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Integrated Surface Model Optimization for Freehand
Three-Dimensional Echocardiography

Mingzhou Song*, Robert M. Haralick, Florence H. Sheehan, and Richard K. Johnson

Abstract—The major obstacle of three-dimensional (3-D)
echocardiography is that the ultrasound image quality is too low
to reliably detect features locally. Almost all available surface-
finding algorithms depend on decent quality boundaries to get
satisfactory surface models. We formulate the surface model
optimization problem in a Bayesian framework, such that the
inference made about a surface model is based on the integration
of both the low-level image evidence and the high-level prior shape
knowledge through a pixel class prediction mechanism. We model
the probability of pixel classes instead of making explicit decisions
about them. Therefore, we avoid the unreliable edge detection
or image segmentation problem and the pixel correspondence
problem. An optimal surface model best explains the observed
images such that the posterior probability of the surface model for
the observed images is maximized. The pixel feature vector as the
image evidence includes several parameters such as the smoothed
grayscale value and the minimal second directional derivative.
Statistically, we describe the feature vector by the pixel appear-
ance probability model obtained by a nonparametric optimal
quantization technique. Qualitatively, we display the imaging
plane intersections of the optimized surface models together with
those of the ground-truth surfaces reconstructed from manual
delineations. Quantitatively, we measure the projection distance
error between the optimized and the ground-truth surfaces. In
our experiment, we use 20 studies to obtain the probability models
offline. The prior shape knowledge is represented by a catalog of
86 left ventricle surface models. In another set of 25 test studies,
the average epicardial and endocardial surface projection distance
errors are 3.2 0.85 mm and 2.6 0.78 mm, respectively.

Index Terms—Echocardiography, image analysis, image shape
analysis, surface reconstruction.

I. INTRODUCTION

ULTRASOUND imaging is done in real time, making it
more suitable for cardiology than other imaging modal-

ities such as magnetic resonance imaging. It is preferable also
because the equipment is portable, safe, and noninvasive. Our
goal is to create a three-dimensional (3-D) left ventricle (LV)
surface model, including theepicardium(EPI), the outer surface
of the LV, and theendocardium(ENDO), the inner surface of the
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Fig. 1. An ultrasound image of the LV and surface model contours. (a) Short
axis view. (b) Visible contour overlaid. (c) Complete contour overlaid.

LV, from multiple-view two-dimensional (2-D) ultrasound im-
ages of the heart atend systoleor end diastole. During image
acquisition, a sonographer chooses multiple appropriate posi-
tions for the transducer; the 3-D spatial location and orientation
of the corresponding imaging planes are quantitatively obtained
using a magnetic field tracking device [1]. Imaging planes from
different views may not be parallel and can intersect each other
at quite arbitrary angles. A fairly good-quality ultrasound image
of the heart is shown in Fig. 1(a). The low image quality is due
to artifacts such as strong speckle noises, image dropout, low
image resolution, and fast moving small structures of the heart.

When examining an echocardiographic image, doctors or
sonographers register the image with a mental picture of a
generic LV. If they want to do quantitative analysis of the LV
for clinical research, they will draw some borders on the images
where they think the endocardial or epicardial boundaries are
most likely to occur, according to both the image and their
experience of the LV shape. They can further build a specific
3-D surface model of the LV with these borders.

Many previous approaches to automated surface modeling
have used a two-stage or an iterative two-stage strategy: isolated
feature detection and model fitting stages. They do not mimic
the human reasoning process in guiding the low-level feature
detection with the prior shape knowledge. The suboptimality
manifests when the image quality is too poor to reliably detect
features. On sparse and noisy ultrasound images, the prior shape
knowledge of the LV must be considered during surface model
optimization.

We apply an integrated surface model optimization approach
to 3-D echocardiography. Our approach is a unified framework
that is integrated in one step. Accordingly, there is neither image
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segmentation nor edge detection1 based on local image opera-
tion. We assign each pixel a class probability profile instead of
an exclusive class label. We prove the optimality of the inte-
grated approach by a surface inference theorem. The integrated
approach seeks a 3-D surface model that has the greatest pos-
terior probability for the observed images. The posterior proba-
bility of a surface model is in proportion to its prior probability
and its probability of producing the given images.

A catalog of known surface models and other user input in-
formation determines the prior probability of a surface model.
The catalog represents admissible shapes and generates new sur-
face models by combining its members. The surface appearance
probability is the summation of the product between the pixel
appearance and pixel class prediction probabilities. We model
the pixel appearance probability by a nonparametric optimal
quantization technique [2]. The pixel class prediction process
has a physical simulation part and a pixel class prediction prob-
ability modeling part. We obtain the pixel appearance and class
prediction probability models offline using a generalized expec-
tation maximization algorithm.

Our integrated surface optimization approach is designed to
handle problems where the image quality is low and the prior
shape knowledge is important, as in 3-D echocardiography. We
performed an experiment on 20 training and 25 test clinical
studies. The results on the test set showed an average epicar-
dial surface projection distance error of 3.20.85 mm and an
average endocardial surface projection distance error of 2.6
0.78 mm. The error was measured between the optimized and
the ground-truth surfaces.

