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Abstract

Tabled logic programming (LP) systems have been applied to elegantly and quickly solving
very complex problems (e.g., model checking). However, techniques currently employed for in-
corporating tabling in an existing LP system are quite complex and require considerable change
to the LP system. We present a simple technique for incorporating tabling in existing LP sys-
tems based on dynamically reordering clauses containing wariant calls at runtime. Our simple
technique allows tabled evaluation to be performed with a single SLD tree and without the use
of complex operations such as freezing of stacks and heap. It can be incorporated in an existing
logic programming system with a small amount of effort. Our scheme also facilitates exploitation
of parallelism from tabled LP systems. Results of incorporating our scheme in the commercial
ALS Prolog system are reported.

1 Introduction

Traditional logic programming systems (e.g., Prolog) use SLD resolution [14] with the following
computation strategy [14]: subgoals of a resolvent are tried from left to right and clauses that match
a subgoal are tried in the textual order they appear in the program. It is well known that SLD
resolution may lead to non-termination for certain programs, even though an answer may exist via
the declarative semantics. In fact, this is true of any “static” computation strategy that is adopted.
That is, given any static computation strategy, one can always produce a program that will not be
able to find the answers due to non-termination even though finite solutions may exist. In case of
Prolog, programs containing certain types of left-recursive clauses are examples of such programs.
To get around this problem, researchers have suggested computation strategies that are dynamic
in nature coupled with recording solutions in a memo table. By a dynamic computation strategy we
mean that the decision regarding which clause to use next for resolution is taken based on runtime
properties, e.g., the nature and type of goals in the current resolvent. OLDT [21] is one such
computation strategy. In OLDT resolution, solutions to certain subgoals are recorded in a memo
table (heretofore referred to simply as a table). Such a call that has been recorded in the table is
referred to as a tabled call. In OLDT resolution, when a tabled call is encountered, computation
is started to try the alternative branches of the original call and to compute solutions, which are
then recorded in the table. These solutions are called tabled solutions for the call. When a call to a
subgoal that is identical to a previous call is encountered while computing a tabled call—such a call is
called a variant call and may possibly lead to non-termination if SLD resolution is used—the OLDT
resolution strategy will not expand it as SLD resolution will, rather the solutions to the variant call
will only be obtained by matching it with tabled solutions. If any solutions are found in the table,
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they are consumed one by one just as a list of fact clauses by the variant call, each producing a
solution for the variant call. After consuming, the computation of the variant subgoal is suspended
until some new solutions appear in the table. This consumption and suspension continues, until we
can detect that all the solutions for the tabled call have been generated and a fizpoint reached.

Tabled logic programming systems have been put to many innovative uses. A tabled logic pro-
gramming system can be thought of as an engine for efficiently computing fixpoints. Efficient fixpoint
computation is critical for many applications. These applications include:

1. Model checking of software systems: model checkers based on tabled LP systems such as
XSB are comparable in speed to state-of-the-art model checkers but are considerably easier to
program [17].

2. Efficient implementation of deductive databases: Deductive databases based on tabling can be
as much as 10 times faster than those based on bottom-up evaluation and magic sets [23].

3. Program Analysis: The fixpoint engine of tabled logic programming systems provides a generic
framework for quickly developing abstract interpreters [16] and program analysis systems [7].

4. Non-monotonic reasoning: tabled LP systems can support more powerful forms of negations
[6], thus making logic programming more expressive.

The ability to table calls and solutions results in a more complete logic programming system.
Thus tabling should be an indispensable part of any Prolog system. However, this has not happened,
mainly, we believe, due to the techniques that have been traditionally used to incorporate tabling in
existing LP systems. Traditionally, OLDT has been implemented by a combination of computation
suspension via stack freezing and maintaining a forest of SLD trees (e.g., the XSB system) [29, 5, 22].
Due to this maintenance of forest of SLD trees, freezing of stacks, suspensions and resumption,
implementing OLDT in this way can be quite complex. Also, the freezing of stacks results in space
overheads. Several man-years have been invested in the design and development of the XSB system
[5, 20, 8, 9, 11, 28] due to this complexity. This investment in effort has indeed yielded results,
turning XSB into an extremely efficient tabled LP system most widely in use today.

Other techniques that are variants of OLDT and that are simpler to implement and incur less
space overhead, such as SLDT, have been recently proposed and incorporated in the B-Prolog system
[25]. However, in SLDT because of the execution strategy used, ensuring that all solutions to a tabled
call have been found can incur considerable overhead.

In this paper, we present a novel, simple scheme for incorporating tabling in a standard logic
programming system. Our scheme, which is based on dynamic reordering of alternatives that contain
variant calls, allows one to incorporate tabling in an existing logic programming system with very
little effort. Using our scheme we were able to incorporate tabling in the commercial ALS Prolog
system [3] in a few weeks of work. The time efficiency of our tabled ALS (TALS) system is comparable
to that of the XSB system and B-Prolog. The space efficiency of our system is comparable to that
of B-Prolog and XSB with local scheduling and better than that of XSB with batch scheduling
(batch scheduling is XSB’s current default scheduling strategy). Unlike traditional implementations
of tabling [5], our scheme works with a single SLD tree without requiring suspension of goals and
freezing of stacks. Additionally, no extra overhead is incurred for non-tabled programs. Intuitively,
our scheme builds the search tree as in normal Prolog execution based on SLD, however, when a
variant tabled call is encountered, the branch that lead to that variant call is “moved” to the right
of the tree. Essentially, branches of the search tree are reordered during execution to avoid exploring
potentially non-terminating branches.

