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Abstract

Cognitive radio and Dynamic Spectrum Access (DSA) enable wireless users to share
a wide range of available spectrums. In this paper, we study joint spectrum alloca-
tion and scheduling problems in cognitive radio wireless networks with the objec-
tives of achieving fair spectrum sharing. A novel Multi-Channel Contention Graph
(MCCG) is proposed to characterize the impact of interference under the protocol
model in such networks. Based on the MCCG, we present an optimal algorithm to
compute maximum throughput solutions. As simply maximizing throughput may
result in a severe bias on resource allocation, we take fairness into consideration by
presenting optimal algorithms as well as fast heuristics to compute fair solutions
based on a simplified max-min fairness model and the well-known proportional fair-
ness model. Numerical results show that the performance given by our heuristic
algorithms is very close to that of the optimal solution, and our proportional fair
algorithms achieve a good tradeoff between throughput and fairness. In addition,
we extend our research to the physical interference model, and propose effective
heuristics for solving the corresponding problems.
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1 Introduction

Over the past few years, the world has experienced a very rapid proliferation
of wireless devices. The traditional static spectrum access approach, which
assigns a fixed portion of the spectrum to a specific license holder or a wireless
service for exclusive use, is unable to manage the spectrum efficiently any
longer. On one hand, certain parts of the spectrum are heavily used, such as
the 2.4GHz band and the 5GHz band, which leads to serious interference and
therefore poor network throughput. On the other hand, a significant amount
of spectrums remain under-utilized or not utilized at all, which has been shown
by recent studies and experiments [2].

The most efficient and direct method to solve the above problems is to allow
wireless users to share a wide range of available spectrums. Emerging cog-
nitive radio technology and the Dynamic Spectrum Access (DSA) approach
enable unlicensed wireless users (a.k.a secondary users) to sense and access
the under-utilized spectrum opportunistically even if it is licensed, as long as
the licensed wireless users (a.k.a primary users) in such a spectrum band are
not interfered. A network composed of wireless users with cognitive radios
and dynamic spectrum access capabilities is called a cognitive radio wireless
network or a DSA wireless network [2].

How to efficiently and fairly share the available spectrums is a fundamental
and challenging problem in cognitive radio wireless networks [2]. In a multihop
wireless network, a wireless user usually refers to a transmitter and receiver
pair (a wireless link) [11]. The spectrum sharing problem usually involves
two coupled problems: the spectrum allocation problem and the scheduling
problem. The spectrum allocation problem seeks a solution which allocates
available spectrum bands to the users for packet transmissions. The scheduling
problem looks for a solution which determines when these users can access the
allocated spectrum bands. The objective is to achieve a good tradeoff between
throughput and fairness while ensuring interference-free transmission at any
time. In this paper, we present optimal algorithms as well as fast heuristic
algorithms to solve the joint spectrum allocation and scheduling problems in
multihop cognitive radio wireless networks. Specifically, our contributions are
summarized as follows:

1) We propose a novel Multi-Channel Contention Graph (MCCG) to precisely
characterize the impact of interference in a cognitive radio wireless network.

2) We study the joint spectrum allocation and scheduling problems, which
have never been seriously addressed before in the context of multihop cognitive
radio wireless networks. We present optimal algorithms as well as fast heuristic
algorithms to solve these problems and evaluate their performance by extensive
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simulations.

3) We take account of both the protocol and the physical interference mod-
els [7], making our solutions more comprehensive and more suitable for prac-
tical scenarios. If each wireless user is assumed to transmit at a fixed power
level, the protocol model can be used to address interference. However, if users
have the power control capability, the physical interference model should be
considered.

The rest of this paper is organized as follows. We discuss related work in
Section 2. The system model is described in Section 3. We define the problems
to be studied in Section 4. The proposed spectrum allocation and scheduling
algorithms are presented in Section 5. We present numerical results in Section 6
and conclude the paper in Section 7.

2 Related Work

The cognitive radio wireless networks have recently attracted lots of research
attention. The most related work is [27], in which Zheng et al. developed a
graph-theoretic model to characterize the spectrum access problem and de-
vised a set of heuristics to find high throughput and fair solutions. In [25], the
concept of a time-spectrum block was introduced to model spectrum reserva-
tion, and protocols were presented to allocate such blocks. A centralized spec-
trum allocation protocol called Dynamic Spectrum Access Protocol (DSAP)
was proposed in [5]. In DSAP, spectrum management is conducted in a cen-
tral entity called DSAP server which can obtain a global view of network by
exchanging information with users. In [6], a distributed spectrum allocation
scheme based on local bargaining was proposed for cognitive radio wireless ad
hoc networks. In [26], the authors derived optimal and suboptimal distributed
strategies for the secondary users to decide which channels to sense and access
with the objective of throughput maximization under a framework of Partially
Observable Markov Decision Process (POMDP).