This paper is organized as follows. We review the related
work of surface model optimization in Section II. We discuss
the integrated approach in Section III. We describe how we rep-
resent the LV and its prior shape knowledge in Section IV. We
give the algorithm for joint estimation of the pixel appearance
and class prediction probability models in Section V. We present
the LV surface model optimization algorithms in Section VI. We
report the LV optimization results in Section VII. We conclude
the integrated approach in Section VIII.

II. RELATED WORK

Previous methods on surface reconstruction include those for
noise-free or very low-noise image data and those for sparse and
noisy image data. We treat manually processed data as low-noise
data. Frangiet al.[3] provide an extensive review on 3-D cardiac
modeling.

A. Surface Modeling From Low-Noise Data

Hoppeet al. [4]–[6] report a surface reconstruction method
for dense and low-noise data. Their method creates an initial
triangular mesh model from 3-D unorganized points directly
and then optimizes the mesh model by its goodness of fit to
the data and the local smoothness. The final mesh model is a
piecewise smooth representation of the target surface based on
subdivision. Leggetet al.[1] modify Hoppe’s method and apply
it in 3-D reconstruction of the LV from multiple-view 2-D ultra-
sound heart images. They build a prototype mesh model offline

1In accordance with usage in the image-processing literature, edge detection
means making a definite yes/no decision as to whether a pixel is an edge.

for the LV surface. The data are manually labeled 3-D points.
The prototype mesh model is freely deformed to fit the 3-D
points, sparser than the data in Hoppe’s experiments. The prior
shape knowledge is employed in the offline model creation. So
the application of the prior shape knowledge is weak, and the
accuracy of the optimization relies on the quality of the manu-
ally extracted and labeled 3-D points.

B. Surface Modeling From Sparse and Very Noisy Data

When the data are sparse and very noisy, prior shape knowl-
edge comes into play. The local smoothness can often be mod-
eled using splines. Kasset al. [7] propose a 2-D snakes model.
Chalanaet al. [8] sweep the 2-D snakes model along the time
axis to track the 2-D contour of LV in a sequence of images.

Due to their simplicity, there is a wide range of work on para-
metric shape models. In 2-D, ellipses or elliptical arcs are the
most used shape model [9]–[11]. In 3-D, the cylinder, ellipsoid,
disc, or some of their combinations are the most commonly
adopted shape models. Brinkley [12] slightly deforms spheres
to model organs. Stettenet al. [13], [14] model the LV in 3-D
with a combination model of a half-sphere, a cylinder, and a
slab. The more complex superquadrics model is proposed by
Pentland [15], with which Solina and Bajcsy [16] approximate
3-D objects and Bardinetet al. [17] and Parket al. [18] model
the LV.

Since these parametric models are not complex enough
to capture the shape concept of all natural objects, further
free-form deformation of these models after their initial fit to
the data might be necessary. However, the free-form deforma-
tion might produce inadmissable shapes, because either there
is no constraint on the free form deformation or the constraints
cannot be summarized systematically.

Statistical shape models capture both shape complexity and
variations, avoiding the variance of the unconstrained free-form
deformation. They can represent any plausible shape within the
constraints imposed by the variability in the training set. Based
on Brinkley’s [19] radial contour model, Altman and Brinkley
[20] use a multivariate normal distribution to model the radial
distances from a center point to the contour. Cooteset al. [21],
[22] first suggest the 2-D active shape model, representing a
shape with a vector composed by a set of landmark points and
interpolated points. They capture the shape variability by the
first several principal components of the shape vectors. They
have applied active shape models in face recognition, finger
finding, and 2-D LV contour detection from ultrasound images.
They extend their statistical shape modeling work in [23]. Blake
and Isard [24], [25] design the 2-D active contour models, which
are similar to the active shape models. They do not use the
landmark points directly to represent a shape. Instead, they fit
splines to the 2-D shape contour and use the control points of
the splines to represent the shape, so that the shape vector is
in the spline space. Hence, their model incorporates both the
local smoothness constraint and the global shape information.
Jacobet al. [26] apply the active contour model in tracking 2-D
heart contours in echocardiographic sequences. Extending the
2-D statistical shape models of Cooteset al. into 3-D, Caunce
and Taylor [27] create a 3-D point distribution model to rep-
resent cortical sulci. Lorenz and Krahnstöver [28] attempt the
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point-based 3-D statistical shape models for anatomical objects.
A difficulty in these 3-D point-based approaches is the point cor-
respondence problem. Different approaches to solving the point
correspondence problem are summarized in [27]. Hwanget al.
[29] investigate a distance transform neural-network-based 3-D
left ventricle recognition framework. Statistical shape-modeling
methods based on landmarks are proposed in [30] and [31], but
they are mainly concerned with shape analysis rather than sur-
face reconstruction.

C. Fitting Shape Models to Image Data

Usually the data given for object reconstruction are not points
on the object surface, but images of the object. Naturally, pixels
on the surface are first detected from the images. The most
used feature detectors are gradient-based edge detectors, e.g.,
Canny’s edge detector [32] and the facet model edge detector
[33]. A shape model is then fitted to the detected points. In this
approach, the feature detection and the model fitting are sepa-
rated. The shape knowledge has no impact on the feature detec-
tion phase. Coppiniet al. [34] describe a neural-network-based
two-stage approach. Chakrabortyet al. [35] integrate the gra-
dient and region information for pixel classification. The region
information is modeled by Markov random fields with no shape
statistics applied.