The principal advantage of our technique is that because of its simplicity it can be incorporated
very easily and without sacrificing efficiency in an existing Prolog system. This can have important
consequences, given that tabling is so important for many serious applications of logic programming
(e.g., model checking [17]).

In our dynamic alternative reordering strategy, not only are the solutions to variant calls tabled,
the alternatives leading to variant calls are also memorized in the table (these alternatives, or clauses,
containing variant calls are called looping alternatives in the rest of the paper). A tabled call first



tries its non-looping alternatives (tabling any looping alternatives that are encountered along the
way). Finally, the tabled call repeatedly tries its looping alternatives until it reaches a fixpoint.
This has the same effect as shifting branches with variant calls to the right in the search tree. The
simplicity of our scheme guarantees that execution is not inordinately slowed down (e.g., in the B-
Prolog tabled system [25], a tabled call may have to be re-executed several times to ensure that all
solutions are found), nor considerable amount of memory used (e.g., in the XSB tabled system [5] a
large number of stacks/heaps may be frozen at any given time), rather, the raw speed of the Prolog
engine is available to execute even those programs that contain variant calls.

An additional advantage of our technique for implementing tabling is that parallelism can be
naturally exploited. In traditional tabled systems such as XSB, the ideas for parallelism have to be
reworked and a new model of parallelism derived [10, 19]. In contrast, in a tabled logic programming
system based on dynamic reordering, the traditional forms of parallelism found in logic programming
(or-parallelism and and-parallelism) can still be exploited. Work is in progress to augment the or-
parallel ALS system [3, 12] (currently being developed by us [24, 13]) with tabling [13].

A disadvantage of our approach is that certain non-tabled goals occurring in looping alternatives
may be computed more than once. However, this recomputation can be eliminated by the use of
tabling, automatic program transformation, or more sophisticated reordering techniques (see later).

2 SLD and OLDT Resolution

Prolog was initially designed to be a declarative programming language [14], that is, a logic program
with a correct declarative semantics should also get the same results through procedural semantics.
However, the operational semantics of standard Prolog systems that adopt SLD resolution (leftmost-
first selection rule and a depth-first search rule) is not close to their declarative semantics. The
completeness of SLD resolution ensures that given a query, the solutions implied by the program,
if they exist, can be obtained through computation paths in the SLD tree [14]. However, standard
Prolog systems with a pre-fixed computation rule may only compute a subset of these solutions due
to problems with non-termination.

Example 2.1 Consider the following program:

rX, V) :-r(X, Z2), r(Z, Y). (1)
rX, V) - pX, V), q(¥). (2)
p(a, b). p(a, 4). p(b, c).

q(b). q(c).

:- table r/2.

- r(a, Y).

Following the declarative semantics of logic programs (e.g., employing bottom-up computation), the
example program 2.1 above should produce two answers Y=b and Y=c. However, standard Prolog
system will go into an infinite loop for this program. It is Prolog’s computation rule that causes the
inconsistency between its declarative semantics and procedural semantics. With the leftmost-first
selection rule and depth-first search rule, Prolog systems are trapped in an infinite loop in the SLD-
tree even though computation paths may exist to the solutions. It seems that breadth-first search
strategy may solve the problem of infinite-looping, and it does help in finding the first solution.
However, if the system is required to find all the solutions and terminate, breadth-first search is not
enough, since the SLD tree may contain branches of infinite length.

To get around this problem, a tabled evaluation strategy called OLDT is used in tabled logic
programming systems such as XSB. In the most widely available tabled Prolog systems, XSB, OLDT
is implemented in the following way'. When a call to a tabled predicate is encountered for the first
time, the current computation is suspended and a new SLD tree is built to compute the answers to
this tabled call. The new tree is called a generator, while the old tree (which led to the tabled call)
is called a consumer w.r.t. the new tabled call. When a call that is a variant of a previous call—and

!The current XSB system uses SLG resolution, which is OLDT augmented with negation.
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Figure 1: An OLDT Tree

that may potentially cause infinite loop under SLD—is encountered in the generator SLD tree, XSB
first consumes the tabled solutions of that call (i.e., solutions that have already been computed by
the previous call). If all the tabled solutions have been exhausted, the current call is suspended until
some new answers are available in the table. Finally, the solutions produced by the generator SLD
tree are consumed by the consumer SLD tree after its execution is resumed. In XSB, the suspension
of the consumer SLD tree is realized by freezing the stacks and heap. An implementation based on
suspension and freezing of stacks is quite complex to realize as well as can incur overhead in terms
of time and space. Considerable effort is needed to make such a system very efficient. In this paper,
we present a simple scheme for incorporating tabling in a Prolog system in a small fraction of this
time. Additionally, our system is comparable in efficiency to existing systems w.r.t. time and space.

The OLDT resolution forest for example 2.1 following XSB style execution is shown in figure 1.
(The figure also shows the memo-table used for recording solutions; the numbers on the edges of
the tree indicate the order in which XSB will generate those edges). Compared to SLD, OLDT
has several advantages (i) A tabled Prolog system avoids redundant computation by memoing the
computed results. In some cases, it can reduce the time complexity of a problem from exponential
to polynomial. (ii) A tabled Prolog system terminates for all queries posed to bounded term-sized
programs that have a finite least fixpoint. (iii) Tabled Prolog keeps the declarative and procedural
semantics of definite Prolog programs consistent.

