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ABSTRACT

A CONSTRAINT PROGRAMMING APPROACH FOR THE ANALYSIS OF

PROTEINS CONFORMATIONS VIA FRAGMENT ASSEMBLY

BY

FERDINANDO FIORETTO

Master of Science in Computer Science

New Mexico State University

Las Cruces, New Mexico, 2011

Dr. Enrico Pontelli, Chair

Understanding the tridimensional structure of proteins is essential to

biomedical investigation, including drug design and the study of diseases such as

Parkinson and Alzheimer.

This Thesis presents a novel approach to the protein structure analysis based

on Constraint Programming methodologies. We employ fragment assembly tech-

niques to derive the final protein conformation, using information derived from

homology, prediction and/or experimental data. We show that information col-

lected from various sources can be included as constraints describing the molecule’s

properties, guiding the prediction to achieve enhancement in performances and

quality of the results.
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INTRODUCTION

In this Thesis we present an approach to tackle the Protein Structure Pre-

diction problem using Constraint Programming.

Proteins are macromolecules of fundamental importance in the way they

regulate vital function in all living organism. They participate in operations

such as immunological defense, metabolic catalysis as well as forming the basis

of cellular structural elements. The structure of a protein plays a central role in

the domain of its functionality: missfolded proteins (those that are not described

by a correct tridimensional structure) lose the ability to perform their natural

physiological functions. For this reason the knowledge of the three-dimensional

structure of proteins is essential for understanding diseases such as Parkinson and

Alzheimer, and for biomedical investigation targeted in drug design.

In this work we focus on the problem of determining the tridimensional

structure of a protein, given its chemical composition (ab-inito prediction).

We developed FIASCO (Fragment Interactive Assembly for protein Structure with

xvi



COnstraints), a novel framework dedicated to protein structure analysis, that uses

Constraint Programming methodologies emerged from Logic Programming and

Artificial Intelligence. Our solution is motivated by previous investigation in this

field that show the feasibility of the proposed method [Dal06, Bac98b, BW03,

Bac98a, BWBB99, DDFP11]. In particular we follow the approach of [DDFP11]

in which Dal Palú et al. presented a declarative approach to the protein structure

prediction problem, that relies on the Fragment Assembly model; they name their

system TUPLES.

In our solution, the main constraint in use casts the local protein struc-

tural behavior and it is modeled with the concept of fragment. We adopt the

fragment assembly model to reconstruct the final 3D protein structure. Frag-

ments are built from a statistically significant library of short peptides extracted

from already sequenced proteins, such as NCBI and PDB, and altogether allow

us to use information about homologous sequences, alignments, and known struc-

tures of identified homologues. The consistent homologies with known structures

are segmented into fragments which may range from 4 to hundreds amino acids

and have various preferred conformations. Our solver reassembles them based on

geometric compatibility constraints and free energy evaluation.

The main difference of FIASCO with respect to other protein structure

predictors (e.g. Rosetta) is its inherent modular structure, that allow the final

user to arbitrarily design ad-hoc constraints aimed at capturing properties of the

xvii



target sequence. A typical example is represented by the case in which specific

information, related to a given target protein, is available (e.g. structural homolo-

gies, relative position of different protein regions, the presence of an active site in

a determined geometric area, etc. ). Such knowledge can be included in our model

trough a constraint representation, without the necessity of reshaping the frame-

work. In addition, modularity makes our solver suitable to exploit distinct classes

or proteins, when they can be better described using different energy models.

The main contribution of this Thesis is the FIASCO solver and its careful

imperative implementation, that allow us to gain over 3 order of magnitudes in

terms of computational time, when compared to a declarative version.

From a computational complexity prospective, the protein structure pre-

diction problem is proven to be NP-complete, when described by discrete model

[CGP+98, DDP06], and the exponential growth is in direct relation with the length

of a protein. However we are not interested in studying unbounded instances of

the problem, hence there is a great interest in producing efficient solutions. Biol-

ogists and researcher interested in the analysis of protein behaviors and structure

are concerned in structures with maximum length of roughly 200 − 300 amino

acids, since bigger proteins are usually composed of small particles that can be

traced to cases in which their length falls behind to the smaller proteins.

To guarantee scalability, we implemented a parallel version of FIASCO,

exploiting a coarse-grained parallelism at a cluster level and using multiple threads

xviii



running on multi-core CPU’s.

This Thesis is organized as follows. In Chapter 1 we provide a brief

overview of Constraint Programming methodologies. Chapter 2 is dedicated at

describing the biological backgrounds necessary to study the problem.

Chapter 3 defines the problem of the protein structure prediction, formalizing it

according to the model adopted in this work. In this Chapter we describe formally

the fragment assembly methodology, and the energy model used in our framework.

At the end of the Chapter a brief summary of related works is reported.

In Chapter 4 we present a formal description and the implementation details

of our solver, targeted in the ab-initio protein structure prediction and analy-

sis. We provide a detailed discussion of the Constraint Programming formalisms

adopted, describing the modeling of variables and constraints—aimed at captur-

ing properties of amino acids and local structures—, and propagators—to prune

the search space. In Chapter 5 we introduce a parallelization of the system, ex-

ploiting an MPI-based cluster distributed solution, in multi-core platforms with a

thread-based approach. We focus on the scheduling and load balancing techniques

adopted.

Both Chapter 4 and Chapter 5 are supplemented with a Section dedicated to the

experimental results, aimed at testing the behavior of the proposed solution in

the relative environments.

In Chapter 6 we present the current ongoing works, and discuss the preliminary

xix



results on two case of study, in which we apply our work to two sets of unknown

proteins,one associated to the Ebola virus and one derived from the study of the

inner ear of the Xenopous laevis. Finally, we present different ideas and intuitions

for the future directions, targeted at improving the quality of the predictions and

achieving better computational speedup.

xx



CHAPTER

ONE

CONSTRAINT PROGRAMMING

In this chapter we introduce the main characters of the Constraint

Programming paradigm. We focus on the description of the essential concepts with

the aim of providing an overview of the methodologies backgrounds on which this

work relies. For a more detailed treatment of the argument we address the reader

to the classical Constraint Programming books by Rossi, Van Deek and Walsh

[RvBW06] or by Apt [Apt03].

1.1 Introduction

Constraint programming is a powerful paradigm for solving combinato-

rial problems. In programming languages, constraint programming differs from

the classical notion of conventional programming for its clear separation between

model and solver. The problem is modeled declaratively, in terms of constraints

to be satisfied so that a consistent solution can be collected. In a successive

1



phase, this high-level model is given to a constraint solver, which aim is to find

the solution(s) that verifies the model.

Constraint programming is successfully applied on a wide range of domains,

such us job scheduling, routing, planning, interactive graphic system, numerical

computations, networks, bioinformatics.

The basic idea in this programming paradigm relies on the use of relations

that should hold among entities of the problem. A solution is the set of those

values, associated to each entity, that satisfies the model—this notion is referred

as a constraint satisfaction problem (CSP). As an example consider the problem

of scheduling an industrial production chain, the entity of the problem (variables)

might be the time necessary at producing a given object, its cost, and the resources

needed to perform such production. The constraints might be on the limited

budget, and on the availability of the resources and their use for a limited time.

A constraint solver is aimed at solving a problem as the one described

above, represented in terms of variables and constraints, and find an assignment

to all the variables of the model that satisfies the constraints over them.

The space of all the possible assignments is often referred as the search

space of the problem, and a constraint solver explores it by using systematic or

local search methods. Since the size of the problems tackled is usually intractable,

constraint reasoning is employed to reduce the search space both by explicitly

stating properties of the constraint problem in the modeling phase, and in the use

2



of constraint propagation. The former is usually tackled by exploiting constraint

symmetries, or imposing an order on the instantiation of the variables of the

problem. The latter embeds any form of reasoning which results in explicitly

removing values from the set of those in which some variables can range, to prevent

the unsatisfybility of some constraints.

In this Chapter we provide an introduction to the constraint programming

paradigm, and to the constraint satisfaction techniques introduced above.

1.2 Basic Concepts of Constraint Programming

Constraint satisfaction problems (CSPs) plays a central role in Constraint

Programming. The following sections are aimed at defining this concept formally.

1.2.1 Representation

Consider a sequence of variables X = 〈x1, x2, . . . , xk〉. Every variable xi

is associated with a domain Di, that represents the set of values in which the

variable can range.

Definition 1.2.1 (Constraint). A constraint c is a relation defined on the domains

of a sequence of variables X, that is: c ⊆ D1×D2× . . .×Dk, and it specifies the

values of the variables that are compatible with each other.

When k = 1 the constraint is said unary, for k = 2 the constraint is said binary,

for k > 2 we denote it with k-ary constraint.

3



The sequence of variables X over which a constraint c is defined, is called

the scheme of c and denoted with X(c). A tuple 〈d1, . . . , dk〉 ∈ D1 × . . . × Dk

satisfies a constraint c if (and only if) 〈d1, . . . , dk〉 ∈ c.

Definition 1.2.2 (CSP). A Constraint Satisfaction Problem (CSP) is a triple

P = 〈X,D,C〉, where X is a sequence x1, . . . , xk of variables, D is the set of

domains associated to the variables in X, and C is a finite set of constraints over

a subsequence of X.

A solution to a CSP is an assignment of values to all its variables, such that

all its constraints are satisfied. More formally, consider a CSP P = 〈X,D,C〉.

An n-tuple d1, . . . , dk ∈ D1× . . .×Dk satisfies a constraint c ∈ C on the variables

xi1 , . . . , xin if and only if:

(d1i , . . . d1m) ∈ c.

A solution to the CSP P = 〈X,D,C〉 is an n-tuple d1, . . . , dk ∈ D1 × . . . × Dk

that satisfies every constraint c ∈ C. The set of solutions generated by a CSP

P is denoted sol(P). A constraint c ∈ C is consistent if there is an n-tuple

d1, . . . , dk ∈ D1 × . . . × Dk satisfying it; a constraint is inconsistent otherwise.

Similarly, a CSP P is said to be consistent (or satisfiable) if sol(P) 6= ∅, and

otherwise it is said to be inconsistent (or unsatisfiable).

A CSP may be associated to an optimization function f . Informally, the

goal of solving such CSPs does not simply relies on finding admissible solutions,

4



but on finding an optimal solution, according to some optimization criteria.

Definition 1.2.3 (COP). A Constraint Optimization Problem is a pair 〈P , f〉,

where P = 〈X,D,C〉 is a CSP, and f : sol(P) → R is an optimization function

ranging from the set of solutions of P to real numbers.

Without loss of generality, consider the optimization function f to define

a minimization problem; a solution s to a COP 〈P , f〉, with sol(P) 6= ∅, is the

solution of the CSP P satisfying the:

(∀a ∈ sol(P))(f(s) ≤ f(a)).

Example 1. The n Queens Problems. Consider the problem of placing n queens

on a chessboard of size n×n, where n ≥ 3, so that they do not attack each other.

Figure 1.1 illustrates such problem for n = 8. A CSP 〈X,D,C〉 representation

for such problem is given as follows. Let X = x1, . . . , xn be the set of variables

representing the n queens. Each variable has domain Di = {1, . . . , n} representing

the columns of the chessboard. The idea is that the xi denotes the position of the

queen on the ith column of the board. The configuration illustrated in Figure 1.1

corresponds to the sequence of values (7, 4, 2, 8, 6, 1, 3, 5), i.e. the queens from left

to right are placed on the 7th row counting from the bottom, on the 4th row, on

the 2th row, and so on.

A set of constraints to encode the n queens problem is the following: for

i ∈ [1, . . . , n], j ∈ [i+ 1, . . . , n]
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Figure 1.1: One of the 96 solutions to the 8-queens problem.

• xi 6= xj: every two queens must lie on different rows,

• xi−xj 6= i−j: every two queens cannot lie on the South-West – North-East

diagonal,

• xi−xj 6= i−j: every two queens cannot lie on the North-West – South-East

diagonal.

1.2.2 Equivalence of CSPs

Constraint programming can be viewed as the process of transforming a

CSP into an other CSP that is easier to solve. Before stepping into this concept,

let us introduce some terminology. Consider a constraint c on a sequence of

variables x1, . . . , xk (k > 0) with domains D1, . . . , Dk. c is said to be solved if

c = D1 × . . .×Dn and c 6= ∅. Similarly a CSP is said solved if all its constraints

are solved and nonempty, and failed if some of its domains or constraints is empty.
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Observe that a solved CSP is consistent, while a failed CSP is inconsistent.