Methods to reconstruct a particular shape model from low-
quality images with the guidance of shape statistics have not
made much progress beyond the two-stage approach of feature
detection and model fitting. The framework for snakes or active
contour models does blend the two stages without feature detec-
tion, but it lacks a systematic way of training because they are
not formulated in a probabilistic framework.

Cooteset al. [21], [22] model image pixels by the statistical
active appearance models. They combine the active appearance
models and the active shape models to find the best 2-D con-
tour from images. Pixel classification decisions are still made
but might change during the model fitting iterations. This it-
erative classification scheme allows shape statistics to guide
the local feature detection. Montagnatet al. [36] deform their
3-D mesh model to nearby voxels that are most likely to be on
the boundary. As far as we have found in the literature, only
Mignotte and Meunier [37] have explored the idea of 2-D car-
diac contour tracking from images in a probabilistic framework
without an explicit feature detection stage.

III. T HE INTEGRATED APPROACH TOSURFACE

MODEL OPTIMIZATION

Given the observed images, what is the surface model that
best explains these images? Owing to the noise in the imaging
process, every possible solution has an associated uncertainty.
If we assign every solution a probability, then the best solution
has the maximum probability given the observed images. We
use the Bayesian framework to formulate the surface model op-
timization problem, because it is the unique consistent induction
framework under the Cox–Jaynes axioms [38], [39]

where is the surface model, is the feature vector of a pixel,
is the posterior probability of given , is the

prior probability of surface model , and is the condi-
tional probability of observed feature vectorgiven a surface
model . We also call the surface appearance model,
representing the overall imaging system behavior.

The prior probability can be assessed in ways depending
upon the application. For a surface model, it can be prior prob-
ability characterizing smoothness, or the shape of the objects,
or simply some user input points. is the probability of ob-
serving a particular feature vector, the knowledge of which is
only necessary when the exact posterior probability is desired.
Although theoretically can be computed, the task is dif-
ficult because of the many degrees of freedom of the observed
feature vectors.

To avoid the direct computation of , the degrees of
freedom of the feature vector can be reduced by assigning
each pixel a class label, denoting whether the pixel is visibly
located on a certain surface. This process is known as feature
detection. We use to denote the class label of a pixel. If we
can detect the class labels for all the pixels, we can search for a
surface model that best fits the class labels, instead of best
fitting the original images. These two stages—feature detection
and model fitting—abstract almost all previous work, which is
summarized as Algorithm 1.2 is the posterior of a class
label given the feature vector . is the likelihood of
the class label for the feature vector . is the poste-
rior of the model surface given the class label . is
the likelihood of the surface model for the class label . Di-
rect computation of is avoided here. Instead, estimates
of and are needed, as well as the priors
and . This two-stage approach does not fall into an overall
Bayesian framework. If we can detect the class labelfrom the
feature vector with good confidence, the two-stage approach
will work. Otherwise, if we have to detect features on fuzzy im-
ages, the two-stage framework does not yield an optimal surface
model because the detected class labelis unreliable.

Algorithm 1 Two-stage surface model
optimization.
Stage 1. Feature detection. Find that
solves

Stage 2. Model fitting. Find that
solves

The integrated approach that we have developed avoids
making exclusive class label decisions for each pixel by

2We usep(�) to represent probability density function andP (�) to represent
probability mass function.
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integrating the two stages into one. We will not assign a class
label to each pixel, but will profile each pixel by probabilities
of having different class labels.

A. The Integrated Approach

In the integrated framework, we still introduce the class label
to avoid the direct offline estimation and online computation

of . A class label is not actually directly observable, but
serves as a hidden bridge between the feature vectorand the
surface model , by marking each pixel to be either on or off a
certain surface model.

Before we proceed, consider a scenario of surface reconstruc-
tion. If somehow the class label of each pixel is already known,
the feature vector would not provide more information in the
inference about the surface model. Therefore, we make the
following assumption:

(1)

implying that the surface model and the feature vector are
conditional independent given the class label.

Theorem 1—Integrated Surface Inference:With the assump-
tion , the posterior probability of a surface
model given the observed feature vectorcan be written as
the summation form

(2)

where is the total number of classes.
Proof: By properties of probability and assumption

(3)

The integrated surface inference theorem leads to theinte-
grated approach of surface model optimization

(4)

where is an optimal surface model. Evidently from the
second line in (3), the two-stage approach is a special case of
the integrated approach if is an impulse function of .

We call the conditional probability mass function the
pixel class prediction(PicPre) probability model, emphasizing
the physical meaning that the class labelcan be predicted
probabilistically from a given surface model. We call the con-

ditional probability density function thepixel appear-
ance(PixApp) probability model because depicts prob-
abilistically the appearance of a pixel for the class label.

The interpretation behind the integrated approach is as fol-
lows. An image pixel with feature vector is assigned a likeli-
hood profile of being from different classes. Another
class probability profile is predicted from a model.
When the likelihood profile and the predicted class
probability profile match well, the surface model that
generates the predicted class probability profile is a good expla-
nation of the images.

