate
trust values to all nodes and identifies nodes with low trust

value as Sybil. However, if a Sybil node is attached close to

a few trusted nodes, it may gain a high trust value and thus
will be identified as honest. The chance of this happening also

increases with the number of attack edges. On the other hand,

500 1000 1500 2000 2500 3000

0

0.2

0.4

0.6

0.8

1

Attack Edges

F
P

R

SybilDefender

SybilShield

SybilRank

SybilExposer

(a) ca-AstroPh

500 1000 1500 2000 2500 3000

0

0.2

0.4

0.6

0.8

1

Attack Edges

F
P

R

SybilDefender

SybilShield

SybilRank

SybilExposer

(b) Facebook

500 1000 1500 2000 2500 3000

0

0.2

0.4

0.6

0.8

1

Attack Edges

F
P

R

SybilDefender

SybilShield

SybilRank

SybilExposer

(c) soc-Epinions1

1000 2000 3000 4000 5000 6000

0

0.2

0.4

0.6

0.8

1

Attack Edges

F
P

R

SybilDefender

SybilRank

SybilExposer

(d) Pokec

Fig. 3: False Positive Rate for different graphs with varying number of attack edges

SybilExposer does not use any trusted nodes in the social graph
and does not depend on the random walks. Instead, it uses

the node diversity and community diversity properties of the

social graph to identify Sybil nodes as a community. Also,
SybilExposer aims to identify the Sybil nodes as part of a

Sybil community, rather than trying to identify each Sybil node

individually. Our algorithm takes advantage of the intrinsic
nature of communities to distinguish between honest and Sybil

communities. Sybil communities and honest communities differ

in terms of the inter-community edges cardinality, which does
not change appreciably with the increase of attack edges; this

helps SybilExposer in getting consistently better results than
the other algorithms. To our best knowledge, SybilExposer is

the first algorithm in the literature that leverages the intrinsic

nature of communities, which helps it obtain better outcomes.
Figure 3 presents the average FPR of all algorithms. Sybil-

Exposer maintains about 0%-3% FPR on an average for all

datasets, whereas SybilRank maintains about 0%-9% FPR and
SybilDefender almost 0% FPR. As we can see in Figure 3,

SybilShield averages about 11%-65% FPR for the medium

order datasets, which is higher than the other algorithms. Hence,
Figures 2 and 3 show that SybilExposer outperforms other

algorithms significantly in terms of TPRs and FPRs.
2) Multi-Community (MC) Attack Strategy: The TPR of

SybilExposer decreases to 93.33% for soc-Epinions1 dataset at

3000 attack edges when there are multiple Sybil communities,
but it is still 22% higher than for SybilRank. SybilRank also has

the best FPR, 0%-7% only. Due to space limitation we could not

present the performance comparisons in the MC attack scenario.

50K 100K 250K 500K 1000K 3000K

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

1500

1600

1700

Social Graph Order

R
un

ni
ng

 ti
m

e(
s)

SybilDefender
SybilRank
SybilExposer

Fig. 4: Running time of different algorithms.

3) Running Time: To compare the running time of the
algorithms we created five instances of six BA model based

synthetic graphs. Figure 4 shows the average running time.

SybilExposer performs much faster in comparison to the other
schemes, whose running time rises rapidly with the number

of nodes. This is attributable to two facts. First, the other

algorithms in the literature run several random walks to identify
the Sybil communities, which contributes significantly to the

running time (best case running time is O(n log n)). Second,

our algorithm does not use random walks, instead it focuses
on intrinsic community properties in the network, which can

be calculated in O(n + c log c), where n and c are the num-

ber of nodes and clusters respectively. This demonstrates the
scalability of SybilExposer.

6. CONCLUSIONS AND FUTURE WORK

In this paper we introduce SybilExposer, a Sybil communi-

ties detection algorithm for OSNs, which uses the topological
properties of communities in OSNs for the Sybil identification.

Our simulation results show that SybilExposer performs better

in effectiveness and computational cost compared to the state of
the art. In the future, we will extend our scheme to handle non-

community Sybil nodes and edges between Sybil communities.

REFERENCES

[1] Facebook, Inc.: Annual report. http://www.sec.gov/Archives/edgar/data/
1326801/000132680114000007/fb-12%312013x10k.htm, January 2014.

[2] R. Albert and A.-L. Barabási. Statistical mechanics of complex networks.
Reviews of modern physics, 74(1):47, 2002.

[3] L. Alvisi, A. Clement, A. Epasto, S. Lattanzi, and A. Panconesi. Sok:
The evolution of sybil defense via social networks. In IEEE Symposium
on Security and Privacy (SP), pages 382–396, 2013.

[4] V. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre. Fast
unfolding of communities in large networks. Journal of Statistical
Mechanics: Theory and Experiment, 2008(10):P10008, 2008.

[5] Y. Boshmaf, I. Muslukhov, K. Beznosov, and M. Ripeanu. Design and
analysis of a social botnet. Computer Networks, 57(2):556–578, 2013.

[6] Q. Cao, M. Sirivianos, X. Yang, and T. Pregueiro. Aiding the detection
of fake accounts in large scale social online services. In NSDI, pages
197–210, 2012.

[7] G. Danezis and P. Mittal. Sybilinfer: Detecting sybil nodes using social
networks. In NDSS, 2009.

[8] R. Kumar, J. Novak, and A. Tomkins. Structure and evolution of online
social networks. In Link mining: models, algorithms, and applications,
pages 337–357. Springer, 2010.

[9] J. Kunegis. Konect: the koblenz network collection. In Proceedings of
the WWW, pages 1343–1350, 2013.

[10] A. Langville and C. Meyer. Deeper inside pagerank. Internet Mathemat-
ics, 1(3):335–380, 2004.

[11] A. Mohaisen, A. Yun, and Y. Kim. Measuring the mixing time of social
graphs. In Proceedings of the 10th ACM SIGCOMM conference on
Internet measurement, pages 383–389, 2010.

[12] L. Shi, S. Yu, W. Lou, and Y. Hou. Sybilshield: An agent-aided social
network-based sybil defense among multiple communities. In IEEE
INFOCOM, pages 1034–1042, 2013.

[13] G. Wang, T. Konolige, C. Wilson, X. Wang, H. Zheng, and B. Zhao. You
are how you click: Clickstream analysis for sybil detection. In USENIX
Security, pages 241–256, 2013.

[14] W. Wei, F. Xu, and et al. Sybildefender: Defend against sybil attacks in
large social networks. In IEEE INFOCOM, pages 1951–1959, 2012.

[15] Z. Yang, C. Wilson, X. Wang, T. Gao, B. Zhao, and Y. Dai. Uncovering
social network sybils in the wild. ACM TKDD, 8(1):2, 2014.

[16] H. Yu, P. Gibbons, M. Kaminsky, and F. Xiao. Sybillimit: A near-optimal
social network defense against sybil attacks. In IEEE Symposium on
Security and Privacy, pages 3–17, 2008.

[17] H. Yu, M. Kaminsky, P. Gibbons, and A. Flaxman. Sybilguard: defending
against sybil attacks via social networks. In ACM SIGCOMM Computer
Communication Review, volume 36, pages 267–278, 2006.