Each solution 〈X,D,C〉 of a given CSP P = 〈X,D,C〉 corresponds to

a unique solved CSP of the form 〈X,D,C ′〉, where C ′ = {c′ | c ∈ C} and c′

is defined as the singleton set {di1 , . . . , dim}, for each c ∈ C on a subsequence

xi1 , . . . , xim of X.

A common way of solving CSPs, is by transforming them in different easier

problems until a solution (respectively all solutions) is found, or the CSP is proven

to be failed. If a solved CSP produces one and only one solution, all domains of the

solution are singleton; if more then a solution is yielded, then some of its domains

have more then one element; clearly if a CSP is failed it yields no solutions.

In order to apply the process introduced above, the transormation of a

CSP into another must guarantee that the two are indeed equivalent.

Definition 1.2.4 (Equivalence). Two CSPs P ′ and P ′′ are equivalent if and only

if they have the same set of solutions.

Example 2. Consider the CSPs:

〈x2 + y = 3; x = {0, . . . , 4}, y = {0, . . . , 3}〉,

and

〈2x+ 2y = 6; x = {0, 1}, y = {0, . . . , 3}〉.
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Both yields to the set of solutions x = 0, y = 3 and x = 1, y = 2, therefore they

are equivalent.

1.3 Constraint Propagation

Conventional methods adopted to solve a constrained problem involves a

from of constraint reasoning to tackle the inherent intractability of the problem of

satisfying a CSP. A general application of such form of reasoning is expressed in

transforming the original CSP to produce a new simpler, yet equivalent one. The

idea of simplicity of a CSP typically refers to narrow domains and/or constraints.

Constraint propagation is a technique used to seek this goal. It embeds any

reasoning which consists in explicitly precluding the use of specific variables values

that would prevent a given subset of constraints over such variables, to be satisfied.

As an example, consider a crossword-puzzle, where one has to fill a six letter-spaces

horizontal box with a word from the set of the European countries. Assume also

that a new word is inserted in a vertical box, intersecting the second position of

the previous considered box, with the letter ‘R’. This information propagates a

constraint that shrinks the domain of the six-letter European countries to the one

having ‘R’ as the second letter.

When some information about a new status of the problem is propagated,

constraint propagation rewrites a CSP into an equivalent one, applying rewriting

rules to satisfy the local consistency of the CSP. In general, constraint solvers
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aim at either reducing the domains of the considered variables (domain reduction

rules) or at reducing the considered constraints (transformation rules). In other

cases introduction rules can be used, to add a new constraint to the CSP, inferred

by the existing ones. Following, we will briefly introduce some domain reduction

rules, that, for efficiency reasons, are the most widely implemented.

Domain reduction rules are equivalence preserving (the application of such

rules does not change the CSP solution set). They are denoted by the:

φ

ψ

where φ = 〈X,D,C〉 and ψ = 〈X ′, D′, C ′〉. In the application of domain reduction

rules, the new domains are respective subset of the old domains (for i ∈ [1, . . . , n],

D′ ⊆ D) and the new constraint set C ′ is the result of restricting each constraint

in C to the corresponding subsequence of the domains D′1, . . . , D
′
n.

We now consider tree of the most implemented rules: node consistency,

arc consistency and bounds consistency.

Node consistency. A CSP P = 〈X,D,C〉 is node consistent if and only if for

each variable xi ∈ X every unary constraint c that involves x is such that c = Di.

Arc consistency. A binary constraint c(xi, xj) is arc consistent if and only if

for every a ∈ Di there exists a value b ∈ Dj such that (a, b) ∈ c, and for every

value b ∈ Dj there is a value a ∈ Di such that (a, b) ∈ c.
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Bounds consistency. A binary constraint c(xi, xj) is bound consistent if and

only if:

i
(
∃b ∈ [min(Dj),max(Dj)]

)(
(min(Di), b) ∈ c

)
and(

∃b ∈ [min(Dj),max(Dj)]
)(

(max(Di), b) ∈ c
)
,

ii
(
∃a ∈ [min(Di),max(Di)]

)(
(a,min(Dj)) ∈ c

)
and(

∃a ∈ [min(Di),max(Di)]
)(

(a,max(Dj)) ∈ c
)
.

A CSP 〈X,D,C〉 is bound consistent if every binary constraint in C is bound

consistent.

1.4 Propagation techniques

In a constraint solver, the procedures for propagating the effect of the local

consistencies are grouped together into a unique algorithm.

A standard approach consists of two phases: the first step is aimed at

reaching node consistency by checking the unary constraints over all the variables

in P ; the second step is aimed at reaching arc consistency.

The most well-known algorithm for arc consistency is the AC3 [Mac77] in

its generalization to non-binary constraints [Mac75]. The algorithm is illustrated

in Figure 1 and it is composed of two components: the arc revision and the AC3

procedure. The arc revision component removes every value a ∈ Di that is not

consistent with some constraint c. The function ReviseArc(xi, c) takes each value
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a ∈ Di, and looks for a support on c over the space of the relations with scheme

X \{xi}.

If such a support is not found (Line 4) a it is removed from Di (Line 6)

and this event is signaled by a changed flag (Line 7).

The main algorithm, AC3, is a simple loop that revises arcs until a fix point

is reached (i.e. no changes occur in the domains of the variables considered).

This condition ensures that all domains are consistent with all constraints. The

procedure maintains a list Q (often referred as constraint store) of all paris (xi, c)

for which the arc consistency on c needs to be checked. At the beginning Q

contains all paris (xi, c) such that xi ∈ X(c) (Line 8). The main loop (Line 9–14)

revises each element (xi, c) of Q until either the domain Di becomes empty (Line

12) or every element in Q has been checked. After the call to the ReviseArc

routine, if Di has been modified (i.e. it is changed) it may be possible that some

other variable xj has lost its support on a constraint c′ involving both xi and xj.

To take into account such case all pairs (xj, c
′), with xi, xj ∈ X(c′) must be pushed

back into Q (Line 13). The algorithm guarantees that, when true is returned, all

arcs have been revised and all the remaining variables in the domains of D are

consistent with all constraints in C.

11



Algorithm 1: Generalized AC3.

function: ReviseArc(xi, c):Boolean1

changed← False;2

foreach a ∈ Di do3

if 6 ∃ a valid support on c for a then4

remove a form Di;5

return (changed← True);6

function: AC3(X):Boolean7

Q← {(xi, x) | c ∈ C, xi ∈ X(c)};8

while Q 6= ∅ do9

extract (xi, c) from Q;10

if Revise(xi, c) then11

if Di = ∅ then return False;12

else Q← Q ∪ {(xj , c′) | (c′ ∈ C\{c}) ∧ (xi, xj ∈ X(c′)) ∧ (j 6= i)};13

return True;14

1.5 Search Trees

A constraint solver can typically be described by two components: the con-

straint propagator and the solution(s) searcher. Solving a CSP can be expressed

as the process of exploring a search tree where each node represents a possible

variable value assignment, the arcs connecting nodes expresses the effect of prop-

agating constraints, and a solution is described by a complete path from the root

node to a leaf.

More precisely, the search tree associated to a CSP, is the tree derived

by repeatedly splitting the original problem in two or more CSPs whenever the

constraint propagation does not reach a the global goal.

Splitting a CSP is formalized by the splitting rules that involve either a
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domain or a constraint splitting.

Domain splitting. Splitting a domain is formalized by a rule that transforms

a domain expression into two or more expressions. Let P = 〈X,D,C〉 be a CSP,

and assume the domains Di ∈ D to be finite. The followings are typical domain

splitting rules, which correspond to reasoning by cases:

• Enumeration.

xi ∈ Di

xi ∈ {a}|xi ∈ Di\{a}

where a ∈ Di.

The semantics of this rules is expressed by two cases: in the first case, xi is

substituted by a; in the second, the domain Di is reduced by the element a.

It follows, that the original CSP P is replaced by two CSPs:

1. 〈X,D,C ′〉, where Di = {a}, and

2. 〈X,D,C ′′〉, where Di = Di\{a},

where C ′ and C ′′ are the restriction of the constraints in C to the new

reduced domain Di.

• Labeling.

xi ∈ {a1, . . . , ak}
xi ∈ {a1}| . . . |xi ∈ {ak}

.

This rule produces k new CSPs from the original one.
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Figure 1.2: Propagation and splitting in a CSP.

• Bisection. Let the domain Di be a continuous interval, denoted with [a, b]:

xi ∈ [a, b]

xi ∈ [a, a+b
2

]|xi ∈ [a+b
2
, b]
.

In this case, a minimum interval [a− ε, a+ ε], should be defined in order to

determine the termination of the splitting rule (the splits will be performed

until a such size interval is reached). Clearly this rule can be applied to

discrete intervals.

An illustration of the use of propagation and splitting rules in a CSP tree

representation is given in Figure 1.2. The meaning of this illustration is the

following: propagating the effect of constraints from a level of the tree to next

enforces domain reduction. Over such (possibly) reduced domains the application

of splitting rules (i.e. labeling) branches the tree.

Splitting rules can be employed to create a search tree associated to a CSP.

The concept is formally described with the term prop labeling tree.

Definition 1.5.1 (Prop labeling tree). Given a CSP P = 〈X,D,C〉, a prop
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labeling tree is a tree that has nodes labelled with expressions of the type:

x1 ∈ A1, . . . , xk ∈ Ak,

where the Ai are sets denoting the possible value choices for the variables xi.

The root node is labelled with the expression:

x1 ∈ D1, . . . , xk ∈ Dk.

Each other node i > 1 is labeled with:

x1 ∈ {a1}, . . . , xi ∈ {ai}, xi+1 ∈ A′i+1, . . . , xk ∈ A′k,

where A′j ⊆ Aj are the sets of values associated to the variable xj obtained by

propagating the constraints contained at node i.

Each direct descendant of a node i (1 ≤ i < k) is either a fail node or a

node of the form:

x1 ∈ {a1}, . . . , xi ∈ {ai}, xi+1 ∈ {ai+1}, xi+2 ∈ A′i+2, . . . , xk ∈ A′k,

such that the assignment (x1, a1), . . . , (xi+1, ai+1) is consistent with every con-

straint c ∈ C.

The nodes at level i = k are leaves node and represent a solution for the

CSP.

Observe that the number of solutions (or leaves nodes) does not depend on

the order of the variable labeling choices. Consider the following example [Apt03]:

〈x < y, y < z;x ∈ {1, 2, 3}, y ∈ {2, 3}, z ∈ {1, 2, 3}〉
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Figure 1.3 shows the complete labeling tree, without employing propagation, for

the order of variable instantiations: x, y, z (top) and x, z, y (bottom). It is easy to

note that number of solutions is not affected by the variables instantiation order.

Figure 1.3: Complete labeling tree for two variables ordering.

Let now consider the same example used above, by employing the use of

propagation for domain reduction. Figure 1.4 depict this scenario, where the

variables instantiation order x, y, z (left) is compared to the order x, z, y (right).

The resulting labeling trees have different number of nodes and leaves.

From the example above it is possible to observe the effect of the constraint

propagation in action, by pruning those nodes that would not produce any solution

for the CSP.
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Figure 1.4: The effect of variable ordering in a prop labeling tree.
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CHAPTER

TWO

BIOLOGICAL BACKGROUNDS

In this chapter we focus on the description of the fundamental

notions necessary to the comprehension of the problem addressed in this work. In

Section 2.1 we introduce some basic biological concepts. Section 2.2 provides a

more detailed description of proteins, in terms of their composition and structural

level of complexity. Finally in section 2.3 we introduce a central argument of this

work, the Protein Structure Prediction (PSP) problem.

2.1 How cells work

Cells can be defined as the fundamental blocks of any living organism. At

a broadest level, one of the most important distinction between organisms is de-

scribed in terms of cell complexity. The simpler organisms are called procaryotes,

and are characterized by the lack a cell nucleus, or any other membrane-bound

organelles [Aea02]. In such taxonomy can be found some bacteria (like the Es-
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cherichia coli) and archaea. The most complex cells are called eukaryotes, and

include all the vertebrates as well as many unicellular organisms (like yeast).

Eukaryotes are characterized by complex structures enclosed within membranes.

The most recognized structure is the nucleus within which it is carried the genetic

material [LNC08].