The work of Mignotte and Meunier [37] follows the principle
of the integrated approach. However, they explain their idea in-
tuitively without deriving (4), and their formulation uses a pre-
scribed simple distribution for .

B. The Pixel Appearance Probability Model

The appearance of a pixel is defined by its local information,
such as intensity, contrast, directional derivatives, etc. The ap-
pearance of a pixel is a result of the structure type at the pixel lo-
cation and the imaging process; it is not strictly a function of the
structure types. Fig. 1(a) shows the ultrasound image of the LV,
and Fig. 1(b) shows the same image with the visible boundary
overlaid. Fig. 1(c) overlays the complete contour of the under-
lying surface model on the original image. It is quite obvious
that the pixels on the underlying surface contour do not have
uniform appearance everywhere: some pixels are bright with
high contrast, while others do not differ too much with the back-
ground. The background pixels also have variable appearance.

In ultrasound images, signals arriving at an interface between
media with different acoustic impedance produce strong echo
when the angle of incidence is near perpendicular; signals ar-
riving at an interface at near tangential angles produce very
weak echo. Thus the image intensity and its spatial variation are
important. We fit a cubic facet model [33] to the pixel intensities
in a local window centered at each pixel. With the facet, a sur-
face patch in 3-D, we are able to analytically derive all first- and
second-order derivatives. The derivatives carry spatial variation
information. Based on these considerations, each pixel feature
vector contains3 :

1) the spatially and temporally smoothed pixel intensity
value, capturing absolute strength of echo signals;

2) the third-order facet model approximation of the pixel
intensity value, using a larger spatial window than feature
1), giving the absolute strength of echo signals but on a
larger scale;

3) the directional derivative along the gradient direction,
providing a local measure of edginess;

4) the minimum second directional derivative, among
second derivatives along all directions, indicating relative
strength of echo signals;

5) the directional derivative from a point inside the LV, to
help distinguish ENDO and EPI surfaces. The inner point
is derived from user input points.

3In this paper, we concentrate on integrated optimization. The selected fea-
tures work well, but it is possible that other features might produce even better
results with our approach.
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For feature 1), we used a 3-D median filter with a window of
5 pixels 5 pixels 5 frames. For features 2) to 5), we used a
facet window of 21 pixels 21 pixels. For feature 5), we used a
3-D median filter with a window of 17 pixels 17 pixels 17
frames. Examples of the feature vector maps are shown in Fig. 2.

The PixApp probability model describes the pixel appearance
uncertainty for a given pixel class. We design a nonparametric
optimal quantization technique [2] to characterize the pixel ap-
pearance probability model . Nonparametric models are
known to have less modeling biases than parametric models.
Nonparametric models typically require large sample size to re-
duce both the bias and the variance. Since the model
is pixel based, it is not an issue to have enough samples. But
the major concern is CPU cycles. Standard nonparametric ap-
proaches, such as kernel methods, store all samples and run in
quadratic time in sample size. For a multivariate sample of size
on the order of millions—an easy thing for image pixels—the
online computation of kernel methods is formidable. We use the
much more efficient grid model to represent . The ap-
pearance space is optimally quantized into cells in the following
senses: 1) the partition of the space is compact and statistically
efficient by adapting to the data; 2) the density estimate of each
cell is optimally smoothed to control its variance.

C. Pixel Class Prediction

Pixel class prediction associates every pixel on an imaging
plane with some physical properties of a given surface model
and its environment. Pixel class prediction and classification are
fundamentally different. We denote the deterministic prediction
by , where each pixel has an exclusive class assignment. We
represent the probabilistic prediction by the conditional proba-
bility . The class probability profile provides a soft class
prediction, allowing a more precise relation between a pixel and
its predicted class to be captured. When a 3-D surface model
maps to a 2-D image, two phenomena occur: 1) a 3-D point is
transformed to a 2-D pixel location and 2) the physical prop-
erties of the 3-D point yield a 2-D pixel intensity. The phys-
ical simulation predicts images by functional modeling of the
imaging system. In [40] and [41], we have implemented an ul-
trasound imaging simulation system to synthesize echocardio-
graphic images from a 3-D surface model of the LV. The simula-
tion software is capable of performing backscattering, attenua-
tion, and reflection, implemented by a ray-tracing algorithm. In
this paper, we only simulate reflections, since our purpose is to
predict the systematic image dropout rather than the stochastic
behavior of the speckle noise. The dropout is mostly due to weak
reflection at interfaces. The randomness is accounted for in the
PixPre and PixApp probability models.

Let classes 1 to 1 correspond to the surfaces in the sur-
face model. An additional class labels the background. For
an LV surface model, , and 1, 2, and 3 correspond to EPI,
ENDO, and background respectively. The distance from a pixel

to its closest class-neighbor pixel on the simulated image
is denoted by . The intensity of the neighbor pixelis de-
noted by . The overall probabilistic prediction is shown in
Fig. 3. A physical simulation produces simulated images from a
surface model . and of each pixel location in a sim-

(a) (b) (c)

(d) (e) (f)

Fig. 2. Feature maps extracted from the parasternal long-axis view. (a) The
original image; (b)–(f) maps of the five features.

ulated image can be found by the distance transform [33], [42]
efficiently. Then the pixel class probability profile is
predicted by probability modeling.

