Data Models for Conceptual
Structures

Roger T. Hartley
Heather D. Pfeiffer

Basic CS Graph

Definitional CP Graph

/ CATCH \
@ @

PERSON BALL

\/

CP Overlay Graph

CATCH

v

Complete CP Procedural Graph

_
F/

PERSON J/ BALL

L/

¢

Small Example

CS Graph example
Simple CP overlay examples

CP overlay across Definition Graphs
CP Model

PersonBirth is Graph

Person

CHRC

Birth

Date

Person is DefGraph

CHRC

Age

Person
CHRC
A 4
Birth

BirthDate is OvGraph

Person

Date

Now is DefGraph

DATE

ComputeNow is OvGraph

Date

Age is OvGraph

Age

Date

Date

Birth

CurrentAge is PartModel

CurrentAge

Person

CHRC

Birth

Date

CGIF for Conceptual Structures

CG

CG ::= (Concept | Relation | Actor | SpecialContext | Comment)*
Concept

Concept ::= "[" Type(1)? {CorefLinks?, Referent?} Comment? "]*
Relation

Relation ::= "(" Type(N) Arc* Comment? ")"

Actor

Actor ::= "<" Type(N) Arc* "|" Arc* Comment? ">"
SpecialContext

SpecialContext ::= Negation | "[" SpecialConLabel ":"CG "]"
Comment

Comment ::= DelimitedStr(";")

Data Model

ADTs

» Definition of types and structures
» Operations on those types

DTD Structure

<IELEMENT cg

<I[ELEMENT concept

<!IELEMENT relation
<IELEMENT actor
<IELEMENT specialcontext
<I[ELEMENT cgcomment

(concept | relation | actor | specialcontext |
cgcomment)*>

(contypelabel?, (coreflinks | referent |
((coreflinks, referent) | (referent,
coreflinks)))?,concomment?)>

(reltypelabel, arc*, relcomment?)>
(reltypelabel, arc*,(actorcomment)?)>

(negation | (specialconlabel, cg))>

(#PCDATA)>

Creation of Data Models

* Haskell Language
* By Hand — using XmlSpy

Haskell Data Model
(Basic CS Constructs)

type CG = ([CNode], [RNode])

type Label = String

data CNode = Concept Label Referent

data RNode = Relation Label InArcs OutArc

type InArcs = [CNode]

type OutArc = CNode

data Referent = N1l | Literal Literal | Graph CG

data Literal = LitString String | Name String | Marker String

Haskell Stmple Example

let sit = Concept “Sit” Nil in
([l1,[Relation “AGT” [sit] Concept “Cat” Literal Name “Fred”,
Relation “LOC?” [sit] Concept “Mat” Nil])

Haskell Data Model
(Add Co-references)

type CG = ([CNode], [RNode])

type Label = String

type CoRef = String

data CNode = Concept Label Referent |
DefConcept Label CoRef Referent |
BoundConcept CoRef

data RNode = Relation Label InArcs OutArc

type InArcs = [CNode]

type OutArc = CNode

data Referent = Nil | Literal Literal | Graph CG

data Literal = LitString String | Name String | Marker String

Haskell Example
(With Co-references)

([I,[Relation “AGT”
[DefConcept “Sit” “x” Nil]
Concept “Cat” Literal Name “Fred”,
Relation “LOC”

[BoundConcept “x”’]
Concept “Mat” Nil])

Haskell Grammar
(Part 1)

CG :Node
| Node CG

Node : Relation
Concept
Actor

Negation

Haskell Grammar
(Part 2)

Relation: '(' TypeExp Arcs ')’

Actor :'<'id Arcs'l' Arcs >
Negation: '~''[' CG '’

Concept : '[' TypeExp ;' Referent ']’

-

' TypeExp "' 1d ":' Referent ']’

-

"' TypeExp ']’
" TypeExp "*'id T
:' |]'

" "' Referent ']’

-

-

-

Graph Data Model Types

* Pointer Type
* Adjacency List Type
* Adjacency Matrix Type

CGType

Haskell XML
Schema

1 r
--! InArc

| cerile B~ ﬂ(_:(_; _v@* B F_____E.E—. B

Roat Elerment 0.

ANodeType

Generated with XMLSpy Schema Editor M R oAl

Haskell
Concept
XML

Schema

[cerile B~ icG ;E‘_I]-

Foot Elernent 0.

CGType

I~ AHode

1
1
=}
=
=]
=N
1]
|I;

[EﬁndeType

~-=Label !
1 I 1

G

I

Generated with XMLSpy Schema Editor #5 S B oA

Haskell Concept Attribute

* Name - CoRef
« Type - xs:string
* Use - optional

Haskell
Relation
XML

Schema

.7 Ritode [
'''''''''' Tl OutArc
‘ ="
1
1
1
1

RHodeType

CHodeType

CHodeType

o,
L—:InArc
________ -;::_I
e)

I

Generated with XMLSpy Schema Editor M B o as (0

Haskell
Actor
XML

Schema

Foot Elerment

—

CGFile [T 4,CG [}

________ e
0.

CGType

L-! AHode Ep{:}a—_@

AHodeType

—|5Lahe|

CHodeType

—F

—————————— 'q{;_l 1. m
0. -
CHodeType
~i3
— Output
;w —:
| -
- -7 Hitode
__________ 1&,_.""
0. .=]