3 Dynamic Reordering of Alternatives (DRA)

We present a simple technique for implementing tabling that is based on dynamic reordering of
looping alternatives at runtime, where a looping alternative refers to a clause that matches a tabled
call containing a recursive variant call. Intuitively, our scheme works by reordering the branches in
SLD trees. Branches containing variant calls are moved to the right in the SLD tree for the query.
In our scheme, a tabled call can be in one of three possible states: normal state, looping state, or
complete state. The state transition graph is shown in figure 2.
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Figure 2: State Transition Graph

Consider any tabled call C, normal state is initially entered when C is first encountered during the
computation. This first occurrence of C is allowed to explore the matched clauses as in a standard
Prolog system (normal state). In normal state, while exploring the matching clauses, the system
tables all the solutions generated for the call C in this state and also checks for variants of C. If



(1) solve(true,.).

(2) solve((A,B),master) :- solve(A,master), solve(B,master).

(3) solve(A,master) :-

(4) (tabled(A) —>

(5) (state(A,normal) -> % A in normal execution state
(6) ( clause(A,Cl),

9] (isLoopingAlt(A,Cl) ->

(8) addLoopAlt(A,C1l), C1 = (A:-A,B)

(9) solve(A, slave), solve(B, master)

(10) ; Cl = A:-B, solve(B, master)

(11) ),

(12) addTableSol(A,_ )

(13) ; setState(A,looping), solve(A,master)

(14) )

(15) ;  (state(A,looping) -> % A in looping execution state
(16) getLoopAltList (A, LoopAltList),

(17) solve_loop.-alt (LoopAltList,IsNewSolFnd),

(18) (var (IsNewSolFnd) ->

(19) setState(A,complete)

(20) ; solve(A,master))

(21) ; look_up_table(A) % A in complete execution state
(22) )

(23) ),

(24) ; clause(A,Cl), Y% non tabled call

(25) solve(Cl,master)

(26) ).

(27) solve(A,slave) :- look up_table(A).
(28) solveloop.alt([], ).
(29) solveloop.alt([ (A:-A,B) | RestlList], FndFlag) :-

(30) solve(A, slave), solve(B, master),
(31) addTableSol(A, Flag),
(32) solve_loop_alt(RestList, FndFlag).

Figure 3: A Meta-interpreter for DRA

a variant is found, the current clause that matches the original call to C will be memorized, i.e.,
recorded in the table, as a looping alternative. This call will not be expanded at the moment because
it can potentially lead to an infinite loop. Rather it will be solved by consuming the solutions from the
table that have been computed by other alternatives. To achieve this, the alternative corresponding
to this call will be reordered and placed at the end of the alternative list in the choice-point. A failure
will be simulated and the alternative containing the variant will be backtracked over. After exploring
all the matched clauses (some of which were possibly tabled as looping alternative), C goes into its
looping state. From this point, tabled call C keeps trying its tabled looping alternatives repeatedly
(by again putting the alternative at the end of the alternative list after it has been tried) until C is
completely evaluated. If no new solution is added to C’s tabled solution set in any one cycle of trying
its tabled looping alternatives, then we can say that C has reached its fixpoint.

C enters its complete state after it reaches its fixpoint, i.e., after all solutions to C have been found.
In the complete state, if the call C is encountered again later in the computation, the system will
simply use the tabled solutions recorded in the table to solve it. In other words, C will be solved
simply by consuming its tabled solution set one after another as if trying a list of facts.

Much research has been devoted to evaluating recursive queries in the field of deductive databases



[4]. Intuitively, the DRA scheme can be thought roughly equivalent to the following deductive query
evaluation scheme for computing fixpoints of recursive programs: (i) first find all solutions to the
query using only non-recursive clauses in a top-down fashion, (ii) use this initial solution set as a
starting point and compute (semi-naively) the fixpoint using the recursive clauses in a bottom up
fashion. By using the initial set obtained from top-down execution of the query using non-recursive
clauses, only the answers to the query are included in the final fixpoint. Redundant evaluations
are thus avoided as in Magic set evaluation. The proof of correctness of DRA is based on formally
showing its equivalence to this evaluation scheme [13], and is omitted here due to lack of space.

Fig 3 shows a meta-interpreter that formally illustrates the DRA scheme. To keep the presentation
and the meta-interpreter simple, we assume that all variant calls occur in left-recursive clauses and
that there are no nested tabled calls dependent on each other. The first call to a tabled predicate
(termed master call) is distinguished from subsequent calls to the variant (termed slave calls). We
also assume that the table exists as a global data structure. The solve/2 goal takes different actions
depending on whether execution is in master mode or slave mode. The input to the interpreter
is a goal A. The goal clause(A,Cl) nondeterministically finds the matching clause, C1, for the goal
A. The goal tabled(A) checks if A has been declared as tabled or not, state(A,X) checks to see
if the A’s execution status is X (one of normal, looping, or complete), while the setState(A,X)
changes the execution state of the goal A to X (one of normal, looping, or complete). The goal
addTableSol (A,Flag) adds a solution for goal A to the table; if the solution is a new one, the
Flag is set to a ground value, otherwise, it is left unbound. The goal 1ook_up_table(A) looks up
solutions for the goal A in the table that have been recorded so far. The goal isLoopingAlt (A,C1),
checks if the clause C1 is a looping alternative w.r.t. goal A, while addLoopAlt (A,C1l) records C1 as
a looping alternative of goal A. The meta-interpreter is pretty self-explanatory. If the goal is tabled,
then if execution state is normal (lines 5-13), a matching clause for the goal is non-deterministically
found. If the matching clause is a looping alternative (line 7), this fact is recorded (line 8), and the
variant is executed in the slave mode, i.e., it can only be resolved against tabled solutions (line 9,
first call), while the goals following the variant are executed normally in master mode (line 9, second
call). If the matching clause is not a looping alternative, it is executed normally. In either case, if
a solution is found, it is tabled (line 12). After all matching clauses have been seen, execution state
is set to looping (line 13). If the execution state is looping (lines 15-22), the collected looping
alternatives are retrieved, and executed (line 17, 28-32)). All variant calls are executed in the slave
mode (line 30). If no new solution is found while executing the looping alternatives (IsNewSolFnd
is still unbound), the state of execution is set to complete (line 19). If the state of execution is
complete (line 21), then all solutions are to be found in the table, and thus only table look up is to
be used for resolution. The DRA scheme is next illustrated with examples.