The cellular nucleus contains the information used to produce all the neces-

sary components to regulate the activities of a living organism. Such information

is encoded in a well packed double-helix structure molecule, called Deoxyribonu-

cleic acid (DNA). A DNA molecule is a long coiled structure constituted of four

building blocks: the nucleotides. They are adenine, thymine guanine, and cytosine

(A, T, C, and G). The nucleotides are arranged in sequences, and the order in

which they are listed determine the encoding for some particular product. Some

parts of the DNA are meaningful for life, some other are instead considered “junk”

[Bro99]. In the meaningful areas, the DNA contains the sequence of nucleotides

that ultimately describe proteins.

Particular sections of the DNA are called genes. The genes are, in the

Mendelian definition, the smallest unit of heredity that may influence the traits

of an organism. We call genotype the collection of genes in an organism, and

phenotype the manifestation of the observable traits encoded in the genes. The

expression or suppression of such traits is characterized, in last analysis by the

proteins. Protein products determine the phenotypical expression associated to
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Figure 2.1: Central dogma of gene expression.

some gene.

The life processes of the living organisms are governed by the central dogma

of biology [Cri58, Cri70]. This concept is illustrated in Figure 2.1: the genetic

information encoded into the DNA is transcribed into a molecule called messenger

RNA (mRNA); the mRNA contains the unit block information necessary for the

synthesis (translation) of a particular protein. When the protein is constructed,

the gene form which it derives, is said to be expressed.

2.2 Proteins

Proteins are organic molecules of fundamental importance in the way they

regulate vital functions in all living organisms. They participate in operations

such as immunological defense, metabolic catalysis as well as forming the basis of

cellular structural elements [Lig74].
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The structure of proteins at a cellular level reveals several discrete degrees

of complexity, denoted with terms primary, secondary tertiary and quaternary

structures. Each level can be seen as incrementally related to build up the final

protein structure. In particular the tridimensional shape adopted by a protein

plays a fundamental role in the ability of the protein to perform its functions. At

a lower level, proteins are constituted by a precise sequence of small blocks, called

amino acids. The amino acids give the first degree of freedom with respect to the

possible shapes a protein can adopt, and we discuss them in the following Section.

2.2.1 Amino Acids and Peptide bond

Amino acids are small molecules, commonly occurring in nature, that can

be seen as the unit building blocks of proteins. There are many type of amino

acids in nature, but only a subset of them is subjected of the genetic control, as

consequence of evolution processes. Proteins are made up of 20 different amino

acids, that are commonly denoted with a three or one-letter code, as listed in

Table 2.1.

Chemically, an amino acid is characterized by a central carbon, denoted

carbon alpha (Cα), an amino group (NH2) and a carboxylic group (COOH),

bounded to the same Cα atom. These three elements are constantly present in

each amino acid. What characterizes the diversity of such molecules is the presence

of an additional group, called side chain or R-group, that uniquely characterizes
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Aspartic acid ASP (D) Glutamic acid GLU (E)

Alanine ALA (A) Arginine ARG (R)

Asparagine ASN (N) Cysteine CYS (C)

Phenylalanine PHE (F) Glycine GLY (G)

Glutamine GLN (Q) Isoleucine ILE (I)

Histidine HIS (H) Leucine LEU (L)

Lysine LYS (K) Methionine MET (M)

Proline PRO (P) Serine SER (S)

Tyrosine TYR (Y) Threonine THR (T)

Tryptophan TRP (W) Valine VAL (V)

Table 2.1: Table of the 20 amino acids.
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Figure 2.2: Amino acid chemical structure.

the physical and chemical properties of each amino acid. The structure of a general

amino acid is shown in Figure 2.2.

In last analysis this molecule characterization makes each of the 20 amino

acids unique, and for each of them specifies different roles in the context of protein

structures. Depending on the physical and chemical properties of the R-group, for

example the propensity to be in contact or repelled by a polar solvent like water,

an amino acid is classified as: hydrophobic, polar or charged.
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Figure 2.3: Location of amino acids in a protein structure.

The propensity of each of the 20 amino acids of being attracted or repelled

by a solvent, strongly influences their distributions within the volume of a protein

structure. In turns, many proteins show a hydrophobic core, surrounded by polar

and charged residues, to prevent the access to the solvent into the protein core.

Figure 2.3 illustrates the location of the 20 amino acids in different region of a

protein. The graph shows the relation among the amino acids in terms of their

preference to be located in a core protein area, inaccessible to the solvent (buried).

Positively and negatively charged amino acids, often interact forming salt

bridges, while polar groups commonly participate in the formation of hydrogen

bonds with side chains and backbone atoms and with the solvent.

The dimensions of the various R groups, which protrude from the polypep-

tide chain, the mutual affinity between the hydrophobic or polar groups, the at-
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traction between acid and basic groups, and the interactions mentioned above are

some of the forces that contribute to shape the conformation of the protein. In

turn, such shape strongly contribute to the biological activity of the protein.

An important characteristic of amino acids, is that they can form long

linear sequences, called polypeptides, (i.e. the protein). In particular, a strong

covalent bond, called peptide bond, is formed when the carboxyl group of an amino

acid reacts with the amino group of an other. The carbon and nitrogen atoms,

associated with peptide bond, constitute the main chain, called protein backbone.

In the process of the polypeptide formation, the two amino acids at the extremes

of the chain, are denoted C-terminus characterized by a free carboxyl group, and

N-terminus having a free amino group.

The peptide bond is an extremely rigid bond, that causes the structure

around it to be planar and therefore incapable of rotations. On the other hand

the bonds between Cα–COOH and NH–Cα allow a degree of freedom. The angle

defined by these rotation are denoted ψ (psi) and φ (phi). Figure 2.4 illustrates

a chain of amino acids involved in peptide bonds, where the black curved arrows

indicated the possible rotations between the Cα–COOH and NH–Cα bonds.

2.2.2 Levels of Protein structure

Protein structure complexity is defined according to a hierarchic level of

structural information. We distinguish four structural levels:
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Figure 2.4: A polypeptide.

1. Primary structure. It corresponds to the linear amino acid sequence, con-

nected by peptide bonds in a polypeptide chain.

2. Secondary structure. Depending on the nature of the amino acids and on the

bond angles, the polypeptide tends to shape in more complex conformations,

locally stable, which are called motifs of secondary structures.

3. Tertiary structure. The further folding of the protein is represented by a

three-dimensional structure, produced as a result of the interactions between

amino acids located in different parts of the macromolecule. The tertiary

structure corresponds to the structure assumed by the protein when it is in

the so-called native state.

4. Quaternary structure. Large proteins are often composed of various sub-

units. The quaternary structure concerns the topological and spatial ar-

rangement of these subunits.
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2.2.2.1 Secondary structures

Secondary structures are the regular repetitions of local structures stabi-

lized by hydrogen bonds. The most common classes of secondary structures are

α-helixes and β-sheets (see Figure 2.5).

A α-helix is a right handed spiral in where the planes of the peptide bonds

are almost parallel with the axis of the helix, and the amino acid side chains

are projected toward the external part of the helix. The most common α-helix

is characterized by a regular structure repetition at every 5.4 Å. Such structure

is stabilized by the presence of hydrogen bonds between the N–H and the C=O

groups.

A β-sheet is a less compacted structure, characterized by the presence of

hydrogen bonds between some local areas of the protein. This secondary struc-

ture is composed by different β-strands; the connected β-strands can be parallel

or anti parallel, according to the direction of its components. In a β-strand the

N–H groups lies on one side and the C=O groups on the other, such character-

istic imposes the order in which β-strands are connected into the β-sheet. These

secondary structures are usually twisted rather than flat, due to the effect of the

solvent in which they are immersed.
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Figure 2.5: An α-helix (left) and a β-sheet (right).

2.2.2.2 Loops

The secondary structure are connected by aperiodic chains of amino acid

called loops. The length of these region may vary drastically (from 2 to 20 amino

acid), but in the majority of the cases they range from 2 to 10 amino acids.

The shortest known loops (2–5 amino acids) are called Hairpin Loops, also called

reverse turn for their property of connecting two anti parallel β-strands.

Loops are generally located on the outer regions of the protein and are

therefore mostly constituted by polar side chains. In addition, the hydrogen bonds

between the amino acids of the loop and the surrounding water molecules are more

numerous than those made with the amino acids adjacent to these regions. This

characteristic, in contrast to the secondary structures, gives the loops great degree

of flexibility.
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2.2.2.3 Tertiary structures

When various combination of secondary structures pack together, they

form a high compacted body, defined tertiary structure. The tertiary structure

is characterized by a high stability, due to local interaction established among

various side chains. These interaction involves hydrophobic amino acids, dipolar

forces between amino acids with opposite charge, hydrogen bonds, and disulfide

bridge links. Is the combination of these weak forces that leads the polar parts of

the polypeptide to be exposed to the solvent, and consequentially to the creation

of a hydrophobic core.

2.3 Protein Structure Prediction

In natural conditions proteins assume a peculiar tertiary structure. The

phenomena by which proteins achieve their three-dimensional structure is called

protein folding. This process can be described as an intramolecular self-assembling

operation, in which the protein assumes a specific shape through non-covalent

interactions such as hydrogen bonds, hydrophobic forces, Van der Waals forces,

etc.

The physiological function of a protein, i.e. enzymatic, catalytic, trans-

porter, is in a one to one relation with its native structure. For this reason,

the problem of determine wether or not a protein assumes a correct folding is a

problem of great interest.
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Despite their complexity, the proteins have a well-defined native state,

which is reached by a fast folding process (1µs - 1s). This property is known as

the termodynamic hypothesis postulated by Christian B. Anfinsen [Lev68] (Nobel

Prize for Chemistry in 1972). This postulate states that, at least for small globular

proteins, the native structure is encoded in the primary amino acid sequence. In

turn, by the entropic consideration, at the environmental conditions at which the

folding occurs, the native structure of a protein is a unique, stable and kinetically

accessible conformation characterized by the lowest free energy.

The Protein Structure Prediction (PSP) problem, is the problem of deter-

mining the tridimensional structure of a protein, given its primary sequence.

Levinthal paradox. The duration of the folding process varies according to

the nature of the protein. When extrapolated from the cellular context, the slow-

est folding observed is completed in few minutes or hours, and it requires many

intermediate steps. On the other hand, small proteins (within 100 amino acids)

typically fold in one step [Jac98] and the majority of protein folds spontaneously

in a time of the order of milliseconds or even microseconds [KHE04]—the time to

generate a E. Coli is roughly twenty minutes, which means that all the proteins

essential for the life of this organism, are produced at a very high speed (at most

in the order of minutes).

The Levinthal’s paradox [Neu97] observes that, due to the high number of
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degrees of freedom in the polypeptide chain movements, if a protein would reach

its final conformation, gradually passing through all the possible configurations, it

would require a time well beyond the currently estimated age of the universe. This

would occur even if the transition from a conformation to another was defined to

be a very small interval as picoseconds or nanoseconds.

2.3.1 Motlen globule state

Experimental observations suggests the presence of a unique protein con-

formation in the native state, evincing the presence of a single global minimum

with a significantly lower energy value, when compared to other local minima

[OW83]. This view is confirmed by experimental evidence [KB95], which suggests

that in nature, the process of protein folding proceeds in two phases: a first rapid

one, which leads to a state very close to that of the optimal folding, followed by

a longer phase, necessary to stabilize the folding in the final configuration. Such

argument is also supported by an evolutionary point of view: proteins executing

a specific task must have similar shape—i.e. folding—in order to be successful in

such operations (most of these function require “mechanical compatibility” with

the interaction sites). In contrast, peptide chains not meeting such requirement

would be unable to perform their biological function, and therefore less competi-

tive in evolutionary terms.

Recent studies [HT92, EK87] seem to have reached an agreement on the
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thesis that the native state of a protein is represented by a dynamic global min-

imum reached via a sequence of transition states (local minima), separated from

the global minimum by a large energy gap.

Kiefhaber et al. [KB95] show that, under certain physical conditions, there

are stable states in which the protein is partially folded. These states, called

molten globules, show a secondary structure similar to that of the native state of

a protein and a very compact tertiary structure.

A note on computational issues in the PSP. One of the most remark-

able challenge in computational approaches addressing the PSP problem, is the

presence of a great number of local minima in the search landscape. Such charac-

teristic discourages the use of local searches, because of their high chances to get

trapped into one of such local optimization point.

In general, the number of local minima is expected to grow exponentially

with length of the protein. However most of these local minima might have a

large energy contribution, and therefore irrelevant for a global optimization search

approach.

For problems rich in symmetries, like the problem of the optimal config-

uration of a cluster of n identical atoms with a Lennard-Jones interaction the

number of local minima is estimated to grow even sharply (O
(
1.03n

2)
) [WV85].