Generated with XMLSpy Schema Editor M B oAt 0

I_DI'I[:EptT]ﬂ]E —l
Graph Tuple I contist [;4{*;@—[concept [

Concept Mode - gives the
C e I l l a conceptual type inforrnation |

RCC-tupleType _|

m

arelation [

|

Relation Mode - gives a
conceptual relationship
between concept bypes

Conceptual Graph -
Adjacency mattix like data
structure, but in tuples

AC-Posin-out [+

concept list in pairs with
concepts in and out, does nat
hawe to hawe a concept in,

by out
L " _

—
ACCtupleType

A

Actor Mode - gives a
conceptual relationship with
a functional elernent

L[acc-tuple E} A

concept list that has pairs of
cancepts in and out, must
hawve bath sides

Generated with XMLSpy Schema Editor MR oA

Graph
Tuple . 1

- Iltstrlng

Concept e

XML e
r- u_rf_:f_e;t;n_t_ H — locator [H 1|--'"rn-a-r|::£-:r-

Schema ==
@@M* | quantifier }-£i3 |7+ “''_:'_'_'_'__

| @ Concapt Mode - gives the
conceptual bype infarmation

Lol l]melahel !

coraph] =i Cancaptual Graph -
Conceptual Graph - Adjacency mattix like data

Aidjacency mateix like data struchure, but in fuples
structure, but in tuples S

L ACC-tuple [

Generated with XMLSpy Schema Editor M Eor, n

Graph Tuple Concept Attribute

« Name - uniquecon
* Type -xs:ID
* Use - required

Graph RCC Tuple
XML Schema

— con-list [

LT

I?CC-tupleType

—Lrelatiun @ (£ :EI—Elypelahel

Relation Mode - gives a
conceptual relationship
betweaen concept types

m @E— —————————— x—_y:E_ I:pDSiH-DUIT]ﬂ]E —|
ph e

| caraph o Q= | . ,

Conceptual Graph - r - xconcept

Adjacency mattix like data ! _C_n:-;-:; _I: ;\I;-:I_e T
structure, but in tuples _L,, c-posin-out $ -:-:un-:epptual bype E‘nﬁ:-rmatinn

concept list in pairs with
concepts in and out, does not

hawve to have a concept in,]
anly aut Caoncept Mode - gives the

conceptual bype infarmation

]

_

— ACC-tuple [

L=

Generated with XMLSpy Schema Editor M B o as

Graph ACC Tuple
XML Schema

— con-list [H

|_ACC-tupleTypE
cgraph i! | @El— Et_q.mue:I:al.'nlal
Conceptual Graph - _| actor @ %
Adjacency mattix like data A = -
structure, but in tuples Actor Made - gives a function

conceptual relationship with
a functional elernent

R
— ACC-tuple E} e = l:in- y

R
0..=

]

Concept Mode - gives the
conceptual type information

—| ‘_ c-in-out I

concept list that has pairs of
concepts in and out, rmust
have both sides

]

Concept Mode - gives the
conceptual type information

]
Generated with XMLSpy Schema Editor s R oD

7= T concept B
RS
0.« Concept Made - gives the
conceptual bype informnation

n relation

Relation Mode - gives a

dj h Pai
RC-ligt [.,/__.:.__ = conceptual relationzhip
I batween concept types
[J .
1 Sts XML Concept Mode - gives the

conceptual type informnation

I I I l l " Pt Concept Mode - gives the
CR-list E] "K“'_ = conceptual type informnation

n __V"

ot B (& 0.

Conceptual Graph - Using
Adjacency list representation Relation Mode - gives a
conceptual relationship

between concept typas

Actar Mode - gives a
conceptual relation that has a
Functional elennant

cgs Concept Mode - gives the
conceptual type information

Set of Conceptual Graphs in 1. F WF

a file

Concept MHode - gives the
conceptual type informnation

Actar Mode - gives a
conceptual relation that has a
Functional elernent

Generated with XMLSpy Schema Editor M Bl

	Data Models for Conceptual Structures
	Basic CS Graph
	Definitional CP Graph
	CP Overlay Graph
	Complete CP Procedural Graph
	Small Example
	CGIF for Conceptual Structures
	Data Model
	DTD Structure
	Creation of Data Models
	Haskell Data Model(Basic CS Constructs)
	Haskell Simple Example
	Haskell Data Model(Add Co-references)
	Haskell Example(With Co-references)
	Haskell Grammar(Part 1)
	Haskell Grammar(Part 2)
	Graph Data Model Types
	Haskell XML Schema
	HaskellConcept XML Schema
	Haskell Concept Attribute
	Haskell Relation XML Schema
	Haskell Actor XML Schema
	Graph Tuple XML Schema
	Graph Tuple Concept XML Schema
	Graph Tuple Concept Attribute
	Graph RCC Tuple XML Schema
	Graph ACC Tuple XML Schema
	Graph Pair Lists XML Schema