Example 3.1 Consider resolving the following program and its evaluation using DRA:

rX, V) - rX, 2), p(Z, V. (1)
rX, ¥) :- pX, V). (2)
r(X, Y) :- r(X, 2), q(Z, Y). (3)
p(a, b). p(b, ¢). q(c, d4).

:- table r/2.

- r(a, Y).

Figure 4 gives the computation tree produced by DRA for example 3.1 (note that the labels on
the branch refer to the clause used for creating that branch). Both clause (1) and clause (3) need
to be tabled as looping alternatives for the tabled call r(a, Y) (this is accomplished by operations
a_add: (1) and a_add: (3) shown in Figure 4). The second alternative is a non-looping alternative
that produces a solution for the call r(a,Y) which is recorded in the table (via the operation s_add
shown in the Figure). The query call r(a, Y) is a master tabled call (since it is the first call),
while all the occurrences of r(a, Z) are slave tabled calls (since they are calls to variant of r(a,Y)).
When the call r(a, Y) enters its looping state, it keeps trying the looping alternatives repeatedly
until the solution set does not change any more, i.e., until r(a, Y) is completely evaluated (this is
accomplished by trying a looping alternative, and then moving it to the end of the alternatives list).



Note that if we added two more facts: p(d,e) and q(e,f), then we’ll have to go through the two
looping alternatives one more time to produce the solutions r(a,e) and r(a,f).

(1)

................................................................

(22,02}

H . Y=b a_add: (3
ia_ﬁddi (1) s_add: r(a, b) a(b,v§,) : | p(d, Y).
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Figure 4: DRA for Example 3.1

Intuitively, given a tabled call C, the DRA scheme first finds all the solutions for C using clauses
not containing variant calls (non-looping alternative). Once this set of solutions is computed and
tabled, it is treated as a set of facts, and used for computing rest of the solutions from the clauses
containing variant calls (looping alternatives). The process stops when no new solutions can be
computed via the looping alternatives, i.e., a fixpoint is reached. In this regard, the DRA scheme
is similar to the way fixpoint is computed during bottom-up execution [14, 27] of logic programs,
except that the base solution set on which the clauses containing variants are repeatedly applied is
obtained by executing the call w.r.t. non-recursive clauses. In contrast, the base solution set in pure
bottom up computation is assumed as empty in the beginning [14]. Thus, in example 3.1 above, we
find the initial solution set Sp = {r(a,b)} from clause (2). Clauses (1) and (3) are then repeatedly
used to generate the following sequence:

8o = {r(a,b)}
AS; ={r(a,c)} 81 = {r(a,b),r(a,c)} (clause 1)
ASy = {r(a,d)} So = {r(a,b),r(a,c),r(a,d)} (clause 3)
AS; ={} S3 = {r(a,b),r(a,c),r(a,d)}
The final fixpoint is {r(a,b),r(a,c),r(a,d)}. Note that AS; stands for the set difference S; — S;_;.

An important problem that needs to be addressed in any tabled system is detecting completion.
When there are multiple tabled calls occurring simultaneously during the computation, and results
produced by one tabled call may depend on another’s, then knowing when the computation of a
tabled call is complete (i.e., all solutions have been computed) is quite hard. Completion detection
based on finding strongly connected components (SCC)? has been implemented in the TALS system
(details are omitted due to lack of space and can be found elsewhere [13]). Completion detection
is very similar to the procedure employed in XSB and the issues are illustrated in the next two
examples.

Example 3.2 Consider resolving the following program with DRA:

rX, V) :-rX, 2), r(Z, Y). (1
rX, V) - p&X, VO, q(V). (2)
p(a, b). p(a, 4). p(b, c).

q(b). q(c).

2A directed graph is strongly connected if every two vertices are reachable from each other. The strongly
connected components (SCCs) of a graph are the equivalent classes of vertices under the “are mutually reachable”
relation.
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Figure 5: DRA for Example 3.2

As shown in the computation tree of Figure 5, the tabled call r(b, Y) is completely evaluated
only if its dependent call r(c, Y) is completely evaluated, and r(a, Y) is completely evaluated only
if its dependent calls, r(b, Y) and r(c, Y), are completely evaluated. Due to the depth-first search
used in TALS, r(c, Y) always enters its complete state ahead of r(b, Y), and r(b, Y) ahead
of r(a, Y). The depth-first strategy with alternative reordering guarantees for such dependency
graphs (i.e., graphs with no cycles) that dependencies can be satisfied without special processing
during computation. However, these dependencies can be cyclic as in the following example.

Example 3.3 Consider resolving the following program with DRA:

rX, Y) :- p(X, 2), r(Z, Y). (1)
rX, V) :- pX, Y). (2)
p(a, b). p(b, a).

:— table r/2.

- r(a, Y).