Cross-layer schemes have also been proposed for cognitive radio wireless net-
works. In [21], Wang et al. considered the joint design of dynamic spectrum
access and adaptive power management. They proposed a power-saving multi-
channel MAC protocol (PSM-MMAC), which is capable of reducing the colli-
sion probability and the waiting time in the awake state of a node. The authors
of [11] proposed the Asynchronous Distributed Pricing (ADP) scheme to solve
a joint spectrum allocation and power assignment problem. In [24], a novel
layered graph was proposed to model spectrum access opportunities, which
was used to develop joint spectrum allocation and routing algorithms. In [22],
two design methodologies were explored: a decoupled (layered) design and a
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collaborative (cross-layer) design. The authors implemented the idea of collab-
orative design by proposing joint routing, scheduling and spectrum allocation
algorithms. A Mixed Integer Non-Linear Programming based algorithm was
presented to solve a joint spectrum allocation, scheduling and routing problem
in [10]. In addition, the authors of [23] presented distributed algorithms for
joint spectrum allocation, power control, routing, and congestion control.

Maximum throughput and fair resource allocation (channel assignment, schedul-
ing) has also been studied for traditional multihop wireless mesh networks
in [1,19,20]. The differences between this work and previous works are sum-
marized as follows: First of all, resource allocation in a cognitive radio wireless
network is quite different from that in traditional multihop wireless networks
such as 802.11-based wireless mesh networks due to its special features such
as dynamic channel availability, channel heterogeneity and so on (refer to [2]
for details). Second, fairness is a major concern of this work. However, the
schemes proposed in [10,21,22,24,26] achieve different optimization goals such
as minimizing power consumption, maximizing throughput and minimizing
bandwidth usage. Third, this paper focuses on the joint spectrum allocation
and scheduling problems. However, scheduling has not been well addressed
by [5,6,11,22–24,26,27]. Fourth, we propose algorithms to optimally solve the
formulated problems. However, only heuristic algorithms were proposed in
[5,6,10,11,21,22,24,27], which cannot provide any performance guarantees. In
addition, we consider both the protocol and physical interference models. How-
ever, in most of previous works on spectrum allocation [5,6,22,24,25,27], only
the protocol interference model has been considered.

3 System Model

We consider a multihop cognitive radio wireless network composed of static
secondary users, each of which refers to a transmitter and receiver pair (i.e.,
a wireless link). The network can be either a traditional single radio wireless
network or an emerging multi-radio wireless network [17] in which each node is
equipped with multiple transceivers. The available spectrums are divided into
a set of orthogonal spectrum bands, which are also called channels. We assume
that a user can dynamically access a channel to deliver its packets, but can
only work on one of the available channels at one time. Any proposed spectrum
sensing schemes [2] can be used to detect the locally available channels. Half-
duplex operation is assumed to prevent self-interference, i.e., one transceiver
can only transmit or receive at one time. Moreover, we only consider unicast
communication, i.e., a single transmission is intended for exactly one receiver.
In addition, any two transmissions with a common intended receiver are not
allowed to be made simultaneously since collisions will corrupt the packet
receptions. We say a user (link) is incident to another user if they share a
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common transceiver. We also say a user is incident to itself (This is a technical
agreement which will make future description easier).

We address wireless interference based on both the protocol model and the
physical model [7]. In a multi-channel network, interference should be defined
on user-channel pairs. In the protocol model, it is assumed that each transmit-
ter transmits at a fixed transmission power. So there is a fixed transmission
range and a fixed interference range (which is typically 2 to 3 times of the
transmission range [17]) associated with each user. These two ranges may
vary with the channels [27]. Two user-channel pairs (i, j) and (k, h) are said
to interfere with each other if 1) user i is incident to user k, or 2) j = h and
d(T (i), R(k)) ≤ Ij

i or d(T (k), R(i)) ≤ Ih
k , where T (i) and R(i) represent the

transmitter and the receiver of user i respectively, d(·) gives the Euclidean
distance between two nodes, and Ij

i denotes the interference range of user i
on channel j. Condition 2) implicitly covers the constraints enforced by half-
duplex operation, unicast communication and collision. However, if user i is
incident to user k and even if j 6= h, we say user-channel pairs (i, j) and (k, h)
interfere with each other, since two incident users cannot work on different
channels at the same time. This case is not covered by condition 2) and is
the reason for having condition 1). If two user-channel pairs interfere with
each other, they cannot be active simultaneously, otherwise the corresponding
transmissions will fail.