During the imaging process, a point on the surface may be
transformed to a pixel looking more like the background; a point
off the surface may be transformed to a pixel as if on the surface.
Instead of predicting that a pixel coming from a point on surface

must have label , the probabilistic model allows variation.
An off-surface 3-D point closer to an on-surface 3-D point may
appear as a 2-D pixel with similar location and intensity with
the type of the 2-D on-surface pixel. An off-surface point that
has a stronger on-surface neighbor point is more likely to ap-
pear as a pixel that is similar to the type of the neighbor on-sur-
face pixel. Therefore, we use the following intensity exponential
decay model:

(5)
where is a nonnegative parameter that controls the rate of
decay, control the rate of decay for different
classes, and is a nonnegative parameter that corresponds to the
strength of a pixel’s being the background. is the distance
from the pixel to its closest classneighbor pixel.
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Fig. 3. Probabilistic pixel class prediction.

IV. L EFT VENTRICLE SURFACE MODELS AND THE PRIOR

SHAPE KNOWLEDGE

Epicardial and endocardial surfaces are each represented by a
triangular mesh model, which is capable of capturing irregular
shapes better than a parametric model. A triangular mesh model
of the LV is shown in Fig. 4.

We model the prior probability of mesh surface models by
a hybrid approach. A catalog of 86 LV models was established
by reconstructions from the manual delineations on ultrasound
images. The members in the catalog are representatives of pos-
sible surface models and span a subspace in the full surface
model space. New models not in the catalog are approximated
by convex combinations of the surface models in the catalog.
The catalog is a geometric representation of the prior knowledge
about surface model shapes. The vertices of the mesh models are
ordered according to their anatomical position.

An explicit prior probability can be formed by some user
input points. There are two types: landmark points and surface
points. Landmark points are usually special geometric points
that can be identified with small variance. Landmark points may
or may not be on a surface. For example, the center of the mi-
tral valve is a landmark point. For the LV models in the catalog
developed for this study, every surface model has the same set
of landmarks, and there is a one-to-one relation between land-
marks of one surface model and those of another. Surface points
are located on surfaces, but there is no correspondence between
surface points on one surface and those on another. For example,
any point actually located on the ENDO surface is a surface
point. In our work, the user inputs three landmark points: the
apex on ENDO, centers of the mitral and aortic valves, and four
ENDO surface points, approximately equally distributed around
the LV contour in the short-axis view.

Owing to image quality and human factors, user input points
have uncertainty in themselves. User input landmark points may
deviate from the true positions randomly. The surface points
may not sit exactly on the true surfaces. For the known surface
models, we gather the distance error statistics for these two types
of user input points and create parametric probability models to
represent the uncertainty.

V. PIXAPP ANDPICPRE PROBABILITY MODEL ESTIMATION

Since the class label is not directly observable, optimal es-
timation of the PicPre probability model has to interact with the
estimation of the PixApp probability model in the integrated
framework. To get the overall optimal probability models, we
solve the simultaneous estimation of the PixApp and PicPre
probability models by a generalized expectation maximization
(EM) algorithm.

Fig. 4. A triangular mesh surface model of the LV.

A. Joint Estimation of PixApp and PicPre Probability Models

In the offline training phase, the overall goal is to make an ac-
curate and consistent estimation of . To understand the
probability estimation in the integrated framework, it is neces-
sary to discuss briefly the estimation problem in the two-stage
approach. In the feature detection of the two-stage approach,
the class conditional probability of feature given class
is used. For a given , the label maximizing is found.
However, the class label is not observed data. In the surface
reconstruction stage, the PicPre probability model is
used. Using the class labels and known surface models,
can be estimated. The only problem with these two-stage esti-
mations is that the uncertainty of class labelas described by

is not taken into account in the estimation of ,
which can degrade the performance seriously when the uncer-
tainty of class labels for given surface models is prominent.

In the integrated framework, we still need to estimate the
PicPre and the PixApp probability models.
However, we do not have to make a decision on the class label

of each pixel because every possibility ofis considered.
Since we have decided that is a parametric model and
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is a nonparametric model, the overall model
is a hybrid model. On one hand, maximum likelihood estima-
tion for requires joint estimation of the PixApp and the
PicPre probability models. On the other hand, joint estimation
of a hybrid model poses a computational challenge.

Although it is typically a solution to maximum-likelihood pa-
rameter estimation with missing or hidden variables, the EM al-
gorithm performs on densities that can be written in an integral
form. The EM algorithm has long been used in medical imaging
[43], [44]. The missing or hidden variable is precisely the inte-
gral variable. Whether the target density is parametric, nonpara-
metric, or hybrid will affect neither the applicability nor the con-
vergence of the EM algorithm. In the integrated model, the goal
is to maximize over all possible probability den-
sities (not over all possible ). When is written
as the integrated form, is the missing or hidden variable. In-
stead of maximizing , the EM algorithm maxi-
mizes an approximation of over in
its iterations. The sense of the EM algorithm lies in that max-
imization of is substantially computationally
easier than that of .