Figure 6 shows the complete computation tree of example 3.3. In this example, two tabled calls,
r(a, Y) and r(b, Y), are dependent on each other, forming a SCC in the completion dependency
graph. It is not clear which tabled call is completely evaluated first. A proper semantics can be given
to the program only if all tabled calls in a SCC reach their complete state simultaneously. According
to depth-first computation strategy, the least deep tabled call of each SCC should be the last tabled
call to reach its fixpoint in its SCC. To detect completion correctly, the table is extended to record
the least deep tabled call of each SCC, so that the remaining calls in the SCC can tell whether they
are in the complete state by checking the state of the least deep call. The state of a tabled call can be
set to “complete” only after its corresponding least deep call is in a complete state. In this example,
there are two occurrences of r(b, Y) during the computation. In its first occurrence, r(b, Y) can
not be set to “complete” even though it reaches a temporary fixpoint after exploring its looping
alternative, because it depends on the tabled call r(a, Y), which is not completely evaluated yet. If
the call r(b, Y) is set to “complete” state at this point, a solution r(b, b) will be lost. Only after
the tabled call r(a, Y) is completely evaluated during its looping state, can the tabled call r(b, Y)
(within the same SCC with r(a, Y)) be set to complete state.
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Figure 6: Example 3.3
4 Implementation

The DRA scheme can be easily implemented on top of an existing Prolog system. TALS is an
implementation of DRA on top of the commercial ALS Prolog system. In the TALS system, tabled
predicates are explicitly declared. Tabled solutions are consumed incrementally to mimic semi-naive
evaluation [2, 4]. Memory management and execution environment can be kept the same as in a
regular Prolog engine. Two main data structures, table and tabled choice-point stack, are added to
the TALS engine. The table data structure is used to keep information regarding tabled calls such
as the list of tabled solutions and the list of looping alternatives for each tabled call, while tabled
choice-point stack is used to record the properties of tabled call, such as whether it is a master call
(the very first call) or a slave call (call to the variant in a looping alternative). The master tabled
call is responsible for exploring the matched clauses, manipulating execution states, and repeatedly
trying the looping alternatives and solutions for the corresponding tabled call, while slave tabled
calls only consume tabled solutions. The allocation and reclaiming of master and slave choicepoints
is similar to regular choicepoints, except that the former have a few extra fields to manage the
execution of tabled calls.

Very few changes are required to the WAM engine of a Prolog system to implement the DRA
scheme (more implementation details can be found elsewhere [13]). We introduce six new WAM in-
structions, needed for tabled predicates: table_try me _else, table retry me_else, table trust_me,
table_loop, table _consume, and table _save. We differentiate between tabled calls and non-tabled
calls at compile-time, and generate appropriate type of WAM try instructions. For regular calls,
the WAM try me_else, retryme_else, and trust.me_else, instructions are generated to man-
age the choicepoints, while for tabled calls, these are respectively modified to table_try me_else,
table retry me else, and table trust me _else instructions. Every time table try me_else is
invoked, we have to check if the call is a variant of a previous call®. This is easily accomplished by
comparing the starting code address and the arguments of the current call to those of calls currently
tabled. If the call is a variant, the address of the WAM code corresponding to this clause is recorded
in the table as a looping alternative. The variant call is treated as a slave tabled call, which will only

3table_try me_else is always the first WAM instruction executed for non-deterministic tabled calls; for tabled
predicates with a single clause definition (deterministic), a dummy failing clause is automatically added to make that
predicate non-deterministic.



consume tabled solutions if there are any in the table, and will not explore any matched clauses.
The next-alternative-field of the slave choicepoint is changed to table_consume so that it repeatedly
consumes the next available tabled solutions. If the call is a new tabled call, it will be added into
the table by recording the starting code address and its arguments information. This new tabled
call is treated as a master tabled call, which will explore the matched clauses and generate new
solutions. The continuation instruction of a master tabled call is changed to a new WAM instruction
table_save, which checks if generated solution is new. If so, the new solution is tabled, and execu-
tion continues with the sub-goal after the tabled call as in normal Prolog execution. When the last
matched alternative of the master choicepoint is tried by first executing the table_trust_me instruc-
tion, the next-alternative-field of the master choicepoint is set to the instruction table_loop, so that
after finishing the last matched alternative, upon backtracking, the system will enter the looping
state to try the looping alternatives. After a fixpoint is reached, and all the solutions have been
computed, this instruction is changed to the WAM trust_me_fail instruction, which de-allocates
the choicepoint and simulates a failure, as in normal Prolog execution.

5 Recomputation Issues in DRA

The main idea in the TALS system is to compute the base solution set for a tabled call using clauses
not containing variants, then repeatedly applying the clauses with variants (looping alternatives) on
this base solution set until the fixpoint of the tabled call is reached. Due to the looping alternatives
being repeatedly executed, certain non-tabled goals occurring in these clauses may be unnecessarily
re-executed. This recomputation can affect the overall efficiency of the TALS system. Non-tabled
calls may be redundantly re-executed in the following three situations:

(i) While trying a looping alternative, the whole execution environment has to be built again until
a slave tabled choicepoint is created. Consider the looping alternative:

p(xs Y) e Q(X), P(X’ Z)’ r(Z, Y)-

:— table p/2.
:- pla, X).

Suppose p/2 is a tabled predicate, while q/1 and r/2 are not. Then each time this alternative
is tried, q(X) has to be computed since it is not a tabled call. That is, the part between the
master tabled call and slave tabled call has to be recomputed when this alternative is tried
again.

ii) False looping alternatives may occur and may require recomputation. Consider the program
bel ¢
elow:

p(1).
p(2).
:— table p/1.
- p(X), p(¥V).