Let τj be the set of concurrent user-channel pairs with the same channel j and
user-channel pair (i, j) ∈ τj, then transmissions on user i over channel j can
be successful if

Gj
T (i)R(i)Pi

N0 +
∑

(k,j)∈τj\{(i,j)} Gj
T (k)R(i)Pk

≥ β, (1)

where Gj
T (i)R(i) is the channel gain for the transmitter and the receiver of user

i on channel j, which depends on path loss, channel fading and shadowing; Pi

is the power level at the transmitter of user i; N0 is the thermal noise power
at the receiver of user i which is normally a constant. The left hand side of
the inequality is called the Signal to Interference and Noise Ratio (SINR)
at the receiver of user i and β is a given threshold determined by certain
physical layer Quality of Service (QoS) requirements such as Bit Error Rate
(BER). This is introduced in [7] as the physical model for concurrent wireless
transmissions. Here, we assume that each user transmits at a fixed rate on a
specific channel even if it can adjust its transmission power.

Similar as in [5], a spectrum server is assumed to manage the spectrum alloca-
tion and scheduling in the network. It can collect information (including traf-
fic demand and channel availability information) from all users periodically.
Based on the collected information, the server computes a spectrum allocation
and scheduling solution and broadcasts it to all the users at the beginning of
each scheduling period. All the users will then access the spectrum according
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to the received solution. The control messages may also be exchanged over a
common control channel using an extra control radio (no need to be a cogni-
tive radio) if they are available for each node. In this case, the cognitive radios
are only used for data transmission which can be conducted concurrently with
the control information exchange. No matter which method is used, the server
recomputes the scheduling and channel allocation solution whenever it finds
out traffic demands or the channel availability change.

4 Problem Definition

In this section, we will describe the necessary notations and formally define
the optimization problems to be studied.

Suppose that we are given a set of N users indexed from 1 to N and a set
of C channels indexed from 1 to C. Then we can identify the set of possible
user-channel pairs, denoted as A. Here, a user-channel pair (i, j) is in A if and
only if channel j is available to user i. The total number of user-channel pairs
is bounded by N ·C. We are also given a vector d = [d1, d2, . . . , dN ], specifying
the traffic demand of each user, which is determined by a routing algorithm
in the network layer. However, routing is out of scope of this paper.

We introduce the notion transmission mode to assist the computation. A trans-
mission mode is composed of a subset of user-channel pairs which can be active
concurrently. Whether concurrent transmissions are allowed or not can be de-
termined based on the interference models described in the last section. Since
every element of a transmission mode is a user-channel pair, once a transmis-
sion mode is identified, a spectrum allocation is automatically determined for
the set of users contained in those user-channel pairs. We employ a T × M
matrix Γ to represent the set of transmission modes, where M is the total
number of possible user-channel pairs, and T is the number of transmission
modes. Each row of the matrix corresponds to a transmission mode and each
column corresponds to a specific user-channel pair in A. If transmission mode
t includes user-channel pair (i, j), then Γt

ij = 1. Otherwise, Γt
ij = 0. For ease

of presentation, we always append a special all-zero row at the end of Γ which
represents a transmission mode that does not contain any user-channel pair.

The average data rate of user i can be computed as
∑C

j=1

∑
t:Γt

ij=1 ptc
j
i , where

pt is the fraction of time that transmission mode t is activated and cj
i is

the capacity of user (link) i on channel j which is usually a constant. In a
scheduling-based wireless system, there will be a specific transmission mode
activated for each time slot. Suppose that all possible transmission modes
are given. The scheduling problem is to determine the frame length and the
number of active time slots of each transmission mode in one frame. If the

6



value of pt is computed for each transmission mode, a frame length can be
easily determined by finding the smallest positive integer L such that pt ·L is
an integer for each transmission mode.

In this way, the joint spectrum allocation and scheduling problem is trans-
formed into a problem of finding all possible transmission modes and the ac-
tive time fraction for each transmission mode. In our optimization problems,
we seek a rate allocation vector r = [r1, r2, . . . , ri, . . . , rN ] which specifies the
rate ri allocated to each user i, all possible transmission modes along with
a transmission schedule vector p = [p1, p2, . . . , pt, . . . , pT ] which specifies the
active time fraction pt for each transmission mode t. A rate allocation vector
and a transmission schedule vector are said to be feasible if the rate allocated
to each user is no more than the average link data rate which can be achieved
by the corresponding transmission schedule vector.

Now we are ready to define the joint spectrum allocation and scheduling prob-
lems.

Definition 1 (MASS) The MAximum throughput Spectrum alloca-
tion and Scheduling (MASS) problem seeks a feasible rate allocation vector
r = [r1, r2, . . . , rN ], all transmission modes along with a feasible transmission
schedule vector such that the throughput

∑N
i=1 ri is maximized.