Evidently, implies
. Therefore,

. Hence

(6)

which is the maximization step of the EM algorithm. The
M-step has been separated into two independent optimization
problems. One is the parametric estimation of the PicPre prob-
ability model, and the other is the nonparametric estimation
of the PixApp probability model. Replacing by

, we give Algorithm 2.

Algorithm 2 Estimate-Integrated-Model
Initialization:

and

Iteration:
1)E-step

(7)

(8)

(9)

2) M-step

(10)

(11)

Fig. 5. Estimation of PixApp and PicPre probability models.

When the M-step returns a suboptimal solution that does not
decrease , the algorithm is known as a general-
ized EM algorithm. It is shown in [45] that both the original and
the generalized EM algorithms increase the targeted expected
log likelihood monotonically.

The Estimate-Integrated-Model algorithm differs from the
two-stage estimation solution in (7). In the two-stage approach,
every pixel is assigned a unique class label, equivalent to
setting . Here, signifies
the probability profile of class labels for given images and
surface model. In addition, the Estimate-Integrated-Model
algorithm iterates across the two steps, while the two-stage
approach does them only once. Fig. 5 gives a more concrete
description of Algorithm 2 to explain how to obtain the PixApp
and the PicPre probability models.

B. PixApp Probability Model Estimation

One of the two expectations to be maximized in the M-step
is . The expectation is with respect to both

and . However, the unknown conditional probability
is replaced by an approximation . Hence

can be written as

(12)

By taking sample average log likelihood as the expected one

(13)

Thus maximization of is approximated by that
of . As is usually a continuous vector, is a proba-
bility density function conditioned on the discrete variable.
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We introduce an optimal quantization technique to find
. Optimal quantization partitions the space into cells,

such that they give a compact representation of the feature
vector . The pattern formed by the cells maximizes a quantizer
performance measure that is the summation of the weighted log
likelihood and the entropy. The optimal quantization approach
easily incorporates the class weights of each datum by allowing
fractional sample size. Entropy insures the consistency of the
density estimates. Otherwise, the estimated density would be a
function of superimposed impulses, which will give the poorest
performance on unseen data not in the training set. The final
density estimate of each cell for a given class is a nonzero
quantity obtained by smoothing the empirical density of each
cell. We assign every cell with some nonzero density estimate
by smoothing with a control parameter optimized by cross-val-
idation. Although smoothing also maintains the consistency of
the density estimates, its effect cannot be achieved by the mere
usage of entropy. Once they are estimated, the density functions
are stored in a grid. With a properly chosen cell shape, the grid
can be retrieved much more efficiently than for other standard
nonparametric methods. While it is true that nonparametric
methods always benefit from larger sample size, there is an
important property that is unique to optimal quantization that
the performance can always improve with more quantization
levels.

For a pixel in an ultrasound image of the heart, the original
feature vector has five dimensions. We reduce to a 3-D
vector by taking the first three principal components of.
We actually perform optimal quantization on instead of .
We show the one-dimensional (1-D) and 2-D marginal densi-
ties of the 3-D PixApp probability densities in Figs. 6
and 7, respectively. Classes represent EPI, ENDO,
and background pixels, respectively. Fig. 8 shows three class
PixApp probability maps of a given image, obtained with the
estimated PixApp probability model.

C. PicPre Probability Model Estimation

The other expectation to be maximized in the M-step is
. The expectation is on both and , where

is implicitly expressed in . is
an estimate of with replaced by

. Therefore, we have

(14)

We can further obtain an estimate of by the
average log likelihood of the sample, that is

(15)

Hence the maximization of reduces to the
maximization of the weighted log likelihood. As we have
defined by a parametric model previously, we solve
the nonlinear optimization problem by the Broyden–Fletcher–
Goldfarb–Shanno (BFGS) [46] method. The BFGS method

(a)

(b)

(c)

Fig. 6. One-dimensional marginal densities of estimated PixApp probability
model.
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(a)

(b)

(c)

Fig. 7. Two-dimensional marginal densities of estimated PixApp probability
model. (a) EPI. (b) ENDO. (c) Background.

(a) (b) (c)

Fig. 8. PixApp probability maps of apical four chamber view. (a)–(c) are
for EPI (p(Zj1)), ENDO (p(Zj2)), and Background (p(Zj3)) PixApp maps,
respectively. Probabilities are mapped to pixel intensities with histogram
equalization.

updates the Hessian matrix by adding a rank-two difference
matrix during every iteration and guarantees that the approx-
imated Hessian matrix is positive definite for minimization
problems. The major steps include finding the Newton search
direction, the line search, and the Hessian update.

Fig. 9 shows the estimated PicPre probability model.
Fig. 10 illustrates the process of pixel class prediction. We ob-

tain a simulated image shown in Fig. 10(a) through ultrasound
imaging simulation. Then we compute the distance transform of
the visible EPI and ENDO contours, shown as Fig. 10(b) and (c).

Fig. 9. The estimated PicPre probability model.

Fig. 10(d) and (e) shows the intensity maps of the closest on-sur-
face pixels. We apply the estimated PicPre probability model on
the distance and intensity maps, and display the PicPre proba-
bility maps in Fig. 10(f)–(h).