After the first goal p(X) gets the solution p(1), a variant call of p(X), namely, p(Y), is met.
According to the DRA scheme, the explored clause is then tabled as a looping alternative.
However, all the matched clauses p(1) and p(2) are determinate facts, which will not cause
any looping problem. The reason we falsely think that there is a looping alternatives is because
it is difficult to tell whether p(Y) is a descendant of p(X) or not. Even worse, the false
looping alternatives will generate the solutions in a different order from those generated by
SLD resolution. In standard Prolog, the solution sequence is “X=1, Y=1"  “X=1, Y=27 6 “X=2
Y=1", and “X=2, Y=2”, while if DRA is applied, the solution sequence should be “X=1, Y=17
“x=2, Y=1", “X=2, Y=2" and “X=1, Y=2".

This problem of false looping alternative is also present in XSB and B-Prolog.
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(iii) A looping alternative may have multiple clause definitions for its non-tabled subgoals. Each
time a looping alternative is re-tried, all the matching clauses of its non-tabled subgoals have
to be computed. For example:

p(a, b).

p&X, V) :- p(X, 2), q(Z, Y). (¢D)
pX, V) - t(X, V). (2)
t(X, V) :- p(X, 2), s(Z, V). (3)
t(X, V) :- s(X, V). (4)
:- table p/2.

:- pla, X).

For the query p(a, X), clause (1) and clause (2) are two looping alternatives. Consider
the second looping alternative. The predicate p(X, Y) is reduced to the predicate t (X, Y),
which has two matching clauses. The first matching clause of t (X, Y), clause (3), leads to a
variant call of p(X, Y), while the second matching clause, clause (4), is a determinate clause.
However, each time the looping alternative, clause (2), is re-tried, both matching clauses for
the predicate t (X, Y) are tried. However, because clause (4) does not leads to any variant of
the tabled call, this recomputation is a waste.

For the first case, fortunately, this recomputation can be avoided by explicitly tabling the predicate
q/1, so that q(X) can consume the tabled solutions of q instead of recomputing them. XSB does
not have this problem with recomputation, because XSB freezes the whole execution environment,
including the computation state of q(X), when the variant call p(X,Z) is reached. This freezing of
the computation state of q(X) amounts to implicitly tabling it.

The second case can be solved by finding the scope of the master call. If we know that p(Y) is
out of the scope of p(X), we can compute p(X) first, then let the variant call p(Y) only consume the
tabled solutions. However, one assumption is that the tabled call p(X) has a finite fixpoint and thus
can be completely evaluated.

The final case can be handled in several ways. One option is to table the specific computation
paths leading to the variants of a previous tabled call instead of the whole looping alternative.
However, tabling the computation paths will incur substantial overhead. Second option is to table
the non-tabled predicates, such as t(X, Y), so that the determinate branches of t(X, Y) will not
be re-tried. A third option is to unfold the call to t (X,Y) in the clause (2) of predicate p so that the
intermediate predicate t(X,Y) is eliminated.

Thus, all cases where non-tabled goals may be redundantly executed can be eliminated. Note that
tabling of goals q(X) in case (i) and of goal t(X,Y) in case (iii) can be done automatically. The
unfolding in case (iii) can also be done automatically.

6 Related Work

The most mature implementation of tabling is the XSB [29, 22] system from SUNY Stony Brook. As
discussed earlier, the XSB system implements OLDT by developing a forest of SLD trees, suspen-
sion of execution via freezing of corresponding stacks/heap, and resumption of execution via their
unfreezing. Recently, improvements of XSB, called CAT [9] and CHAT [8], that reduce the amount
of storage locked up by freezing, have been proposed. Of these, the CHAT system seems to achieve a
good balance between time and space overhead since it only freezes the heap, the state of the other
stacks is captured and saved in a special memory area (called CHAT area).

Because of considerable investment of effort in design and optimization of the XSB system [5, 20,
8, 9, 28], XSB has turned out to be an extremely efficient system. The modified WAMs that have
been designed [28, 20], the research done in scheduling strategies [11] for reducing the number of
suspensions and reducing space usage [9, 8] are crucial to the efficiency of the XSB system. Ease of
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implementation and space efficiency are the main advantages of DRA. The scheme based on DRA is
quite simple to implement on an existing WAM engine, and produces performance that is comparable
to XSB.

Recently, another implementation of a tabled Prolog system based on SLDT has been reported
[25]. This implementation has been done on top of the existing Prolog system called B-Prolog. The
main idea behind SLDT is as follows: when a variant is recursively reached from a tabled call, the
active choice-point of the original call is transferred to the call to the variant (the variant steals
the choice-point of the original call, using the terminology in [25]). Suspension is thus avoided (in
XSB, the variant call will be suspended and the original call will produce solutions via backtracking)
and the computation pattern is closer to SLD. However, because the variant call avoids trying
the same alternatives as the previous call, the computation may be incomplete. Thus, repeated
recomputation [25] of tabled calls is required to make up for the solutions lost and to make sure that
the fixpoint is reached. SLDT does not propose a complete theory regarding when a tabled call is
completely evaluated, rather it relies on blindly recomputing the tabled calls to ensure completeness.
Additionally, if there are multiple clauses containing recursive variant calls, the variant calls may
be encountered several times in one computation path. Since each variant call executes from the
backtracking point of a former variant call, a number of solutions may be lost. These lost solutions
have to be found by recomputation. This recomputing may have to be performed several times to
ensure that a fixpoint is reached.