It has been shown that simply maximizing throughput may seriously starve
some users in the network [9]. So fairness must be carefully addressed. The
traffic demands for users may be quite different. Hence, addressing fairness
simply based on the value of rate allocated to each user without taking into
account its traffic demand is not a good idea. We define a new variable called
Demand Satisfaction Factor (DSF). The DSF of a user is defined as the ra-
tio of the rate allocated to that user over its traffic demand, which indicates
how much a traffic demand is satisfied according to a rate allocation vector.
Therefore, we will have a DSF vector α = [α1, α2, . . . , αi, . . . , αN ] correspond-
ing to each rate allocation vector r = [r1, r2, . . . , ri, . . . , rN ], where αi = ri/di,
1 ≤ i ≤ N . The fair spectrum allocation and scheduling problems are defined
as follows.

Definition 2 (MMASS) A feasible rate allocation vector r = [r1, r2, . . . , rN ]
(α = [α1, α2, . . . , αN ]) is said to be a feasible max-min fair rate alloca-
tion vector if for any other feasible rate allocation vector r′ = [r′1, r

′
2, . . . , r

′
N ]

(α′ = [α′1, α
′
2, . . . , α

′
N ]), min{αi|1 ≤ i ≤ N} ≥ min{α′i|1 ≤ i ≤ N}, where α

and α′ are the DSF vectors corresponding to r and r′ respectively. The Max-
min fair MAximum throughput Spectrum allocation and Schedul-
ing (MMASS) problem seeks a feasible max-min fair rate allocation vector
r = [r1, r2, . . . , rN ], all transmission modes along with a feasible transmission
schedule vector such that the throughput

∑N
i=1 ri is maximized.
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Definition 3 (PASS) The Proportional fAir Spectrum allocation and
Scheduling (PASS) problem seeks a feasible rate allocation vector r = [r1, r2,
. . . , rN ] (α = [α1, α2, . . . , αN ]), all transmission modes along with a feasi-
ble transmission schedule vector such that the utility function

∑N
i=1 log (αi) is

maximized, where α is the DSF vector corresponding to r.

So far, we have only defined the joint spectrum allocation and scheduling
problems under the protocol interference model. The corresponding optimiza-
tion problems under the physical interference model are almost the same as
their counterparts under the protocol model except that a feasible power as-
signment needs to be determined for each transmission mode. By feasible, we
mean that on each channel, the SINR constraint (constraint (1)) must be sat-
isfied at each receiver and the power level assigned to each user must be in
the range of [0, Pmax]. Due to the space limit and redundancy, we omit the
corresponding problem definitions.

5 Proposed Spectrum Allocation and Scheduling Algorithms

In this section, we will first introduce a novel graph model, Multi-Channel
Contention Graph (MCCG), to characterize the impact of interference under
the protocol model. Based on it, we will present algorithms to solve the prob-
lems defined in Section 4. Then we will discuss the extension to the physical
interference model.

5.1 Multi-Channel Contention Graph (MCCG)

In an MCCG GC(VC , EC), every vertex corresponds to a user-channel pair
in A. There is an undirected edge connecting two nodes in VC if their cor-
responding user-channel pairs interfere with each other, which can be deter-
mined based on conditions described in Section 3. Note that if two users i, k
are incident to each other, then there will be undirected edges between every
two user-channel pairs which contain i and k respectively because they always
interfere with each other no matter which channels are considered.

Next, we use a simple example to illustrate how to construct an MCCG. In
this example, we have 5 users (transmitter-receiver pairs), a, b, c, d, e, and 2
channels, channel 1 and channel 2, available to each user, which are shown in
Fig. 1(a). In the figure, we have d(A,B) = d(B,C) = d(C, D) = d(D,E) =
d(F, G) = d(D,F ) = d(E, G) = R = 0.5I, where R and I are the trans-
mission and interference range of each user respectively. We can obtain the
corresponding MCCG which is shown in Fig. 1(b). In the figure, each vertex
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corresponds to a user-channel pair, for example, vertex (a, 2) corresponds to
user-channel pair (a, 2). Here, we can see that there are edges between nodes
(a, 1) and (b, 1), (a, 1) and (b, 2), (a, 2) and (b, 1), and (a, 2) and (b, 2), because
user a is incident to user b. Moreover, there is an edge between node (a, 1)
and (a, 2) because any user can only work on one channel at one time.
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(a) A set of users
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(b) The corresponding MCCG

Fig. 1. MCCG

The importance of the MCCG lies in the fact that a transmission mode corre-
sponds to an independent set in the MCCG. Since our objective is to improve
throughput and fairness, we only need to consider the subset of transmis-
sion modes corresponding to Maximal Independent Sets (MISs) of GC . The
MCCG turns out to be a very useful tool for spectrum allocation in cognitive
radio networks with multiple channels. For example, it can be used to find all
possible transmission modes for our joint spectrum allocation and scheduling
problems. In addition, the Max-Sum-Bandwidth (MSB) spectrum allocation
problem studied in [27] can be transformed to the maximum weight inde-
pendent set problem on the MCCG, which can be efficiently solved by some
approximation algorithms in the literature [8]. Note that the MCCG is an ex-
tension of the well-known contention graph proposed in [16] for single-channel
wireless networks and it is completely different from the other graph models
introduced for multi-channel wireless networks [24,27]

5.2 Proposed Algorithms for the Protocol Model

Our algorithms are essentially two-step methods: in the first step, construct
the MCCG and identify transmission modes; in the second step, formulate
the problems defined in Section 4 as Linear Programming (LP) or Convex
Programming (CP) problems, and solve them using existing algorithms [3,4].