VI. L EFT VENTRICLE SURFACEMODEL OPTIMIZATION

The goal of surface model optimization is to find an optimal
surface model that maximizes its posterior probability given
all observed images. We use to represent the fea-
ture vectors, each corresponding to a pixel.is the total number
of pixels. The optimization problem can be formulated as

(16)

themselves are not independent, but strongly
statistically related. However, it is reasonable to assume that

are statistically independent conditioned upon
a given surface model. The interpretation is that given the sur-
face model , the feature vector of a pixel has no impact on
the feature vector of another pixelstatistically. Applying the
integrated surface inference theorem, the problem becomes

(17)

To simplify the notation, we use to denote the objective
function. Conceptually, this is an unconstrained optimization
problem. But considering the implicit prior probability model
expressed in the surface model catalog, we still need to modify

. Since comes from the linear combinations of the mem-
bers in the catalog, we can writeas
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 10. A simulated image and its intensity, distance and PicPre probability maps. (a) The simulated image. (b), (c)d(1) andd(2) distance maps. (d), (e)I(1)
andI(2) intensity maps. (f)–(h)P (1j�), P (2j�), andP (3j�) maps. 1-EPI, 2-ENDO, 3-Background.

where is a transform matrix, is a translation vector,
is the weight of for , and is the number of models in
the surface model catalog. There might be constraints on,
such as all being nonnegative and . Now the
optimization problem is reparameterized into

(18)

The constraints and enforce the combi-
nation of the models in the catalog to be convex. Considering the
available CPU cycles, our strategy is first to find s and s
by an initial alignment of each member in the catalog. Second,

s and s are fixed during the optimization of , where
only optimal weights are being sought.

In the initial alignment, we compute the transform matrix
s and translation vector s for each member in the catalog,

such that the aligned surface model maximizes the explicit prior
probability given user input points.

After the initial alignment, the s and s are obtained and
the catalog is aligned; that is, each member in the original
catalog is aligned to by . Since the
problem is still constrained, we reparameterize it by letting

(19)

where is the new optimization
variable. The surface model optimization problem can finally
be written as

(20)

We use the optimization method described in [47, pp. 443–
448], which combines both direct search and global methods. It
employs the Nelder–Mead simplex algorithm to decide a new
search point and determines whether or not to accept the point
after randomly perturbing the objective function.

VII. EXPERIMENTAL RESULTS

We evaluate the performance of the integrated approach on
3-D LV surface optimization with a total of 45in vivo clinical
studies. There are 16 normal studies and 29 diseased studies.
There are six groups among the 45 studies.

1) The Normal group consists of healthy studies.
2) The CM group consists of cardiomyopathy, idiopathic,

and mean of unknown cause studies.
3) The IMR group consists of ischemic dilated cardiomy-

opathy with mitral regurgitation studies.
4) The MI group consists of myocardial infarction studies.
5) The IO (from University of Iowa) group has one myocar-

dial infarction study.
6) The VA (from the VA Hospital) group consists of chronic

coronary disease studies.
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(a) (b) (c)

(a) (b)

Fig. 11. A normal test study (NL180). Imaging plane intersections of optimized (solid line) and true (dashed line) surface models. (a) Parasternal long-axis view.
(b) Short-axis view. (c) Apical four-chamber view. (d) Apical two-chamber view. (e) Apical long-axis view.

The LV surface catalog has 86 LV models from 73 patients: 52
studies in eight diseased groups and 34 normal studies. All the
ground-truth LV surface models are built with a labor-intensive
and accurate method using more than five views.

All 45 sets of image sequences were acquired from ATL ul-
trasound machines, except the IO studies, which were acquired
from HP ultrasound machines. These images were acquired for
other studies by three operators over a period of two years, so
that they incorporate some amount of operator and system set-
ting variability. The frame rate was 30 per second. The hori-
zontal and vertical resolutions of the images were, respectively,

mm and mm per pixel. For each of
the 45 studies, we selected subsequences of images from four
or five different views, including three or four long-axis views
and one short-axis view. Each view was further divided into an
upper sector and a lower division, divided by an arc passing an
inner point of the LV and centered at the transducer location.

From the 45 studies, we selected 20 of good image quality as
the training set. We obtained different PixApp and PicPre prob-
ability models for each division, all estimated from the training
studies. So we had ten pairs of PixApp and PicPre probability
models for the five views.

The remaining 25 studies form the test set. Before optimiza-
tion, a test study is removed from the surface model catalog if it
is present. In the initial alignment, we apply rotation and trans-
lation only to models in the catalog. During the optimization of
weights, we allow a maximum number of 336 objective func-
tion evaluations per study. It takes the highly optimized C++/C
program on the average about two hours per study on an Intel
Pentium III 500-MHz computer to complete the surface model
optimization of both ENDO and EPI.

We perform the experiment atend diastole. We measure the
projection distance between the optimized and the ground-truth
surface models. Theprojection distance from surface to sur-

face is defined as the mean vertex projection distance from
all the vertices of surface to surface . Theprojection dis-
tance between surfaceand is the average of the projection
distances from to and from to .