Observe that the DRA (used in TALS) is not an improvement of SLDT (used in B-Prolog) rather
a completely new way of implementing a tabled LP system (DRA and SLDT were both conceived
independently). The techniques used for evaluating tabled calls and for completion detection in the
TALS system are quite different (even though implementations of both DRA and SLDT seem to be
manipulating choicepoints). B-Prolog is efficient only for certain types of very restricted programs
(referred to as directly recursive in [25]; i.e., programs with a single recursive rule with a single variant
call). For programs with multiple recursive rules or with multiple variant calls, the B-Prolog system
can be quite overhead-prone. Also, on the surface it may appear that both B-Prolog and DRA
recompute goals, however, note that while B-Prolog recomputes tabled and non-tabled goals resulting
in considerable overhead, DRA only recomputes non-tabled goals. Recomputation of non-tabled goals
in DRA can be avoided (see section 5), while recomputation of tabled goals in B-Prolog is inevitable.

7 Performance Results

The TALS system has been implemented on top of the WAM engine of the commercial ALS Prolog
system. It took us less than two man-months to implement the dynamic reordering of alternatives
(DRA) scheme (with semi-naive evaluation) along with full support for complex terms on top of
commercial ALS Prolog system (tabled negation is not yet supported, work is under way). Our
performance data indicates that in terms of time and space efficiency, our scheme is comparable to
XSB and B-Prolog. The main advantage of the DRA scheme is that it can be incorporated relatively
easily in existing Prolog systems. Note that the most recent releases of XSB (version 2.3) and B-
Prolog (version 5.0) were used for performance comparison. All systems were run on a machine
with 7T00MHz Pentium processor and 256MB of main memory. XSB and B-Prolog are the only
two publicly available tabled LP systems that we are aware of. Note that comparing systems is a
tricky issue since all three systems employ a different underlying Prolog engine. Table 1 shows the
performance of the three systems on regular Prolog programs (i.e., no predicates are tabled) and
gives some idea regarding the relative speed of the engines employed by the 3 systems (arithmetic on
the ALS system is slow, which is the primary reason for its poor performance on the 10-Queens and
Knight benchmarks compared to other systems). Note that Sg is the “cousin of the same generation”
program, 10-Queen is the instance of N-Queen problem, Knight is the Knight’s tour, Color is the
map-coloring problem, and Hamilton is the problem of finding Hamiltonian cycles in a graph. Note
that all figures for all the systems on all of the benchmarks are for all solution queries.

Table 2 compares the time efficiency among XSB, B-Prolog, and TALS system. These benchmarks
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‘ Benchmarks ‘ 10-Queen ‘ Sg ‘ Knight ‘ Color ‘ Hamilton ‘

XSB 0.441 0.301 2.63 0.08 1.18
B-Prolog 0.666 0.083 3.15 0.233 2.667
TALS 2.46 0.19 11.26 0.38 1.48

Table 1: Running Time (Seconds) on Non-tabled Programs

| Benchmark | ¢so | cs_r | disj | gabriel | kalah | peep | pg | read | sg |

TALS 0.16 | 0.37 | 0.26 0.72 0.42 0.52 | 0.29 | 5.94 | 0.04
XSB-b 0.081 | 0.16 | 0.05 0.06 0.05 0.18 | 0.05 | 0.23 | 0.06
XSB-1 0.071 | 0.13 | 0.041 0.05 0.04 | 0.131 | 0.041 | 0.18 | 0.05
B-Prolog 0.416 | 0.917 | 0.233 | 0.366 0.284 | 1.417 | 0.250 | 0.883 | 0.084

Table 2: Running Time (Seconds) on Tabled Programs

are taken from the CHAT suite of benchmarks distributed with XSB and B-Prolog.* Most of these
benchmarks table multiple predicates many of whom use structures. For XSB, timings for both
batch scheduling (XSB-b) and local scheduling (XSB-1) are reported (Note that batch scheduling is
currently the default scheduling strategy in XSB).

In general, the time performance of TALS on most of the CHAT benchmarks is worse than that
of XSB, however, it is not clear how much of it is due to the differences in base engine speed, and
how much is due to TALS’ recomputation of non-tabled goals leading up to looping alternatives (the
fix for this described in section 5 could not be used, as the CHAT benchmarks are automatically
generated from some preprocessor and are unreadable by humans). However, except for read the
performance is comparable, (i.e., it is not an order of magnitude worse). With respect to B-Prolog
the time-performance is mixed. For programs with multiple looping alternatives TALS performs
better than B-Prolog.

| Benchmark | cso | csr | disj | gabriel | kalah | peep | pg | read | sg |
TALS 8360 | 8438 | 12193 | 17062 | 23520 6800 20084 20426 | 2226
XSB-b 11040 | 13820 | 10012 | 30356 43628 | 1148296 | 436012 | 1600948 | 3096
XSB-1 6992 | 8584 | 6876 23156 9564 19448 16324 | 125342 | 3540
B-Prolog 21040 | 38592 | 16484 | 37596 61288 96884 64232 72916 1664

Table 3: Total Space Usage in Bytes (Excluding Table Space)

Tables 3, 4 and 5 compare the space used by TALS, XSB (both batch and local scheduling),
and B-Prolog systems. Table 3 shows the total space used by the system. This space includes total
stack and heap space used as well as space overhead to support tabling (but excluding space used for
maintaining the table). The space overhead to support tabling in case of TALS includes the extra
space needed to record looping alternatives and extra fields used in master and slave choicepoints.
In case of both XSB-1 and XSB-b, the figure includes the CHAT space used. For B-Prolog it is
difficult to separate this overhead from the actual heap + stack usage. Space overhead incurred is
separately reported in Table 4. As can be noticed from Table 3, the space performance of TALS is
significantly better than that of XSB-b (for some benchmarks, e.g., peep, pg and read, it is orders
of magnitude better). It is also better than the space performance of B-Prolog (perhaps due to the
extra space used during recomputation in B-Prolog) and is comparable in performance to XSB-L