If a set of transmission modes is given, the MASS problem and the MMASS
problem can be formulated as LPs, and the PASS problem can be formulated
as a CP, which will be shown later. If the given set includes all possible trans-
mission modes, then by solving those LPs and CP, we can obtain optimal
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solutions. Otherwise, if the given set only include a subset of all transmission
modes, then we will end up with approximate solutions. In the rest of this sec-
tion, we will first present algorithms to find a set of transmission modes and
then present LP and CP formulations for the three optimization problems.

As discussed before, a transmission mode actually corresponds to an inde-
pendent set in the MCCG and only those MISs are needed to be taken into
consideration. So, if we can identify all possible MISs in the MCCG, then we
can obtain optimal solutions. The algorithm in [14] and several other existing
algorithms can actually find all MISs in a graph very efficiently. Therefore, our
optimal algorithm for the MASS problem is to apply the algorithm in [14] to
find all MISs in the MCCG firstly and then solve the corresponding LP. Simi-
larly, we can have the optimal algorithms for the MMASS and PASS problems.

However, it is well known that the number of all MISs in a graph may grow
exponentially with the graph size. If we take all MISs as the inputs for the
LPs and the CP, it may take exponentially long time to solve them. There-
fore, we propose a polynomial time heuristic to compute a good subset of MISs
(transmission modes) in a given MCCG. Intuitively, a good subset needs to
have good diversity, because if only a small subset of user-channel pairs is
included, it may lead to biased solutions in the second step. Furthermore, the
user-channel pair whose transmission capacity is relatively large and whose
corresponding user has relatively high traffic demand should be given higher
priority. Our algorithm is formally presented as Algorithm 1.

Algorithm 1 Computing Transmission Mode Subset

Step 1 T := Ø; i := 1;
X[v] := 0; forall v ∈ VC

Step 2 while (i <= q)
forall v ∈ VC

S := Ø; Add v to S; X[v] := X[v] + 1;
do Add node u 6= v to S,
s.t. u has maximum weight w(u) = (dπ(u)cu)/(X[u] + 1)) among

all nodes which is not identical or incident to any other
existing node in S;
X[u] := X[u] + 1;

until S becomes an MIS;
if (S /∈ T )
T := T ∪ {S};

endif
endforall
i := i + 1;

endwhile
Step 3 output T ;
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In Algorithm 1, set S is used to record an MIS computed during the execution
of the algorithm. T is output as the subset of all transmission modes and is
guaranteed to cover every node in GC at least once due to Step 2. Array X
is used to maintain a counter which counts how many times a node has been
included in some MISs of T so far. The weight of each node v in GC is given as
w(v) = (dπ(v)cv)/(X[v]+1)), where π(v) gives the corresponding user of node v
(note that every node in GC corresponds to a user-channel pair) and dπ(v) gives
its traffic demand. cv is the capacity of the user-channel pair corresponding to
v. The weight function w(·) implements the idea that we prefer to select the
user-channel pair whose transmission capacity is relatively large and whose
corresponding user have relatively high traffic demand. Moreover, based on
the weight function, if the number of times a user-channel pair is covered is
relatively small, it will get more chances to be selected. In this way, a good
selection diversity can be achieved. In the algorithm, q is a tunable parameter.
We observe that the larger the value of q is, the more MISs will be added into
T , which will lead to better solutions but longer computation time. Obviously,
Algorithm 1 is a polynomial time algorithm. Its running time is dominated by
Step 2, which can be accomplished in O(q2M + qM3) time, where M is the
total number of possible user-channel pairs which is bounded by N · C.

After obtaining a set of transmission modes, we can solve the optimization
problems defined above by solving an LP or a CP, which are presented as fol-
lows. In the following formulations, we have the aforementioned rate allocation
variables ri or αi to represent the rate or the DSF of user i respectively, and
the scheduling variables pt. The feasibility of rate allocation and scheduling
described in Section 4 are guaranteed by constraint (3) or (8) which are ac-
tually equivalent. The summation of all scheduling variables should be equal
to 1, which is ensured by constraint (4). Only non-negative values are allowed
for all those variables and the value of αi must be in [0, 1], which are enforced
by constraints (5), (6) and (11). User-channel pair capacity (cj

i ) and traffic
demand of each user (di) are given as inputs.