Figs. 11 and 12 display the optimization results on a normal
group test study and a diseased CM group test study, respec-
tively. Both figures show the original images and the imaging
plane intersections with the optimized surface models (solid
line) and the ground-truth surface models (dashed line). We
achieved surface projection distance errors of 2.0 and 2.2 mm
on ENDO and EPI, respectively, on the normal study in Fig. 11.
The two surface models agree well at places with strong con-
trast available, such as the upper and lower center of the view
in Fig. 11(a), the lower part of the view in Fig. 11(b), the lower
parts of the view in Fig. 11(c), the lower left part of the view in
Fig. 11(d), and the left and right parts of Fig. 11(e). However,
we observed large error around the area in the top left of the
views in Fig. 11(c) and (d). Dropout occurs at these places be-
cause the local surfaces there are almost parallel to the incident
direction of the ultrasound beam, emitted from the transducer at
the origin of the fan-shaped scanning area. In Fig. 12, we had an
ENDO surface projection distance of 1.9 mm and an EPI surface
projection distance error of 2.5 mm on a diseased CM study. In
this study, the error distributed more evenly than in the previous
study. The major error occurs around the apex area, which is
typically either in the near field where distortions are serious or
outside the imaging area. So the apex areas will rely more on
the prior shape knowledge and user input points.

Table I gives the surface projection distance error summary
statistics on the 25 test studies. The overall distance errors for
ENDO and EPI are 2.6 and 3.2 mm, respectively. The best per-
formance is achieved on the normal group test studies. The dis-
eased studies have various errors. Fig. 13 shows the scatter plot
of the ENDO/EPI surface projection distance errors of all the
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(a) (b) (c)

(a) (b)

Fig. 12. A diseased test study (CM240R1). Imaging plane intersections of optimized (solid line) and true (dashed line) surface models. (a) Parasternal long-axis
view. (b) Short-axis view. (c) Apical four-chamber view. (d) Apical two-chamber view. (e) Apical long-axis view.

Fig. 13. Scatter plot of surface distance errors on 25 test studies.

test studies. We can see that the normal and MI groups are better
than other groups.

We had an IO test study whose images were acquired from
an HP ultrasound machine, different from the ATL ultrasound
machine used for the 20 training studies. We accomplished a
surface projection distance error of 2.4/3.2 mm, smaller than
the average error of the 25 test studies. This indicates that our
PixApp and PicPre probability models are extendable to capture
the underlying imaging process of different types of ultrasound
machine.

The optimized surface model for the VA study had larger er-
rors than others because this study had lower than average image
quality and the LV had a very abnormal shape. Such cases can
be rejected by a lower posterior probability of the optimized sur-
face model given the observed images.

TABLE I
SURFACE DISTANCE ERROR (MM) STATISTICS OF ENDO/EPIOF

25 TEST STUDIES

TABLE II
STATISTICS OF THEPROJECTIONDISTANCE ERROR(MM) BETWEENUSERINPUT

SURFACE POINTS AND GROUND-TRUTH SURFACE MODELS. (APEX, AM, PM,
ASQ,AND PWM ARE THE NAMES OF THESURFACE POINTS)

We use the projection distance from a user input point to the
ground-truth surface model to indicate the human tracing error.
Table II shows the user input point tracing error statistics in the
20 training studies. We show five of the seven user input points
because these five are supposed to be located on the ENDO
surface. They are the apex on ENDO and four ENDO surface
points. The mean of the tracing error is 2.3 mm, only 0.3 mm
smaller than the mean ENDO surface projection distance error
of the 25 test studies. On the other hand, the human tracing error
has a much larger standard deviation of 2.1 mm versus 0.78 mm
of the 25 test studies. Therefore, even though there is still room
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for improvement on the diseased studies, we believe our overall
result approaches the achievable performance limit. For clinical
use, our approach can be modified to allow the operator to ac-
cept or reject the computed boundaries and, if necessary, select
additional points to improve the result.

VIII. C ONCLUSION

We studied an integrated approach to surface model optimiza-
tion that incorporates both the low-level image evidence and
the high-level prior shape knowledge in finding the best surface
model maximizing the posterior probability. This integrated ap-
proach falls naturally within the Bayesian framework. It sys-
tematically tackles both offline training and online optimization.
The offline probability estimation problem is solved by creative
use of the EM algorithm.

We applied the integrated approach to 3-D LV surface model
optimization from 2-D ultrasound heart images. We showed the
qualitative and quantitative results of the optimized LV surface
models. Experimental results confirm the feasibility of the in-
tegrated approach. The results for normal studies are usually
better than the diseased studies because normal LVs are well
represented in the catalog. To further improve the performance
on the diseased studies, we believe more diseased examples
should be put into the surface model catalog. The PixApp and
PicPre probability models are jointly estimated. As the prob-
ability models do not change over time for a given imaging
system, when a dynamic model of the LV is available, the in-
tegrated approach still yields an optimal solution and can be ap-
plied in tracking 3-D surfaces over time.

Experimental results on 3-D echocardiography have shown
that the integrated approach gives a promising direction for fur-
ther study of surface model optimization. As we are solving
an optimization problem whose objective function has a higher
dimension and more complexity than the two-stage approach,
it demands more CPU cycles both online and offline. Despite
the current computational cost, we expect to see a transition
from the lower performance two-stage approach to an integrated
approach with the ever-increasing CPU speed and decreasing
price.
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