However, the number of “significant” local minima (those for which the associ-
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ated free energy is close enough to the global minimum) are likely to grow simply

exponentially in n.

In the course of the next Sections we will present an approach, based on

Constraint Programming, to address the protein structure prediction problem.
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CHAPTER

THREE

THE PROTEIN STRUCTURE PREDICTION PROBLEM

In this chapter, we provide a formalization of the Protein Struc-

ture Prediction (PSP) problem accordingly to the model adopted in this work.

We make use of the Constraint Programming (CP) paradigm, that allow us to en-

code the problem of finding admissible conformation as a constraint satisfaction

problem (CSP). The knowledge about chemical and physics properties of proteins

are encoded into constraints to guide the search in the space of the putative con-

formations. We adopt a simplified model for the protein representation in the

cartesian space.

The chapter is structured as follow: in section 3.1 we provide a formal

description of the PSP problem and of the model adopted in this Thesis, including

its levels of simplification, a description of the fragment assembly technique, and

a brief description of the energy function, used as a quantitative descriptor for a

structure prediction. In section 3.2 we discuss about some complexity issues of
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the defined problem, and in the last Section we report a brief summary of related

works.

3.1 Model Description

In the following formalization we focus on proteins composed of amino acids

coded by the human genome. Let A be the set of amino acids, where |A| = 20.

Given a protein primary sequence S = a1, . . . , an (ai ∈ A), we represent with the

variable Pα
i ∈ R3 the position of the Cα atom of the amino acid ai.

Definition 3.1.1 (Folding). A folding is a function ω : A× . . .× A︸ ︷︷ ︸
n

→ R3 × . . .× R3︸ ︷︷ ︸
n

.

ω : N→ R3 that maps amino acids of a primary sequence into points of the tridi-

mensional space. The notation ω(i) = Pα
i describes the mapping ω of the ith

amino acid on Pα
i of the tridimensional space.

Definition 3.1.2 (PSP problem). The (ab-initio) protein structure prediction

problem is the problem of finding the folding ω that minimizes the free energy

measure.

Since proteins tends to adopt the most stable 3D conformation and, the

entropic measure describes the stability of a protein tertiary structure (see Section

2.3.1), it follows that the best folding is the one described by the lowest entropy

measure.
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3.1.1 The Backbone

Recall, from Section 2.2.1 an amino acid is a molecule composesd by an

amino group, a carboxylic acid group and a side-chain (that may contain from 1 to

18 atoms). To deal with the complexity of the problem, the model adopted in this

work, introduces several degrees of approximation in the protein representation.

Each amino acid is treated as atomic unit and shown on the 3D space as a single

point describing its Cα. More formally, every amino acid ai ∈ S is represented by

the triple (xi, yi, zi), where xi, yi, zi ∈ R. In the following Sections we will use the

terms Cα and amino acid interchangeably—when referring to the model in use.

The degrees of freedom for the positions of consecutive amino acids are

determined by two components: bend and torsion angles. A sequence of three

consecutive amino acids a1, a2, a3, represented by their Cα atoms, with positions

Pα
1 , P

α
2 , P

α
3 , defined bend angle denoted by â1a2a3. Figure 3.1 (left) shows a

fragment of four amino acids, where a bend angle (θ) is emphasized on the amino

acid a2 [DDFP10]. Bend angles tend to be characteristic of the amino acid types

involved, and vary little, thus we consider all the bend angles as fixed. Consider

now four consecutive amino acids a1, a2, a3, a4, the angle formed by n2 = (a4 −

a3)× (a3 − a2) and n1 = (a3 − a2)× (a2 − a1) is called torsion angle. Figure 3.1

(right) shows the torsion angle φ on a 4 amino acid fragment [DDFP10]. The

backbone of a protein, can be considered as a concatenation of short sequences
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Figure 3.1: Bend angle (left). Torsion angle (right).

of four amino acids. If the torsion angles are known for all the consecutive sub-

sequences, they uniquely describe the 3D positions Pα
i of all the Cα atoms of

the protein. Given a spatial configuration of four consecutive Cα atoms, any

of the different conformations arising restricting the rotation around the torsion

angle so defined, is called rotamer. The rotamers describe the degree of freedom

for the position of the side chain. Due to the small variation represented by

rotamers our model does not consider an additional degree of movement for the

backbone. These information are only used implicitly: the information provided

by the torsional angles define wether two consecutive blocks of contiguous amino

acids are compatible in the Fragment Assembly model (discussed in the next

Section). Avoiding an explicit treatment of bend and torsion angles reduces the

number of degrees of freedom and therefore the computational complexity needed

to represent and manipulate protein structures.
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3.1.2 Centroids

We introduce a supplementary amino acid descriptor, in addition to the

Cα’s position, to represent the side chains. This concept is formalized as a point

in the 3D space (denoted as centroid) placed at the center of mass of the amino

acid side chain. The notation P c
i is used to represent coordinates of the centroid

associated to the ith amino acid of S. Informally, the center of mass of a side

chain is the average of all its atoms positions, weighted by their specific weight.

The positions for the centroids are assigned once the Cα atoms positions are

known. In particular, the centroid of the ith residue is constructed by using the

locations of Cαi−1, Cαi and Cαi+1 as reference and by considering the average

center of mass of the amino acid sampled from a non-redundant subset of the

PDB. The parameters that uniquely determine its position are: the average Cα-

side-chain center of mass distance, the average bend angle formed by the side

chain center-of-mass-Cαi-Cαi+1, and the torsional angle formed by the Cαi−1-

Cαi-Cαi+1-side-center of mass.

It is important to mention that, the introduction of the centroid model

allow us to use a more refined energy model, that in turn results in a more accurate

prediction. In the CP representation model adopted by our system, an energy

function can be modularly enriched by including additional parameters such us

side chains contact potential contributions. Moreover, once the positions of the
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all Cα atoms and centroids are known, the structure of the protein is already

sufficiently determined, i.e., the position of the remaining atoms can be identified

almost deterministically with a reasonable accuracy.

Figure 3.2 [DDFP11] helps to appreciate the role played by the centroids

w.r.t. protein volume representation, showing a comparison between the full atom

and the centroids protein model. In the two illustrations the backbone of the poly-

mer is represented by thick lines. The left hand side shows a full atom representa-

tion for the side chains, while the right hand side shows the centroid representation

(the centroids are represented by grey spheres connected to the side chain).

Figure 3.2: Full atoms and centroids representation.

3.1.3 Structures, intuitions and block models

In this section we introduce the formalisms adopted to capture homologies

and affinities among proteins structures. These information will be used to guide

the search across the space of the possible conformations.
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3.1.3.1 Fragments

Consider a sequence of amino acid S = a1, . . . , an; we introduce the follow-

ing defintion.

Definition 3.1.3 (Fragment). A fragment is a sequence of contiguous points in

the 3D space: f = p1, . . . , pL (pi ∈ R3). The pi are associated to the ith amino

acids of S and describe their position Pα
i in the cartesian space.

According to homology observation [MSM00], each subsequence of S can

be modeled through a specific well defined 3D shape. A fragment, in this respect,

represent a rigid spatial conformation for such subsequences. Each subsequence

of S can hence be associated to a given number of fragments modeling the pos-

sible 3D candidate shapes. The idea is driven from the observation that, during

the exploration of the space of the possible protein 3D structures, many ran-

dom conformations are generated. Using homologies we can reduce the number

of combination to explore, focusing only on the biologically meaningful ones. In

this respect highly conserved structures (e.g. α-helices, or β-sheets), can be used

to describe specific subsequences of the target proteins—namely the ones that

present high homology affinity with such well defined structures.

Let denote with F the fragment space, as the set of all fragments that

could be compatibly used to model every subsequence of a given target protein.

We design two fragments sets:
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Fstd ⊆ F is the set of the fragments imported from the Assembly Data Base

in the clustering phase (see 3.1.5). A fragment f ∈ Fstd is referred as a

standard fragment.

Fspc ⊆ F is the set of user specified fragments, and contains the ad-hoc designed

structures to model a specific area of a target protein. A fragment f ∈ Fspc

is referred as a special fragment.

The set Fstd is automatically generated by the analysis of large protein

structure data sets. It constitutes the basic structural unit adopted to model a

given short protein subsequence during the structure prediction. The set Fspc is

instead build out of a semi-automatic process and it is aimed at targeting longer

subsequences like α-helix and β-sheets, or other structural blocks— contiguous

subsequences— like motifs or blocks of super secondary structures. The special

fragments are created through a GUI (graphic user interface) that allow the user

to visualize the protein structures from which to extract the structural blocks to

be associated to the target sequence. We plan to integrate secondary structure

prediction features (like PSIPRED, I-TASSER or PEP-FOLD) to automatize the

special fragments selection process by suggesting the splitting sites for possible

blocks candidates.
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3.1.3.2 Pairs

Special fragments are targeted in modeling those parts of the protein that

are highly conserved within other homologous polymers with known structure.

These conformations are likely to form strong local interaction between each other

according to the nature of their components, and in last analysis to their specific

shape. Therefore, a natural assumption is that special fragments will interact

among each other forming core parts in the final prediction.

We have observed that, in the exploration of the conformational search

space, many “blind moves” are tried before the special fragments can be placed

with a good relative spatial orientation. This is caused by the high degree of

freedom in the parts of the proteins modeled by standard fragments. As an

example, consider two helices connected by a short loop as shown in Figure 3.3; a

typical modeling consists of the two helices as special fragments fi, fj ∈ Fspc, and

the loop as a sequence of standard fragments. In this example after placing the first

helix (fi) every feasible choice for the loop modeling connecting the second helix

(fj) is tried, but only few combinations will contribute in enhancing the global

structure stability — the one that minimize the entropy energy level. To gain

computational speed, we present a formalism that allow us to pre-compute the

“good” orientations for pairs of special fragments. This suggestion mechanism is

used as heuristic to guide the search in selecting the possible candidate prediction
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fi

fj

fj

fj

Figure 3.3: Loop flexibility in the structure prediction.

in the protein conformations search space.

Definition 3.1.4 (Pair). A pair ρ ⊆ Fspc × Fspc is a binary relation between

two special fragments. Given fi, fj ∈ Fspc and i 6= j, we denote with ρ(fi, fj) the

pair relation between fi and fj.

The pair relation describes the relative spatial positions between two fragments.

Each pair is described by a rotation matrix R ∈M(3, 3), and a translation vector

~v ∈ R3 associated to the relative positions of the first fragment of the pair. R

and ~v describe the affine transformations, subjected to the second fragment of the

pair, necessary to couple the two fragments.

More precisely, given fi, fj ∈ Fspc(i 6= j), fi and fj are in a pair relation ρ(fi, fj) if

there exists a rotation matrix R and a translation vector ~v such that the evaluation
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of the torsional and orientation contributions of the entropy energy model (see

section 3.1.6 for details) of fi and R× (fj · ~v) exceeds a threshold Θpair ∈ R.

Pair Properties. The following properties hold for pair relation ρ over the set

of special fragments Fspc:

• ρ is anti-reflexive,

∀fi ∈ Fspc, ¬ρ(fi, fi)

A special fragment, can not be in a pair relation with itself (it trivially

follows from the pair definition, since i 6= j).

• ρ is symmetric,

∀fi, fj ∈ Fspc, ρ(fi, fj) =⇒ ρ(fj, fi)

Trivially, if there exists a rotation matrix R and a translation vector ~v to

couple fj to fi, we can also define a pair relation between fj and fi, using

R−1 and −~v.

• ρ is anti-transitive, Let fa, fb, fc be fragments of Fspc:

ρ(fa, fc) ∧ ρ(fb, fc) =⇒ ¬ρ(fa, fb) ∧ ¬ρ(fb, fa) (1)

ρ(fa, fc) ∧ ρ(fa, fb) =⇒ ¬ρ(fc, fb) ∧ ¬ρ(fb, fc) (2)

A graphical representation for the equations (1) and (2) is given in Figure 3.1.3.2.

43



a c b a c b

Figure 3.4: Properties (1) (left) and (2) (right).

The generalization of the anti-transitive properties defined by the (1) and

(2) is given introducing the following concept. Let R be a generic binary relation.

