Data Models for Conceptual Structures

Roger T. Hartley

Heather D. Pfeiffer

Basic CS Graph

Definitional CP Graph

CP Overlay Graph

Complete CP Procedural Graph

Small Example

- CS Graph example
- Simple CP overlay examples
- CP overlay across Definition Graphs
- CP Model

PersonBirth is Graph

Person is DefGraph

BirthDate is OvGraph

Now is DefGraph

ComputeNow is OvGraph

Age is OvGraph

CurrentAge is PartModel

CGIF for Conceptual Structures

- CG CG ::= (Concept | Relation | Actor | SpecialContext | Comment)*
- Concept
 Concept ::= "[" Type(1)? {CorefLinks?, Referent?} Comment? "]"
- Relation
 Relation ::= "(" Type(N) Arc* Comment? ")"
- Actor
 Actor ::= "<" Type(N) Arc* "|" Arc* Comment? ">"
- SpecialContext
 SpecialContext ::= Negation | "[" SpecialConLabel ":"CG "]"
- CommentComment ::= DelimitedStr(";")

Data Model

ADTs

- > Definition of types and structures
- > Operations on those types

DTD Structure

ELEMENT cg</th <th><pre>(concept relation actor specialcontext cgcomment)*></pre></th>	<pre>(concept relation actor specialcontext cgcomment)*></pre>
ELEMENT concept</td <td><pre>(contypelabel?, (coreflinks referent ((coreflinks, referent) (referent, coreflinks)))?,concomment?)></pre></td>	<pre>(contypelabel?, (coreflinks referent ((coreflinks, referent) (referent, coreflinks)))?,concomment?)></pre>
ELEMENT relation</td <td>(reltypelabel, arc*, relcomment?)></td>	(reltypelabel, arc*, relcomment?)>
ELEMENT actor</td <td>(reltypelabel, arc*,(actorcomment)?)></td>	(reltypelabel, arc*,(actorcomment)?)>
ELEMENT specialcontext</td <td>(negation (specialconlabel, cg))></td>	(negation (specialconlabel, cg))>
ELEMENT cgcomment</td <td>(#PCDATA)></td>	(#PCDATA)>

Creation of Data Models

- Haskell Language
- By Hand using XmlSpy

Haskell Data Model (Basic CS Constructs)

```
type CG = ([CNode], [RNode])

type Label = String

data CNode = Concept Label Referent

data RNode = Relation Label InArcs OutArc

type InArcs = [CNode]

type OutArc = CNode

data Referent = Nil | Literal Literal | Graph CG

data Literal = LitString String | Name String | Marker String
```

Haskell Simple Example

```
let sit = Concept "Sit" Nil in
```

([],[Relation "AGT" [sit] Concept "Cat" Literal Name "Fred",

Relation "LOC" [sit] Concept "Mat" Nil])

Haskell Data Model (Add Co-references)

```
type CG = ([CNode], [RNode])
type Label = String
type CoRef = String
data CNode = Concept Label Referent |
             DefConcept Label CoRef Referent |
             BoundConcept CoRef
data RNode = Relation Label InArcs OutArc
type InArcs = [CNode]
type OutArc = CNode
data Referent = Nil | Literal Literal | Graph CG
data Literal = LitString String | Name String | Marker String
```

Haskell Example (With Co-references)

([],[Relation "AGT"

[DefConcept "Sit" "x" Nil]

Concept "Cat" Literal Name "Fred",

Relation "LOC"

[BoundConcept "x"]

Concept "Mat" Nil])

Haskell Grammar (Part 1)

CG: Node

| Node CG

Node : Relation

| Concept

Actor

| Negation

Haskell Grammar (Part 2)

```
Relation: '(' TypeExp Arcs ')'
Actor: '<' id Arcs'|' Arcs'>'
Negation: '~' '[' CG ']'
Concept: '[' TypeExp ':' Referent ']'
         | '[' TypeExp '*' id ':' Referent ']'
          |'[' TypeExp ']'
         | '[' TypeExp '*' id ']'
          | '[' ']'
          | '[' ':' Referent ']'
```

Graph Data Model Types

- Pointer Type
- Adjacency List Type
- Adjacency Matrix Type

Haskell XML Schema

ССТуре Haskell CNodeType Label Concept **~**:∃∃ LambdaExpression 📥 **XML** _CG Marker Name Schema CNode LitString _Literal 📥 Set Аггау List ₹ Referent 📑 Tuple 🗐 gCG ⊞ CGFile [Number Root Element Quantifier 📑 Туре RNode 🖽 ANode 🖽 NNode 📋 0...0

Haskell Concept Attribute

- Name CoRef
- Type xs:string
- Use optional

Haskell Relation XML Schema

Haskell Actor XML Schema

CGType

Graph Tuple XML Schema

cgraph 🖹

Conceptual Graph -

structure, but in tuples

Adjacency matrix like data

Graph Tuple Concept Attribute

- Name uniquecon
- Type xs:ID
- Use required

Graph RCC Tuple XML Schema

Graph ACC Tuple XML Schema

Graph Pair Lists XML Schema

Set of Conceptual Graphs in