LP1: MASS

max
N∑

i=1

ri (2)

subject to:
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ri ≤
C∑

j=1

∑

t:Γt
ij=1

ptc
j
i , 1 ≤ i ≤ N ; (3)

T∑

t=1

pt = 1; (4)

pt ≥ 0, 1 ≤ t ≤ T ; (5)

0 ≤ ri ≤ di, 1 ≤ i ≤ N. (6)

LP2: Max-min δ

max δ (7)

subject to:

αidi ≤
C∑

j=1

∑

t:Γt
ij=1

ptc
j
i , 1 ≤ i ≤ N ; (8)

T∑

t=1

pt = 1;

pt ≥ 0, 1 ≤ t ≤ T ;

δ ≤ αi ≤ 1, 1 ≤ i ≤ N. (9)

LP3(δ): MMASS

max
N∑

i=1

ri

subject to:

ri ≤
C∑

j=1

∑

t:Γt
ij=1

ptc
j
i , 1 ≤ i ≤ N ;

T∑

t=1

pt = 1;

pt ≥ 0, 1 ≤ t ≤ T ;

δdi ≤ ri ≤ di, 1 ≤ i ≤ N. (10)

The MASS problem can be solved by solving LP1 in which the objective
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function is set to maximize the throughput. The maximum throughput so-
lution can serve as a benchmark to evaluate the fair solutions provided by
solving the corresponding MMASS and PASS problems. In order to solve the
MMASS problem, we need to solve two LPs sequentially. First, we solve LP2
and obtain a max-min DSF value δ. Because of constraint (9) and the ob-
jective function of LP2, we can guarantee that for any feasible DSF vector
α′, min{α′i|1 ≤ i ≤ N} ≤ δ. Next, we feed δ to LP3 as a parameter. Con-
straint (10) in LP3 guarantees that in the computed r = [r1, r2, . . . , rN ] and its
corresponding DFS vector α = [α1, α2, . . . , αN ], we have min{αi|1 ≤ i ≤ N} ≥
δ ≥ min{α′i|1 ≤ i ≤ N}. The objective of LP3 is to maximize the through-
put. Therefore, solving LP2 and LP3(δ) together can provide a max-min fair
maximum throughput solution.

The PASS problem can be formulated as a CP because it has the similar linear
constraints as the MASS problem and the MMASS problem, and its objective
is to maximize a concave utility function.

CP : PASS

max
N∑

i=1

log(αi)

subject to:

αidi ≤
C∑

j=1

∑

t:Γt
ij=1

ptc
j
i , 1 ≤ i ≤ N ;

T∑

t=1

pt = 1;

pt ≥ 0, 1 ≤ t ≤ T ;

0 ≤ αi ≤ 1, 1 ≤ i ≤ N. (11)

Our two-step algorithms are summarized as follows: Step 1, construct the
MCCG and apply the algorithms proposed in [14] or our Algorithm 1 to find
all or a subset of transmission modes (which lead to optimal and subopti-
mal solutions respectively); Step 2, solve LP1 for the MASS problem, solve
LP2/LP3(δ) for the MMASS problem, or solve CP1 for the PASS problem.
Note that the LP for MASS problem only include (N + T ) variables and
(2N + T + 1) constraints, where N and T are the number of users and the
number of transmission modes respectively. The LPs for the MMASS problem
and the CP for the PASS problem have the similar complexities. So normally,
they can all be efficiently solved by the existing algorithms.
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Our two-step algorithms are suitable for cognitive radio wireless networks, in
which the available channels to each user may vary frequently. Every time
when an existing channel becomes no longer available to a user or a new
channel becomes available to a user, we do not have to go through the whole
two-step procedure to compute a completely new solution. We can simply
eliminate those transmission modes including the user-channel pair which is
no longer available from the current transmission mode set, or add one or
more transmission modes including the newly available user-channel pairs to
the existing set. Then we solve the corresponding LP or CP. In other words,
we do not have to re-run Algorithm 1 to find a new set of transmission modes
every time when the channel availability changes. In this way, we can obtain
a new solution based on the updated channel availability in a time-efficient
fashion. Of course, if substantial changes occur in the system after a certain
period of time, in order to guarantee high performance, the whole two-step
algorithm should be re-executed to compute a completely new solution.

5.3 Proposed Algorithms for the Physical Model

If we assume that every node has the power control capability, the physical
model should be used to address interference. In this case, we are unable
to model the impact of interference using the MCCG because the one-to-
one interference relationships among user-channel pairs are unavailable in the
physical model. Therefore, the algorithms in [14] or our Algorithm 1 cannot
be applied to find a set of transmission modes.