Let the transitive closure of R on a set of elements a, b1, . . . , bn (n ≥ 2) be defined

as follows:

aRb1 ∧ b1Rb2 ∧ . . . ∧ bn−1Rbn =⇒ aRbn (3)

By the definition above, we define the anti-transitive closure of a relation, in the

intuitive way. Given a set of fragments {fa, fb1 , . . . , fbn} ⊆ Fspc, the anti-transitive

closure of the pair relation ρ holds for any n ≥ 2:

ρ(fa, fb1) ∧ ρ(fb1 , fb2) ∧ . . . ∧ ρ(fbn−1 , fbn) =⇒ ¬ρ(fa, fbn) ∧ ¬ρ(fbn , fa) (4)

The (4) is illustrated by Figure 3.1.3.2. If a pair relation would exists between

fragments fa and fbn , it would invalidate the definition of amino acid chain. Indeed

a chain of residues has start and end amino acids not connected to each other.

Moreover, every non trivial substring of the residue chain has a different start

and end point position. Another way to see the anti-transitive closure of ρ is

by the mean of a graph G where the vertices represent the fragments and the
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edges represent the pair relations between two fragments. In this respect the

anti-transitive closure of ρ states that G is acyclic.

...b2b1 bna

Figure 3.5: The anti-transitive closure for the pair relation ρ.

3.1.4 Fragment Assembly

In this section we describe the motivations and the intuitions behind the

Fragment Assembly model adopted in this work.

The gap between the number of protein sequences and predicted 3D struc-

tures is rapidly increasing, enhanced by the great number of genomes decoded

in recent years (including the human genome [Vea01]). Comparative models for

three-dimensional protein structures, are widely considered suitable to fill this gap.

These models, are based on the hypothesis that the fragments found to model

the protein sequence of interest (target sequence) could be related by homology

(common ancestor). The benefit of this approach is in that, sections confidently

inherited from the fragments extracted have intrinsically good geometry, and can

be used to model particular portions of the target protein.

The model exploited for the Fragment Assembly model provides a simplification
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of the protein conformational space exploration. The degrees of freedom for the

positions of every amino acid of a protein are almost illimitate, in a R-continuous

model as the one described above; it follows that the space of the possible candi-

date solution for a protein conformation is remarkably enormous. Our approach

uses the Fragment Assembly (FA) technique [DDFP10, DDFP11] to restrict the

number of possible placements of an single amino acid. Such placements are based

on the chain of fragments assignments done to build the protein structure up to

the amino acid of interest.

The key idea relies on assembling protein parts from the standard or special

fragments set to construct the target protein structure conformation. Let fi =

pi, . . . , pi+Li , and fj = pj, . . . , pj+Lj (pi ∈ R3) (either of type standard and special),

we introduce the following concept.

Definition 3.1.5 (Compatible Fragments). Two fragments fi, fj are compatible

if:

RMSD
(
〈pi+Li−2, pi+Li−1, pi+Li〉, 〈pj, pj+1, pj+2〉

)
< θ (5)

for some θ ∈ R.

In other words, fi and fj are compatible fragments if the last three amino acid of

fi and the first three amino acid of fj have a similar bend angle.

In the fragment assembly procedure, two compatible fragments fi, fj with

j = Li − 3, are assembled by superimposing the first three points of fj to the
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Figure 3.6: Assembly of two consecutive fragments

last three points of fi, so that pLi−2 matches the position of pj and the rmsd

measure between the common points is minimized. Figure 3.6 shows an example

of fragment assembly step where Li = 4 and Lj = 12.

3.1.5 Clustering

The Protein Data Bank (PDB) is a large repository for the 3D protein

structures, which are typically obtained by X-ray crystallography or NMR spec-

troscopy. The analysis of the PDB plays an important role in this work: it provides

a data set of fragments representatives to be used as general components when

building a protein by fragment assembly. The Assembly Data Base (Assembly-db)

is generated by searching for recurrent conformations among a non redundant set

of proteins of the PDB. Two important considerations aries when building the
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Fragment Assembly-db:

Redundancies. The PDB contains more then 70k protein structures, including

many similar proteins deposited in several variants.

Impracticable search space. Consider a peptide sequence of length k > 0,

[s1, . . . , sk], with si ∈ A. Note that the number of different combinations

such a sequence may have is |A|k that is 20k, a truly remarkable value as k

increases.

In order to solve the redundancy issue, the program tuple-generator[DDFP11]

devises a library of structures, for fragments of short length, from a subset of the

PDB (called top-500 ). top-500 is a set constituted by the 500 proteins structures,

crystalized at a resolution of at least 1.8 Å and containing the largely frequent

fragments among the whole PDB [LDA+00]. In this work we adopt fragments of

length 4. The choice is motivated by the statistically relevant number of fragment

representative that can be generated in order to ensure a good coverage for each

permutation of four amino acids. This property makes it possible to engender

a general data base suitable to model different classes of proteins. At the same

time sequences of four amino acid are long enough to embed important structural

information related to the nature of their components.

For the second issue, note that, when considering k = 4, the number of

different 4-tuples of amino acids, is 204 = 160, 000. Since we only generated
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roughly 60k fragments representatives, this means that the largest part of the

4-tuple set would remain uncovered. To overcome this problem, we introduce a

partition for the amino acid set A,

A = {A1, . . . ,Am} where Ai 6= ∅ ∧ Ai ∩ Aj = ∅, ∀Ai,Aj ∈ A.

The Ai are called amino acid clustering classes, and are determined according to

the similarity of the torsional angles of amino acid bonds [FPD+07].

The number of amino acid clustering classes chosen to partition the amino

acid set A is m = 9. Figure 3.7 shows the amino acid clustering classes used

in this work. We define the mapping from the amino acid set to the classes Ai,

trough the function λ : A → {0, . . . , 8}. Similarly let denote with λ−1(i) = {a ∈

A | λ(a) = i}. Considering fragments of length 4, the majority of the 94 = 6561

elements has a representative in the Fragment Assembly DB. We stress that the

elements of a given class are treated in the same manner during the search of a

possible conformation.

We introduce the following definitions:

Definition 3.1.6 (Equivalence). Let f1, f2 be two fragments of a primary se-

quence S. f1 and f2 are said equivalent (f1 ∼ f2) iff:

i. |f1| = |f2|

ii. f1, f2 have same amino acid clustering pattern:

∀s1
i ∈ f1, ∀s2

i ∈ f2, ∃c such that s1
i ∈ Ac ∧ s2

i ∈ Ac
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Leucine (L)Alanine (A)

1 2 3

4

5 6

7 8 9

Methionine (M) Arginine (R) Lysine (K)

Glutamic acid (E) Glutamine (Q)

Valine (V)Tryptophan (W)Isoleucine (I)Threonine (T) Phenylalanine (F)

Histidine (H) Tyrosine (Y) Cysteine (C) Glycine (G) Proline (P)

Asparagine (N) Aspartic acid (D) Serine (S)

Figure 3.7: The amino acid clustering partition.

Theorem 3.1.1. The binary relation “∼” between two fragments, is an equivalent

relation over the fragment space F .

Proof. Let f1, f2, f3 fragments of generic sequences S1,S2,S3. The relation “∼” is

trivially refexive (f1 ∼ f1).

Assume, by hypothesis f1 ∼ f2; follows:

|f2| = |f1| ∧ (∀s1
i ∈ f1, s

2
i ∈ f2) (∃c) : (s1

i ∈ Ac ∧ s2
i ∈ Ac) (from i and ii)

that is the symmetric property for “∼”.

Let f1 ∼ f2 and f2 ∼ f3, that is:

|f1| = |f2| ∧ (∀s1
i ∈ f1, s

2
i ∈ f2) (∃c1) : (s1

i ∈ Ac1 ∧ s2
i ∈ Ac1) (a)

|f2| = |f3| ∧ (∀s2
i ∈ f2, s

3
i ∈ f3) (∃c2) : (s2

i ∈ Ac2 ∧ s3
i ∈ Ac2) (b)
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Follows, for transitivity of the equivalence relation:

|f1| = |f3|, (*)

more over, for all s1
i ∈ f1, s

2
i ∈ f2, s

3
i ∈ f3 there exist c1, c2 such that:

s1
i ∈ Ac1 ∧ s2

i ∈ Ac1 ∧ s2
i ∈ Ac2 ∧ s3

i ∈ Ac3 . (from (a) and (b))

Since the amino acid clustering classes are a partition for A, follows: c1 = c2 (from

s2
i ∈ Ac1 and s2

i ∈ Ac2). Let denote with c such a index:

(∀s1
i ∈ f1, s

2
i ∈ f2) (∃c) : (s1

i ∈ Ac ∧ s3
i ∈ Ac) (**)

Combining (*) with (**) follows f1 ∼ f3; that is the transitivity of “∼”. Hence

the claim.

A subset of F containing all and only the elements equivalent to some f ∈

F defines an equivalence class of f under “∼” ([f ]∼), [f ]∼ :=
{
x ∈ S | x ∼ f

}
.

The equivalence relation “∼” defines a partition over F . We denote F/ ∼ the

collection of the equivalence classes over F , (that is the quotient set of F by

“∼”): S / ∼ :=
{

[f ] | f ∈ S
}
.

Let now introduce the concept of root mean square deviation. Let ~v =

(v1, . . . , vn), ~u = (u1, . . . , un) two vectors, where vi, ui ∈ R3. The rmsd(~v, ~u) is

defined by the following:

rmsd(~v, ~u) =

√√√√∑n
i=1

(
(vi,x − ui,x)2 + (vi,y − ui,y)2 + (vi,z − ui,z)2

)
n

(6)
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Definition 3.1.7 (RMSD). Let ~v, ~u two vectors, with vi, ui ∈ R3. We introduce

the function RMSD to measure the similarity of two vectors ~v, ~u:

RMSD(~v, ~u) = min
φ,θ,ψ∈R

(rmsd(~v, rot(φ, θ, ψ)(û))) (7)

where rot(φ, θ, ψ) is the function that rotate a vector in the 3D space along

the components φ, θ, ψ; û is the translation û = ~u + ~l, where ~l is defined by the

components:

lx =

∑
i vi,x − ui,x

n
, ly =

∑
i vi,y − ui,y

n
, lz =

∑
i vi,z − u,z
n

In other words the points of ~u are rotated and translated so to minimize the

measure of the deviation. The (7) gives a measure of similarity for two fragments

of equal length. The more its value is close to 0, the better the fragments points

relate to each other.

To reduce even further the number of fragments for a given class we group

similar fragments representing them by a unique candidate.

Definition 3.1.8. (Similarity) Two fragments f1, f2 are said similar if they are

equivalent and RMSD(f1, f2) ≤ ε, for some ε ∈ R. We denote it with f1 ' f2.

Given a set of fragments F = {f1, . . . , fm}, a fragment fk is representative of F

if: fk ∈ F ∧ ∀fi ∈ F (fk ' fi). For the definition of similarity adopted in this

work, we refer the reader to Section 4.5.1 where we discuss the methods used for

the system evaluation.
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The format of the data base generated by the program tuple-db is the

following:

[c1, c2, c3, c4 Xα
1 , Y

α
1 , Z

α
1 , X

α
2 , Y

α
2 , Z

α
2 , X

α
3 , Y

α
3 , Z

α
3 , X

α
4 , Y

α
4 , Z

α
4 , FREQ, ID, P id]

where c1, c2, c3, c4 defines an amino acid clustering pattern, with ci ∈ {0, . . . , 8},

Xα
1 , . . . , Z

α
4 are the coordinates of the 4 Cα atoms of the fragment, FREQ ∈

[0, 1] ⊂ R describe the frequency of occurrence of a given pattern in the top-500

set, ID is a unique identifier for the current DB element, and Pid is the first

protein found containing such fragment.

The Assembly Db is given as input for our solver which will extract the

subset of fragments to be used for the prediction of a given target sequence.

Given a target primary sequence S = a1 . . . , an, it is unlikely that a sub-

sequence of L amino acids will not appear as an element of F ; nevertheless, to

handle this possibility, if γ(ai), . . . , γ(ai+L−1) has no statistics associated to it, we

map it to a “general fragment” with pattern [−1,−1, . . . ,−1]. This class contains

the most common fragments of the Assembly-DB. We also introduce other two

general patterns:

• [−2,−2, . . . ,−2] that contains the fragment describing a generic subsequence

of α-helices.

• [−3,−3, . . . ,−3] that contains the fragment describing a generic subsequence

of β-sheets.
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These patterns are applied to those region of the sequence where a secondary

structure constraint is, possibly, enforced.

