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Small Example

CS Graph example
Simple CP overlay examples

CP overlay across Definition Graphs
CP Model
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BirthDate is OvGraph
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Now is DefGraph
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Age is OvGraph
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CurrentAge is PartModel
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CGIF for Conceptual Structures

CG

CG ::= (Concept | Relation | Actor | SpecialContext | Comment)*
Concept

Concept ::= "[" Type(1)? {CorefLinks?, Referent?} Comment? "]*
Relation

Relation ::= "(" Type(N) Arc* Comment? ")"

Actor

Actor ::= "<" Type(N) Arc* "|" Arc* Comment? ">"
SpecialContext

SpecialContext ::= Negation | "[" SpecialConLabel ":"CG "]"
Comment

Comment ::= DelimitedStr(";")



Data Model

ADTs

» Definition of types and structures
» Operations on those types



DTD Structure

<IELEMENT cg

<I[ELEMENT concept

<!IELEMENT relation
<IELEMENT actor
<IELEMENT specialcontext
<I[ELEMENT cgcomment

(concept | relation | actor | specialcontext |
cgcomment)*>

(contypelabel?, (coreflinks | referent |
((coreflinks, referent) | (referent,
coreflinks)))?,concomment?)>

(reltypelabel, arc*, relcomment?)>
(reltypelabel, arc*,(actorcomment)?)>

(negation | (specialconlabel, cg))>

(#PCDATA)>



Creation of Data Models

* Haskell Language
* By Hand — using XmlSpy



Haskell Data Model
(Basic CS Constructs)

type CG = ([CNode], [RNode])

type Label = String

data CNode = Concept Label Referent

data RNode = Relation Label InArcs OutArc

type InArcs = [CNode]

type OutArc = CNode

data Referent = N1l | Literal Literal | Graph CG

data Literal = LitString String | Name String | Marker String



Haskell Stmple Example

let sit = Concept “Sit” Nil in
([l1,[Relation “AGT” [sit] Concept “Cat” Literal Name “Fred”,
Relation “LOC?” [sit] Concept “Mat” Nil])



Haskell Data Model
(Add Co-references)

type CG = ([CNode], [RNode])

type Label = String

type CoRef = String

data CNode = Concept Label Referent |
DefConcept Label CoRef Referent |
BoundConcept CoRef

data RNode = Relation Label InArcs OutArc

type InArcs = [CNode]

type OutArc = CNode

data Referent = Nil | Literal Literal | Graph CG

data Literal = LitString String | Name String | Marker String



Haskell Example
(With Co-references)

([I,[Relation “AGT”
[DefConcept “Sit” “x” Nil]
Concept “Cat” Literal Name “Fred”,
Relation “LOC”

[BoundConcept “x”’]
Concept “Mat” Nil])



Haskell Grammar
(Part 1)

CG :Node
| Node CG

Node : Relation
Concept
Actor

Negation



Haskell Grammar
(Part 2)

Relation: '(' TypeExp Arcs ')’

Actor :'<'id Arcs'l' Arcs >
Negation: '~''[' CG '’

Concept : '[' TypeExp ;' Referent ']’

-

' TypeExp "' 1d ":' Referent ']’

-

"' TypeExp ']’
" TypeExp "*'id T
:' |]'

" "' Referent ']’

-

-

-



Graph Data Model Types

* Pointer Type
* Adjacency List Type
* Adjacency Matrix Type
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Haskell Concept Attribute

* Name - CoRef
« Type - xs:string
* Use - optional
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Graph Tuple Concept Attribute

« Name - uniquecon
* Type -xs:ID
* Use - required



Graph RCC Tuple
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Graph ACC Tuple
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