To our best knowledge, there is no algorithm in the literature which can iden-
tify all transmission modes under the physical model. However, a good subset
of transmission modes can be identified efficiently by revising our Algorithm 1.
Here, every time when we try to decide if a specific user-channel pair (i, j)
(note that a node v in Algorithm 1 corresponds to a user-channel pair) can be
selected to set S in Step 2 of Algorithm 1, instead of checking if it conflicts
with another node in GC which has already been selected to S, we verify the
feasibility by solving LP4(i, Ej). However, the user of a user-pair in the cur-
rent S is incident to user i, we can conclude that (i, j) cannot be selected to
S and no LP needs to be solved.

LP4(i, Ej):

min
∑

l∈Ej

⋃
{i}

Pl (12)

subject to:
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Gj
T (l)R(l)Pl − β

∑

h∈Ej

⋃
{i}\{l}

Gj
T (h)R(l)Ph − βN0 ≥ 0, ∀l ∈ Ej

⋃{i}; (13)

0 ≤ Pl ≤ Pmax, ∀l ∈ Ej

⋃{i}. (14)

In LP4(i, Ej), Pl is the variable which specifies the power level for user l on
channel j. Ej denotes the current set of user-channels in S containing the
same channel j. Again, T (·) and R(·) give the transmitter and the receiver
of a given user respectively. If a feasible solution can be obtained by solving
LP4(i, Ej), then we can conclude that user-channel pair (i, j) can be added
to the current set S. This is because that in a feasible solution, the SINR
constraint defined in the physical model is guaranteed to be satisfied for each
user according to constraint (13) and the computed power level of each user is
ensured to be in the range [0, Pmax] according to constraint (14). Eventually,
the solution given by LP4(h,Ej) can be used as the power assignment for
the corresponding transmission mode. Even though we only need to obtain
a feasible power assignment or to test if there exists a feasible solution, it is
always good to minimize the total power consumption which is achieved by the
objective function (12). In addition, the same weight function in Algorithm 1
can be used to determine which user-channel pair has the highest priority to
be selected.

After identifying a set of transmission modes, we can then compute the rate
allocation and scheduling solution by solving LP1, LP2/LP3(δ) or CP1.

6 Numerical Results

In our simulation, we considered multihop cognitive radio wireless networks
with stationary nodes randomly located in a region. We randomly chose N
users (links) from a network in each run. For the protocol model, the transmis-
sion range and corresponding interference range of each user were set to 250m
and 500m [17] for all channels, respectively. For the physical model, we set
the thermal noise power N0 = −90dBm, the SINR threshold β = 10dB and
the maximum transmission power Pmax = 300mW [18]. The channel gain, Gj

uv

was simply set to 1/d(u, v)4 for all channels, where d(u, v) is the Euclidean
distance between transmitter u and receiver v. All LPs were solved by using
CPLEX 9.0 [13]. We implemented the barrier method introduced in [4] to
solve all CPs by setting the related parameters as follows: ε = 10−3, µ = 120
and t(0) = 2.

Intuitively, the following parameters may have significant impacts on system
performance: the number of users (N), the total number of channels (C), the
number of channels available to each user (Ci

A), the capacity of user-channel
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pair (cj
i ), the traffic demand on each user (di) and the tunable parameter

in Algorithm 1 (q). We studied their impacts by setting these parameters to
different values in different simulation scenarios. The DSF of each user (αi),
the throughput (

∑N
i=1 ri) and the value of the utility function (

∑N
i=1 log(αi))

were employed as performance metrics. In addition, the users were sorted in
the non-descending order of their DSF values.

The simulation results are presented in Figs. 2–10. In all the figures, MASS,
MMASS and PASS represent our algorithms for the MASS problem, the
MMASS problem and the PASS problem respectively. We present network
throughput and utility function results in Figs. 9–10 for all simulation sce-
narios. In the first nine scenarios, we evaluated our algorithms proposed for
the protocol model. In scenario 1, we conducted simulations on the network
given in Fig. 1(a). In that example, N = 5, C = 2 and C1

A = C2
A = 2.