3.1.6 Energy Model

A candidate protein conformation is evaluated by an energy function that

estimates its entropy measure. In general these energies are aimed at modeling

force fields representing atomic interactions. Examples of functions empirically

tested (either statistically or through small quantum mechanic observations) are

AMBER [JTR98], CHARMM [BBO+83], ECEPP [FAMCMS74], MM3 [AYL89].

The energy function used in this work relies on an interaction model which

entails energy terms for the following components:

1. A contact energy component, to represent force fields involving backbone

components (Cα’s atoms) and side chains (centroids). Moreover, we consider

pseudo bonds between two consecutive Cα’s and between a Cα and the

corresponding centroid (except for glycine which entails only one center of

interaction for the backbone).

2. A torsional energy component, defined by four consecutive pseudo-bonded

centers of interaction (Cα atoms). This energy term is defined by the po-

tential of the mean force derived by the distribution of the corresponding

torsional angle in the PDB [FPD+07]. This terms are aimed at describing

local conformations (e.g. derived from secondary structures).
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3. An orientation energy component, defined for every three pseudo-bonded

centers of interaction. This component is described by a pseudo-torsional

energy term, used to maintain proper chirality of side chain orientation with

respect to the main chain.

Contact Energy Contribution. For this component we use the contact energy

table described in [BMF03]. This table defines the quantitative contact interac-

tions between pairs of amino acids, and it is determined by statistical observation

from contact interactions among a set of proteins with known native structure. A

contact, in this context, is defined as the interaction between centroids and Cα’s,

within their Van der Waals radius.

The energy assigned to the contact between backbone atoms (represented

by the Cα’s) is the same energy assigned to ASN-ASN, which involve mainly

similar chemical groups contacts. We employ a cutoff (distance within which the

energetic forces are maximized) of 4.8Å between backbone contacts (Cα − Cα).

For centroids the cutoff is given by the summation of their radius. For distances

greater then the cutoff value, the contributions decay quadratically (w.r.t the

distance itself).

We report the formal definition of the contact energies for Cα− Cα’s and

centroid–centroid interactions. Let P ca
i , P

ca
j ∈ R3 be the points describing the

coordinates for Cα’s cai, caj, and let P cg
i , P

cg
j ∈ R3 be the points describing the
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coordinates for the centroids cgi, cgj, and ri, rj be the radius of these centroids,

the contact energies are defined as follows:

ENcont ca(i, j) = ∆ca(P
ca
i , P

ca
j ) ·Mcont[i, j]. (8)

ENcont cg(i, j) = ∆cg(P
cg
i , ri, P

cg
j , rj) ·Mcont[i, j]. (9)

where Mcont is the contact matrix as defined in [BMF03] and ∆ca,∆cg are the

decay functions defined according to the cutoff distances.

Torsional Energy Contribution. Torsional contributions are defined by four

consecutive centers of interaction (Cα atoms). The energetic terms involved in

these contribution are calibrated by considering two center of interaction for each

amino acid: the Cα atom, and the centroid. In last analysis, the torsional contri-

bution capture the covalent bonds formed by each Cα atom within its own center

of mass and other two adjacent Cα atoms. The parameters are devised from

statistical analysis in the Top-500 protein set.

Torsional components express a characterization of the propensity of a

given subsequence to generate local structures. This property is described by

the dihedral angle defined among four consecutive center of interaction of the

backbone: tors(φ(Cαi, Cαi+1, Cαi+2, Cαi+3)). Moreover, we introduce a term to

describe relations between adjacent local conformations. This term is defined by
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the dihedral angle of two adjacent 4-tuple of consecutive Cα’s:

corr(φ(Cαi, Cαi+1, Cαi+2, Cαi+3), φ(Cαi+1, Cαi+2, Cαi+3, Cαi+4)).

The formal description of the torsional energy contribution is given in the

equation (10). We consider two energy tables: Mtors, a tridimensional matrix

describing the torsional contribution, provided two amino acids and the discrete

value of the torsional angle defined over four consecutive Cα’s; and Mcorr, a two

dimensional matrix describing the correlation contribution. Let ai be the ith amino

acid of a protein sequence, and Pi be the coordinates for the Cα associated to the

amino acid ai, the torsional contribution for an amino acid ai us given by the:

ENtors(i) = Mtors[ai, ai+1, φt(i)] +Mcorr[φt(i), φt(i+ 1)]], (10)

where φt(i) = 178−φ(Pi,...,Pi+3)
5

.

Orientation Energy Contribution. The orientation contributions describe

the symmetries of the geometric distributions among every three consecutive Cα’s.

These components are used to maintain the proper chirality of side chains orien-

tation w.r.t. the backbone. The main idea here is to consider the directionality

of the hydrogen bonds between pairs of amino acids using samples obtained from

an analysis of the PDB. More specifically, following an approach similar to the

one presented in [HTS+04], we consider triple of adjacent Cα’s to be compatible

if the radius of the circumference tangent to the three Cα’s is within [2.5, 7.9]Å.
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In this model we also take account of the hydrophobic effects of a solvent,

by applying a force field to those atoms that are separated by a distance smaller

than 7.9Å. The characterization of an hydrogen bond is given by the geometrical

properties of the local planes defined over two pairs of three consecutive Cα’s. The

intuition here, is to gather information about the presence of an hydrogen bond by

focusing on the vectors normal to these planes and intersecting the points defined

by the two Cα considered, together with the distance vector from such atoms.

These properties are hence compared and evaluated w.r.t. the ones derived from

a statistical analysis of such local system in the PDB. For an exhaustive treatment

of the argument see [HTS+04].

The description of the contact contributions is given in the equation (11)

ENori(i, j) = oriaux
(
(Pi−Pj), (Pi−Pi−1), (P+i+ 1− Pi), (Pj−Pj−1), (Pj+1)−Pj)

)
,

(11)

where oriaux describe the geometrical characterizations discussed above.

More details on the energy components can be found in [BMF03].

3.2 A brief analysis on complexity

In this Section we consider the computational complexity of the protein

structure prediction problem.

One of the most well studied protein representation model is the Dill’s HP-

lattice model [Dil85]. According to the observation of that hydrophobic amino
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acids tend to pack together avoiding the watery environment, the HP-model clas-

sifies each amino acid in accordance to its propensity to escape or tolerate water.

Under the simple HP-model, in a 2D lattice for protein representation, the PSP

problem has been shown to be NP-complete [CGP+98]. Such problem can be

formulated as the problem of finding the hamiltonian path that maximizes the

number of H’s pairs within a unit lattice distance; the NP-completeness proof for

the PSP problem under the HP-model for lattice relies on a formalism that maps

nodes of a graph onto an hyper-cube.

In the model presented in this work, a solution to the PSP is a map-

ping from the sequence of amino acids S = a1, . . . , an, to the sequence of points

p1, . . . , pn in R3, satisfying the imposed constraints. Proving the complexity of the

PSP under such model, shall take into account that the space of the admissible

solutions is restricted to the ones satisfying the CSP.

In doing so, we consider a simplification of the space modeling the proteins,

i.e. 2D or 3D lattice models. In order to undertake the complexity discussion of the

PSP we need to introduce the notions of two global constraints: the alldifferent

and the contiguous constraint. Consider a set of n variables x1, x2, . . . , xn, with

associated domains D1, D2, . . . , Dn. Then,

alldifferent(x1, . . . , xn) = {〈a1, . . . , an〉 | 〈a1, . . . , an〉 ∈ D1 × . . .×Dn ∧

∀i, j (1 ≤ i < j)⇒ (ai 6= aj)}
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and,

contiguous(x1, . . . , xn) = {〈a1, . . . , an〉 | 〈a1, . . . , an〉 ∈ D1 × . . .×Dn ∧

∀i ∈ N, (1 ≤ i < n)⇒ (ai, ai+1 ∈ E)}

where E is the set of lattice edges. The alldifferent constraint, states that

every point in the lattice has a unique position, and it cannon be used to model

two distinct amino acids; the contiguous constraint states that contiguous amino

acids in a primary sequence are mapped as contiguous points in the lattice.

Note that, the minimal requirements, in terms of constraints to be satisfied, in

order to generate a biologically meaningful conformation, consists of the global

constraint alldifferent∩contiguous. Such property is described as Self Avoid-

ing Walk (saw), that is, a lattice path that does not visit the same point more

then once.

In [DDP06] Dal Palú and co-workers proved that the satisfiability of the saw

constraint is an NP-complete problem. Moreover it follows that the problem of

determining wether such constraint is generalized arc consistent, is in NP-complete

as well1. The proof is a reduction from Hamiltonian Circuits, and relies on the

use of special planar graphs [DDP06].

The results for the saw constraint consistency verification problem for lat-

tice points, has been extended to fragments whose point are represented by given

1In [DDP06] such property is proven to be NP-hard.
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coordinates in Z2 trough the constraint scfsaw [Cam11]. Intuitively a solution

for the scfsaw constraint is a sequence of fragments, modeling adjacent amino

acids, for which a geometric superimposition is feasible (the latter is expressed by

the compatibility constraint—see Section 4.2.3.3).

Verifying the consistency of the scfsaw constraint over 2D lattices is NP-complete,

and as corollary determining wether the generalized arc consistency for the scfsaw

constraint over 2D lattices is satisfied, is an NP-complete problem [Cam11].

However, even if the results established proved the intractability of the

problem for general inputs, it is important to stress that we are not interested in

studying unbounded instances of the PSP problem. Tackling proteins for lengths

of n = 200−300 would be considered a remarkable contribution for biologists and

researcher interested in the analysis of protein behaviors and structure.

3.3 Related works

De novo protein structures prediction is one of the most important chal-

lenges in computational biology—many progresses have been done in recent years,

although a definitive solution to the problem remains elusive. Research in this

area can be divided into fragment assembly [SKHB97, KKD+03, LKJ+04] and

molecular dynamics. The former attempt to assign a fragment with known struc-

ture to a portion of unknown target sequence. The latter uses simulations of

physical movements of atoms and molecules that can interact to each other, to
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simulate the folding process.

Molecular dynamics methods require a full detailed representation of the

protein model. Being able to explicitly represent a high number of degree of

freedom has the advantage of creating accurate results, however, due to the cost

of treating the electronic degrees of freedom, explicit solvent molecular dynamics

simulations of protein folding are still beyond current computational potential,

limiting its domain of application to small proteins, or protein particles.

The other class of ab-initio method, arising in the recent years, uses approx-

imated representation for proteins and force fields (reduced models), evolutionary

information from multiple alignments, and fragment assembly techniques. These

methods rely on assembling a protein structure using fragments (obtained from

structural databases) that present homologous affinity with the target sequence.

The simplified models adopted for protein and space representation, allow to com-

pute the problem more efficiently. The solutions generated in the reduced models

can hence be refined with more computationally expensive methods (e.g. molec-

ular dynamic simulations). The motivations on the use of fragment assembly

rely on the intuition that it may be possible to reconstruct a complete protein

structure from a set of possible compatible substructures—selected from proteins

whose conformations are known.

A state-of-the-art predictor is represented by Rosetta, developed by Baker

et al. [Rea09]. This approach has been showed to be successful, during the re-
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cent editions of the CASP, performing as the best ab-initio predictor[RSMB04].

Rosetta’s approach is based on a simulated annealing search to compose a confor-

mation, and a fragment assembly technique to combine substructures extracted

from a PDB-based fragment library.

The approach used in this work is based on the use of the constraint pro-

gramming paradigm. The general idea relies on the use of information, gathered

from different sources—homologies, secondary structure predictions, amino acid

types, etc.—to reduce the computational complexity of the problem by removing,

from the conformational space, those solutions that do not satisfy the addressed

constraints, i.e. the conformations that would result to be biologically manfulness

or irrelevant in entropic terms.

Backofen and Will have made use of constraints over a simple lattice model in the

Dill’s HP-lattice model [LD89, LD90, Bac98a, BW02, BW03, BW01a, Bac98b,

BWBB99, Bac04, BW01b]. In their work they show high accuracy and efficiency

in predicting proteins up to 160 amino acid. The process relies on capturing

information about the possible shapes of the protein region containing all H-

monomers (defined as core shapes) to constrain the search space[Bac98b].

Krippahl and Barahona proposed a constraint-based approach to determining pro-

tein structures compatible with distance constraints obtained from Nuclear Mag-

netic Resonance data [KB02, KB99, KB03]. In [KB03] they provide a constraint

programming approach to protein docking. In their work they prune the search

63



space by ensuring bounds consistency on interval constraints that model the re-

quirement for the not overlapping shapes to be in contact.