“Note that benchmarks used in Table 1 will not benefit much from tabling, except for sg, so a different set of
benchmarks is used; most of the benchmarks used in Table 2 cannot be executed under normal Prolog.
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| Benchmark | cs_o | cs_r | disj | gabriel | kalah | peep | pg | read | sg |
TALS 672 | 750 | 213 190 376 976 420 2666 342
XSB-b 2544 | 4016 | 2568 | 16172 | 16784 | 1132596 | 363872 | 1356672 | 0O
XSB-1 696 | 1392 | 1632 | 10848 1612 7732 7768 63720 0
B-Prolog n/a | n/a | n/a n/a n/a n/a n/a n/a n/a

Table 4: Space Overhead for Tabling in Bytes

‘ Benchmark ‘ cs_o ‘ cs_r ‘ disj ‘ gabriel ‘ kalah ‘ peep ‘ Pg ‘ read ‘ sg ‘
TALS 21056 | 21400 | 6488 7244 13496 | 17256 | 3852 | 15404 | 25128
XSB-b 26572 | 27072 | 22768 | 199948 | 35784 | 22688 | 15876 | 48032 | 47568
XSB-1 25356 | 25858 | 21592 | 19076 | 34160 | 21920 | 15108 | 45944 | 42448

B-Prolog 20308 | 20396 | 20104 | 16492 | 26884 | 15260 | 13860 | 38388 | 69740

Table 5: Table Space Usage in Bytes

For completeness sake, we also report the actual space used in maintaining the actual table for each
of the 4 cases in Table 5.

Note that XSB with local scheduling (XSB-1) has much better performance than XSB with batch
scheduling (XSB-b). XSB-1 evaluates all solutions to a tabled predicate (i.e., the generator) before
returning control to the consumer. While it considerably improves the space performance compared
to XSB-b, XSB with local scheduling is meant for computing fixpoints and database type all-solutions
queries. For Prolog like computation, where a user may only be interested in a single solution, XSB-1
will compute the entire set regardless. Thus, in the case of the benchmarks above, the time to
compute a single solution will be considerably less for XSB-b, TALS and B-Prolog, but for XSB-I
it will be the same time as for computing all-solutions. Perhaps for this reason, we speculate that
batch scheduling (and not local scheduling) is XSB’s default scheduling strategy.

8 Incorporating Parallelism

Because of the simplicity of the DRA scheme used in the TALS system, parallelism can be easily
incorporated. In fact, the parallel models of execution that have been developed for ordinary Prolog
can be used largely unchanged. Two forms of parallelism have been traditionally identified in logic
programming: or-parallelism and and-parallelism. Or-parallelism arises when multiple matching
clauses of a goal are tried in parallel. And-parallelism arises when conjunctive goals in the current
resolvent are executed in parallel. Both forms of parallelism can be easily incorporated in the TALS
system, though, here we only briefly discuss incorporating or-parallelism.

Or-parallelism arises when different alternatives of a call are tried in parallel. Essentially, the
multiple branches of the search tree are pursued in parallel. In the or-parallel TALS system, the
multiple branches running in or-parallel will have to share the table. In a shared memory multipro-
cessor implementation, this table will have to be recorded in a shared memory space. The rest of the
machinery for or-parallelism can be the same as in an or-parallel Prolog system [12]. Note that in
an or-parallel system the looping alternatives can be tried in parallel. Or-parallelism can thus help
in reaching the fix-point faster. An or-parallel implementation of TALS is currently in progress.

It should be noted that parallelism is not easy to incorporate in an implementation based on
forest of SLD trees. In [10], a new form of parallelism, called table parallelism is identified that
corresponds to exploring the multiple SLD trees that arise in OLDT simultaneously. Traditional
or-parallelism can be exploited within each of these SLD-trees. Due to the presence of multiple
SLD trees, the parallel execution model for exploiting table-parallelism and or-parallelism can be
quite complex and hard to implement [19]. In DRA, in contrast, table-parallelism just shows up as
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ordinary or-parallelism, and, thus, we believe, is easier to realize.

9 Conclusion and Future Work

The advantages of DRA can be listed as follows: (i) It can be easily implemented on top of an existing
Prolog system without modifying the kernel of WAM engine in any major way; (ii) It works with
a single SLD tree without suspension of goals and freezing of stacks resulting in less space usage;
(iii) Unlike SLDT, it avoids blindly recomputing subgoals (to ensure completion) by remembering
looping alternatives; (iv) Unlike XSB with local scheduling it produces solutions for tabled goals
incrementally while maintaining good space and time performance (v) Parallelism can be easily
incorporated in the DRA model.

Our alternative reordering strategy can be thought of as a dual [15] of the Andorra-principle
[26]. In the Andorra model of execution, goals in a clause are reordered leading to a considerable
reduction in search space and better termination behavior. The reordering of subgoals is done
based on runtime properties. Likewise, our tabling scheme based on reordering alternatives (which
correspond to clauses) also reduces the size of the computation (since solutions for tabled call once
computed are remembered) and results in better termination behavior.

Our scheme is quite simple to implement. We were able to implement it on top of an existing
Prolog engine (ALS Prolog) in a few weeks of work. Performance evaluation of our implementation
shows that it is comparable in performance to well-engineered tabled systems such as XSB, yet it
is considerably easier to implement. Work is in progress to add support for tabled negation and
or-parallelism, so that large and complex applications (e.g., model-checking) can be tried.
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