Moreover, we set cj
i = 24Mbps, ∀(i, j) ∈ A. The traffic demand for each

user di was set to a random number uniformly distributed in [12, 24]Mbps.
The results are presented in Fig. 2. We actually run both our optimal algo-
rithms, and heuristic algorithms by setting q to 1 and 2. However, we do not
present results of heuristic algorithms because they are exactly the same as
the optimal solutions. In scenarios 2–4, we performed simulation runs on a
network with 10 nodes randomly distributed in a 500m× 500m area. 10 users
were randomly selected. The other parameters were set as follows: C = 6,
Ci

A = 4, 1 ≤ i ≤ 10. In addition, di was set to a random number uniformly
distributed in [0.3 ∗ 24, 0.7 ∗ 24] Mbps (i.e., [7.2, 16.8]) and cj

i was randomly
chosen from {24, 36} Mbps. Note that these two rate values are typical data
rates specified by IEEE802.11a [12]. We also executed both our optimal and
heuristic algorithms by setting q to 1 and 2. The corresponding results are pre-
sented in Fig. 3. We conducted another set of simulation runs (scenarios 5–7)
on the same network with the same settings except that the traffic demand
for each user di was increased to a random number uniformly distributed in
[12, 24]Mbps. We presented the corresponding results in Fig. 4. In scenario
8, we tested our heuristic algorithms (q = 2) on a larger network with 30
nodes randomly distributed in a 1000m × 1000m area. Accordingly, 30 users
were randomly selected. In addition, we had C = 12, C i

A = 8, 1 ≤ i ≤ 30.
The other settings are the same as those in scenario 2. The only difference
between scenario 9 and scenario 8 is that the traffic demand for each user
di was set to a random number uniformly distributed in [12, 24]Mbps instead
of [7.2, 16.8]Mbps. The corresponding results are presented in Figs. 5–6. In
the last three scenarios, scenarios 10-12, we evaluated the heuristic algorithms
proposed for the physical model. In these scenarios, all user-channel pairs were
assumed to have a capacity of 36Mbps and the traffic demand for each user di

was set to a random number uniformly distributed in [0.3 ∗ 36, 0.7 ∗ 36]Mbps
(i.e., [10.8, 25.2]). The results are presented in Figs. 7–8. The other settings of
these three scenarios are the same as those in scenarios 3, 4 and 8 respectively.
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Fig. 2. Scenario 1: protocol model with N = 5 and C = 2
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(a) Scenario 2: optimal algorithms
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(b) Scenario 3: heuristic algo-
rithms with q = 1
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(c) Scenario 4: heuristic algo-
rithms with q = 2

Fig. 3. Protocol model with N = 10, C = 6 and di = [7.2, 16.8]

From Figs. 3, 4 and 9, we can see that the performance achieved by our
heuristic algorithms (with q = 2) is almost the same as that of the optimal
solutions with regards to both throughput and fairness. In addition, adding
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(a) Scenario 5: optimal algorithms
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(b) Scenario 6: heuristic algo-
rithms with q = 1
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(c) Scenario 7: heuristic algo-
rithms with q = 2

Fig. 4. Protocol model with N = 10, C = 6 and di = [12, 24]
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Fig. 5. Scenario 8: protocol model with N = 30, C = 12 and di = [7.2, 16.8]

more transmission modes for consideration by increasing parameter q from 1
to 2 does not provide a noticeable throughput improvement no matter which
algorithm is used.
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Fig. 6. Scenario 9: protocol model with N = 30, C = 12 and di = [12, 24]
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(a) Scenario 10: heuristic algo-
rithms with q = 1
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(b) Scenario 11: heuristic algo-
rithms with q = 2

Fig. 7. Physical model with N = 10, C = 6 and di = [10.8, 25.2]
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Fig. 8. Scenario 12: physical model with N = 30, C = 12 and di = [10.8, 25.2]

As expected, we observe that the MASS algorithms perform best in terms of
throughput but suffer from a severe unfairness on rate allocation among users
in all simulation scenarios. For example, in scenario 5 (Fig. 4(a)), the traffic
demands of about half of users are not satisfied at all (α = 0). However, all
the other users obtain very high DSF values. Fig. 10 shows that the values
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Fig. 9. Network throughput in different scenarios
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Fig. 10. Utility function values in different scenarios

of utility function given by the MASS algorithm are always very small, which
also illustrates its unfairness on rate allocation. The MMASS algorithms give
the max-min DSF values which can be clearly observed from the results of all
scenarios. Compared to the MASS algorithms, the PASS algorithms offer very
close throughput in all scenarios (Fig. 9). The average throughput given by the
PASS algorithms is 96.3% of the maximum achievable throughput. Moreover,
they always give the best utility function values (Fig. 10), which indicates
their efficiency in fairness.

7 Conclusions

In this paper, we have studied the joint spectrum allocation and scheduling in
cognitive radio wireless networks. Specifically, under the protocol interference
model, we proposed a novel Multi-Channel Contention Graph (MCCG) to
characterize the impact of interference. We have formally defined the MASS
problem, the MMASS problem, and the PASS problem. For each problem,
we presented an optimal algorithm and a fast heuristic algorithm based on
the MCCG. In addition, we proposed fast and effective heuristics to solve
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those problems under the physical interference model. Our numerical results
have shown that the performance given by our heuristic algorithms is very
close to that of the optimal solutions. Furthermore, a good tradeoff between
throughput and fairness can be achieved by our PASS algorithms.
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