The model adopted by the work presented in this Thesis follows the ap-

proach of TUPLES [DDFP11] in which Dal Palú et al. presented a declarative

approach to the protein structure prediction problem, that relies on the Frag-

ment Assembly model. Their solution uses a data base of small fragments used

to assembly the final conformation, which is subjected to spatial and geometrical

constraints. They also take account of the secondary structures present in a given

conformation, using specific fragment templates according to the nature of the

local structure.

A novel CP-based solver for protein structure analysis. In this work,

we propose an efficient implementation encoding a constraint solver for protein

structure analysis, using the fragment assembly model. We extend the solution

proposed by Dal Palú et al., using an imperative programming approach (coded

in C), that embeds a declarative logic. In particular we guarantee high modu-

larity in the way the information used to describe a target protein are encoded.

For example, ad-hoc distance or geometrical constraints can be easily added, or

different energy model can be used as optimization functions, without the need of

reshaping the model.

We adopt an equivalent protein model representation and energy function model
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of those proposed in [DDFP11]. In addition we introduce a new concept of special

fragments, that allow the final user to impose any type of geometrical constraints

over a subsequence of the target protein. We present novel constraints and propa-

gators to model interactions among amino acids and parts of the protein. Finally

we design a refined concurrent version of the system to increase scalability. We

show that our approach, in the sequential version, produces computational time

improvements gaining up to 3 order of magnitude when compared to the work

presented in [DDFP11] (see Section 4).
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CHAPTER

FOUR

FIASCO: FRAGMENT-BASED INTERACTIVE

ASSEMBLY FOR PROTEIN STRUCTURE

PREDICTION WITH CONSTRAINTS

This chapter provides a formal description and the implementation details

of an efficient constraint programming framework, targeted in solving the ab-initio

Protein Structure Prediction (PSP) problem via fragment assembly.

The Fragment-base Interactive Assembly for protein Structure prediction

with COnstraint (FIASCO)[BBC+11] is a general constraint solver, implemented

using the Constraint Programming common formalism. We model variables and

constraints aimed at capturing properties of amino acids and local shapes (see

discussion in Chapter 3), and we developed ad-hoc propagators to prune the

search tree by ensuring bound consistency on the constraints that model feasible

protein conformations.
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We show that the our system is able to produce predictions within a

marginal error range for short and medium peptides for which a weak homologies

information are supported. Moreover, we show that our system is in average more

then 3 order of magnitudes faster then a declarative version (TUPLES [DDFP11]).

4.1 Introduction

FIASCO is a novel framework, based on constraint programming, targeted

at studying the ab-initio protein structure prediction via fragment assembly, and

encodes the formalisms described in the previous Chapter.

FIASCO is the product of an intense ongoing research, originally started by

the early investigation of dal Palú et al. [DDP06, DDP07], who presented a CLP

solver, COLA and its imperative version to address the PSP problem on discrete

lattices and a simplified model for proteins representation. In [DDP06] a protein

backbone is identified by the chain of Cα atoms identifying an amino acid and

each Cα is modeled as a CP variable which domain ranges on lattice points. They

implemented constraints, such as, self avoiding walks, distance constraints and

block constraints to prune the search space. In later works dal Palú and coworkers

also explored fragment assembly techniques via Constraint Logic Programming

[DDFP10]. In [DDFP10] the problem of assembling fragments into a complete

conformation is mapped to a constraint solving problem and solved using CLP.

In this work we present an optimized C implementation, of the CP model
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studied to address to the PSP problem. Our approach uses a simplified protein

representation model, based on a Cα-backbone structure and a side chain centroid

model. This model offers an efficient representation of the polypeptide with a good

spatial representation and volume occupancy approximation.

The prediction of the tridimensional shape of a protein by fragment as-

sembly, is modeled as a constraint optimization problem, subjected to an energy

function evaluation. The contribution of this work is twofold: on one side we

offer an efficient sequential implementation of the solver and the encoding of the

PSP problem in a CSP (in this Chapter we discuss the variable encoding, con-

straints and propagators); on the other hand we investigate the parallelization of

the model, implementing concurrent solvers operating on different areas of the

search spaces. We also implement a distributed job balancing strategy to over-

come at the irregularity of the search space (the parallelization of FIASCO will

be discussed in Chapter 5).

We show that the encoding of the PSP problem using fragment assembly

in a CP based framework, is suitable to solve small and medium protein structures

(< 100 amino acids) when partial knowledge about target protein homologies (or

analogies) is given.
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4.2 Problem modeling

In this Section we describe the constraint framework addressed to the gen-

eral problem of the Protein Structure Prediction, which is encoded as a constraint

satisfaction problem (CSP). This modeling allow us to encode the PSP problem

using the classical formalisms common in the constraint programming paradigm.

The problem is encoded by defining variables over real domains and constraints

over them, and the conformations are generated by searching the space of admis-

sible solutions.

4.2.1 Domain Manipulation

Let us introduce the domain definition and their manipulation operation

as used in FIASCO.

Definition 4.2.1 (Domain). A domain D is described by a pair ~L, ~U ∈ R3, where

~L = (Lx, Ly, Lz) and ~U = (Ux, Uy, Uz).

The above domain encoding represent the minimal information needed to describe

the set of points contained in the cube having the left-lower corner at position ~L

and the right-upper corner at ~U , defined as Box(D) in [Dal06].

The simplicity of this representation pays in the efficiency in handling the

possible values of a variable. Moreover, using a single variable to represent a

three-dimensional point is more effective in terms of consistency checking then

consider each coordinate independently [KB03].
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Using the Box terminology introduced in [DDP06] we introduce the fol-

lowing notation: D is admissible if Box(D) 6= ∅; D is ground if |Box(D)| = 1 (i.e.

~L = ~U); D is failed if not admissible.

Let us introduce the domain manipulation operation:

Definition 4.2.2 (Dilatation). Let D be a domain and h ∈ R+, the domain

dilatation D + h is defined as:

D + h = 〈(Lx − hx, Ly − hy, Lz − hz), (Ux + hx, Uy + hy, Uz + hz)〉

The domain dilatation is used to enlarge the set of possible values for a variable

by 2h units.

Definition 4.2.3 (Union). Let D,E be two domains, the union of D∪E is defined

as:

D ∪ E = 〈min (~LD, ~LE),max (~UD, ~UE)〉

where:

min(~LD, ~LE) = {min(LDx ,  L
E
x ),min(LDy , L

E
y ),min(LDz , L

E
z )}

max(~UD, ~UE) = {max(UD
x , U

E
x ),max(UD

y , U
E
y ),max(UD

z , U
E
z }

Definition 4.2.4 (Intersection). Let D,E be two domains, the intersection of

D ∩ E is defined as:

D ∩ E = 〈max(~LD, ~LE),min(~UD, ~UE)〉
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In terms of modeling, each atom is represented by a (point) variable V , which is

associated to a domain D(V ) = 〈~LD(V ), ~UD(V )〉 representing the set of the possible

values (coordinates) such atom can take. We will use the following notation to

express the same concept: D(V ) = 〈~LV , ~UV 〉.

4.2.2 Modeling: Variables and Constraints

The inputs to the modeling phase is composed of: a sequence S = a1, . . . , an,

where ai denotes the ith amino acid of the primary structure; a set Fstd of stan-

dard fragments, containing the fragments imported from the Assembly DB ; and,

a set Fspc of special fragments, containing the fragments created and manipulated

through a GUI (a java-based graphic user interface for FIASCO).

The constraint model derived from these inputs makes use of three different

types of constraint variables: Point, Fragment and Pair.

Points. The solver generates a list PtαLIST (resp., PtCLIST ) of n variables Point,

representing the 3D position of the Cα atoms (resp., of the centroids). The domain

of a Point variable is described by a pair (~L, ~U), as discussed above.

Fragments. An additional list FLIST of n − L variables of type Fragment is

generated (where L denotes the length of the fragments). The ith element of

FLIST corresponds to the fragment to be used for the tuple γ(ai), · · · , γ(ai+k)

(3 ≤ k ≤ n−L). The possible values for a variable Fi of FLIST are the IDs of the
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tuple:

〈[γ(ai), · · · , γ(ai+k)], . . . , type, Freq, ID〉

where type denotes the type of fragment (standard or special), and γ is the

function that associates amino acids to the amino acid classes defined in Section

3.1.5. This domain is sorted according to the frequency Freq in a decreasing order,

and by listing the special fragments first.

Fragment variables are correlated to Point variables trough compatibility

constraints (discussed in sections 4.2.3.3 and 4.3.2.3).

Pairs. A pair relation between two fragments of type special is defined as a

binary constraint. Each pair is described by a rotation matrixM , and a translation

vector ~v associated to the relative positions of the first fragment involved in the

pair relation. M and ~v describe the affine transformations to be applied to the

second fragment of the pair, in order to couple the two fragments (see section

4.3.2.4 for a more detailed discussion).

In order to model these relations we introduce an additional list PLIST of

m variables (m < n − 3) of type Pair. The ith element Pi of PLIST corresponds

to a pair 〈fa, fb〉, where fa ∈ Fi, fb ∈ Fj (i 6= j). fa and fb are special fragments,

referred, from now on, as the possible choices for the Fragment variables Fi and Fj,

respectively. The possible values for a pair Pi are the triples 〈〈fa, fb〉,Mi,j, ~vj〉,

where Mi,j and ~vj are the rotation matrix and the translation vector used to
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orient the fragment fb to the reference system of fa that minimize the energy

contributions.

4.2.3 Constraints

In this section we describe the constraints used to encode the Protein

Structure Prediction problem. A discussion on constraint propagation is given in

Section 4.3.2.

We model a candidate protein conformation through the use of several classes of

constraints and we categorize them into distance constraints, geometric constraints

and energy constraints.

4.2.3.1 Distance Constraints.

Distance constraints model spatial properties among points in the 3-dimen-

sional space. We first define a formalism to encode the lower and upper bound

constraints on the Euclidian distance between points of the cartesian space, and

then we define the constraints used by the FIASCO solver.

Given a primary sequence S = a1, . . . , an with ai ∈ A, let Vi, Vj be two variables

representing the positions of points ai, aj of the sequence S, d ∈ N and Pi, Pj ∈ R3

be two points of the cartesian space:

δ(Vi, Vj) ≤ d ⇐⇒ ∃Pi ∈ R3,∃Pj ∈ R3, s.t. ||Pj − Pi|| ≤ d (12)

δ(Vi, Vj) ≥ d ⇐⇒ ∃Pi ∈ R3,∃Pj ∈ R3, s.t. ||Pj − Pi|| ≥ d (13)
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We will also use the constraint δ(Vi, Vj) = d, to express the constraints δ(Vi, Vj) ≤

d ∧ δ(Vi, Vj) ≥ d.

next constraint.

∀i ∈ {0, . . . , n− 1}, δ(Vi, Vi+1) = 3.8Å.

Adjacent amino acids in the primary sequence (represented by their Cα) are sep-

arated by a distance of 3.8 Å. This constraint is implicitly expressed in the frag-

ment definition; indeed fragments, being polypeptide subsequences themselves,

are naturally subjected to the next property. Also the application of the fragment

constraint (described below) ensure this property to be held by points modeling

adjacent fragments.

alldistant constraint.

∀i, j ∈ {0, . . . , n− 1}, |j − i| > 1, δ(Vi, Vj) ≥ ALLDIST THSCαÅ.

Two non consecutive amino acids must be separated by a distance of at least

ALLDIST THSCα Å. The alldistant constraint is also applied for Point variables de-

scribing centroids. The value for two centroids that must be exceeded (or matched)

is fixed to ALLDIST THScg Å.

Disulfide bond constraint.

∀i, j ∈ {0, . . . , n}|j − i| > 1, (γ(ai) = s ∧ γ(aj) = s) =⇒ δ(Vi, Vj) ≤ D.
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The presence of disulfide bridges constrained the amino acid involved to be sepa-

rated by a distance of at most D = 6 Å.

compact factor.

∀i, j,∈ {0, . . . , n}, ∆(Vi, Vj) ≤ 5.68n0.38Å.

A diameter parameter is used to bound the maximum distance between

different Cα atoms (i.e., the diameter of the protein). As argued in [FPD+07], a

good diameter value is 5.68n0.38 Å.

4.2.3.2 Energy Constraints

Energy components values are treated as constraints and computed in-

crementally any time a local consistent solution is found. Allowing the energy

components to be computed incrementally provides a significant speedup in the

search for the putative conformations. This follows from that most of the consis-

tent solutions found share many variable’s value with other solutions. The idea

here is to compute the energy components, for those common variables, only once.

This constraint involves a Fragment variable and the relative Point variables

associated to it.

energy constraint. The energy constraint is awaken every time a a Fragment

variable Fi is changed. Let Fi be a fragment involved in the CSP modeling, with
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Vi, . . . , Vj be variables representing points of Fi. The energy constraint involves

the following components:

• cg-cg contribution. The centroid–centroid interaction is computed by

pairing every point involved in the Fragment variable Fi propagating the

constraint, with every other ground point. More formally:

∀k ∈ {i+2, . . . , j−1},∀h ∈ {1, . . . , i+1}∪{k+1, . . . , j−1}∪{j . . . , n−1}

EN CONT CG =
∑
k,h

g(ah−1)g(ah)g(ah+1)ENcont cg(ak, ah) (14)

where g(ai) = 1 if Vi is ground, 0 otherwise.

• Cα-Cα contribution. For Cα–Cα contribution we skip the first three

points of the Fragment variable involved in the constraint, because al-

ready considered in a previous local consistent solution. Analogously to the

centroid–centroid contribution we consider the pairs of every point involved

in Fi, with every other ground point:

∀k ∈ {i+ 3, . . . , j},∀h ∈ {0, . . . , i− 1} ∪ {k + 1, . . . , j} ∪ {j + 1, . . . , n}

EN CONT CA =
∑
k,h

ground(ah)ENcont ca(ak, ah) (15)

• orientation contribution. The energy orientation contributions involve

a pair of three consecutive amino acids (see (11)), hence analogous con-

sideration as the one made for the centroids contact contributions holds.
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∀k ∈ {i+2, . . . , j−1},∀h ∈ {1, . . . , i+1}∪{k+1, . . . , j−1}∪{j, . . . , n−1}

EN ORI =
∑
k,h

ENori(ak, ah) (16)

• torsional contribution. Torsional energy contributions are constituted

by torsional and correlation of torsion component.

∀k ∈ {i, . . . , j},∀h ∈ {i− 1, . . . , j}

EN TORS =
∑
k

ENtors(ak) +
∑
h

ENcorr(ah) (17)

where ENcont cg, ENcont ca, ENori, ENtors and ENcorr are functions associated

to the partial energy components, defined in Section 3.1.6.

4.2.3.3 Geometric constraints

Geometric constraints are those that involve rigid body transformations

during the propagation phase. Given a list of Point variables ~V = V1, . . . , Vk

and a list of tree-dimensional position ~P = P1, . . . , Pn describing the positions

of the Point variables in ~V , a geometric constraint is a k-ary constraint, whose

solutions are assignment of the tree-dimensional points in ~P to the variables in

~V . Following we discuss this class of constraints implemented in FIASCO.

compatibility constraint. Two adjacent fragments are said to be compatible if

the three common points share a similar bend angle according to a given threshold.
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More formally, let fi, fj be two adjacent fragments, with fi = pi, . . . , pm and

fj = pj, . . . , pn, and ths the threshold considered, fi and fj are defined to be

compatible if: ∣∣∣ arccos
( ai · bi
|ai||bi|

)
− arccos

( aj · bj
|aj||bj|

)∣∣∣ ≤ ths (18)

where ai = pm−2 − pm−1, bi = pm−2 − pm, aj = pj − pj+1, bi = pj − pj+2, and

ths = 0.5.

fragment constraint. A fragment constraint is used to correlate a variable

Fragment with the variables Point. A fragment constraint on a Fragment variable

Fi (i > 0) describe a geometric transformation of an element fa ∈ D(Fi) which

is rotated and translated according to the reference system of a previous adjacent

fragment.

pair constraint. A pair constraint is used to correlate a Pair variable with two

variables Fragment, and implicitly with two sequences of variables Point. A pair

constraint P (fa, fb), involving fragments fa, fb, is a geometric constraint used to

transform the fragment fb to the relative system Ra of fa, and to couple fb with

fa according to the pairing operation definitions. To avoid having an expensive fit

operation during the exploration of the search space, both the reference system

of fa and the affine transformations, needed to couple the two fragments, are

computed in the preprocessing phase.
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4.3 Constraint Solving

The constraint satisfaction problem, it is implemented as a combination of

consistency techniques and an assignment+backtrack search procedure that works

by attempting to extend a local consistent solution to a global one. Exploring the

complete space of all putative solution is computationally very expensive (see

discussion in Section 3.2). The idea behind constraint propagation is to make

the CSP more explicit so that backtrack search commits into less inconsistent

assignments by detecting local inconsistencies earlier.

4.3.1 Searching solutions

The overall structure of the search algorithm used by FIASCO is shown

in Procedure 2. This algorithm alternates constraint rules iteration (discussed in

the next section) with a labeling step. The rules iteration step is performed by

the AC-3 procedure (as showed in Procedure 3).

The selection step selects a variable F ∈ FLIST or a variable P ∈ PLIST

representing the next fragment to be placed in the cartesian space. A Pair variable

P over fragments Fi, Fj is selected only if the search procedure tries to extend a

local consistent solution containing a choice for Fragment variable Fi.

According to the selection strategy, the variable selected is the one that

satisfies the leftmost order—the non-labeled variable satisfying the compatibility

property with the rightmost variable placed—, or the pair-first property—the
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non labeled Pair variable satisfying a pair relation with some Fragment variable

already ground. The instantiation step assigns every value f ∈ D(F ) to the

variable F , or equivalently every value f ∈ F referred to the second element of

the pair P . An instantiation I of a value f of D(F ) is local consistent iff I is

valid (I[f ] ∈ D(F )) and ∀c ∈ C with V (c) ⊂ F, I[V (c)] satisfies c. If the

instantiation happens to be local consistent, the propagation step will result in an

assignments of the point variables associated to F . The AC-3 procedure ensures

Algorithm 2: FIASCO’s search procedure.

procedure: search(V , C );1

if FLIST = ∅ then2

return SUCCESS;3

select Fj from FLIST or Pi,j from PLIST ;4

// Fj has length l and models Point variables Pj , . . . , Pj+l;5

foreach f ∈ D(Fj) do6

instantiate value f on Fj;7

if the instantiation of f on Fj is locally consistent then8

AC-3(C ∪ {Fj = f}, FLIST );9

status=search(FLIST r {Fj, . . . , Fj+l−3},C );10

if status 6= FAIL then11

return status;12

else13

backtrack;14

bounds consistency by propagating constraints. In other words it guarantee every

value in a domain to be consistent with every constraint by removing those values

that would cause inconsistencies.

The general structure of a propagator takes a constraint c ∈ C and, for each
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variable V it involves, and each value x ∈ D(V ) checks if there exists a support

on c for x. If such a support is not found, x is removed from D(V ). Shrinking

the domain of a variable is flagged (and detected in the AC-3 procedure). An

inconsistency arises when all the possible values in D(V ) do not satisfy c (and

hence D(V ) = ∅).

The AC-3 procedure uses a queue Q which contains only constraints in-

volving those variables that have been flagged by the constraint propagation effect

of some propagator. The procedure terminates whenever constraint propagation

is not able to restrict any domain, or in the case it detect an arc inconsistency.

The general structure of the algorithm is given in Procedure 3.

Algorithm 3: Arc consistency procedure

procedure: AC-3(C ,V );1

Q← {(Vi, c) | c ∈ C , Vi ∈ V };2

while Q 6= ∅ do3

select and remove (Vi, c) from Q;4

apply propagator associated to c;5

if D(Vi) has been modified then6

if D(Vi) = ∅ then7

return false8

else9

Q← Q ∪ {(Vj, c′) | c′ ∈ C ∧ c′ 6= c ∧ Vi, Vj ∈ V (c′) ∧ j 6= i;10

The backtrack procedure allows to correctly explore the space of all puta-

tive solutions, by restoring the modifications caused by the instantiation of the

value f on variable Fi. It is employed whenever an instantiation makes the CSP
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inconsistent, or in the case all the values of some variable’s domain have been

instantiated.

4.3.2 Propagation and consistency

Constraint propagation embeds the reasoning explicated by the constraints

defined in Section 4.2.3, by explicitly forbidding values or combination of values

of variables involved in some constraint that cannot be satisfied.

The constraint propagation rules employed in this work are based on domain-

based rules iteration. For each constraint c ∈ C, the propagators apply a set of

reduction rules with the effect of shrink the domain of the variables involved in

c by removing those values that would not be contained in a tuple satisfying c.

Reductions rules are sufficient conditions to rule out values that would make a

local solution inconsistent. We also guarantee that every assignment satisfies the

local consistency property. This property characterizes necessary conditions on

values to belong to a solution.

As follows, we present a discussion on the implementation details of the prop-

agators employed during constraint propagation. Each rule is associated to a

constraint definition (given in Section 4.2.3).

4.3.2.1 alldistant propagator.

The alldistant constraint is propagated according to the following proce-

dure. Let Vk be the Point variable that has caused the propagation of the alld-
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istant constraint during the consistency phase, and let Pα
k = (xk, yk, zk) be the

position associated to the variable Vk (recall that Vk must be ground). If every

point Pα
i in the neighborhood of Pα

k (〈xk− d, yk− d, zk− d;xk + d, yk + d, zk + d〉)

is such that δ(Vk, Vi) ≤ d (here d = 3.2Å) the position Pα
k of Point variable Vk is

stored, and the constraint propagation is said to be successful; otherwise the con-

straint is not satisfied and the propagation fails causing a backtrack. The changed

values are trailed in a trail-value stack.

Analogously to Cα’s, centroids positions are subjected to the alldistant constraint,

and they are propagated with the same mechanism described above. Centroids’

alldistant constraint is propagated during the fragment and pair constraint prop-

agation.

4.3.2.2 energy propagator.

The energy constraint is propagated whenever a Point variable, associated

to some fragment is changed, and set to ground. The energy value is computed

summing the components described by the (14), (16), (17), (15), according to the:

Energy = (wcont cg)EN cont cg + (wcont ca)EN cont ca (19)

+ (wcont ori)EN ori + (wcont tors)EN tors

where the weights are defined according to the following values: wcont ca =

wcont cg = 0.5, wcont ori = 2, wcont tors = 1. The individual energy components are

trailed in a trail-value stack.
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Note that the energy components for a local consistent solution are computed

incrementally while exploring the search tree. Most of the time, indeed, different

global solutions share big portions of the local conformations. Incremental com-

putation of the evaluation function allow us to compute the energy components

for a specific local assignment only once.

4.3.2.3 Fragment propagator.

The selection of a fragment, during the exploration of the search tree,

triggers a fragment constraint (in addition to the distance constraints associated

to the Point variables involved in the fragment representation and the energy

constraint). Let Fi = ai, . . . , ai+ki be a fragment of length ki, ~Vi = Vi, . . . , Vi+ki

represent the position of the points of Fi, and let fa be a labeling choice for

Fragment variable Fi. A fragment constraint, associated to a fragment Fi is

woken up whenever the first tree variables Vi, Vi+1, Vi+2 ∈ ~Vi are labeled and thus

the remaining ~Vi\{Vi, Vi+1, Vi+2} are not labeled. These labeling choices determine

univocally the shift vector and the rotation matrix necessary to correctly place

the points of the fragment fa in the new reference system. More specifically, let

Pα
i , P

α
i+1, P

α
i+2 be the Point variables describing the amino acids ai, ai+1, ai+2—

recall that these variables are ground—the effect of the propagation shifts the

rotated version of fa so that it overlaps the position of Vi+2 with the position of

Pα
i+2.
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More formally, let Ri be the rotation matrix which its orthonormal basis represents

the reference system of Fi, and let Mi be the rotation matrix used to best fit the

first tree points of Fi with the points Pα
i , P

α
i+1, P

α
i+2. Let V r

k = R̂i × Vk, with

k ∈ {i, . . . , i + ki} and R̂i = Ri ×Mi, be the rotated fragment associated to fa.

The shift vector ~s = Pα
i+2−V r

i+2 is used to constrain the position of ai+3, . . . , ai+ki

as follows:

Pα
k = ~s+ R̂i × Vk, (k ∈ [i+ 3, i+ ki]). (20)

Note that the first three point of Fi and the Point variables Pα
i , P

α
i+1, P

α
i+2

identify two overlapping planes that are used to properly transform Fi to best

place the common points, and the point Vi+2 is superimposed to the position of

Pα
i+2. Since adjacent points in fragments are naturally subjected to the next con-

straint, the effect of the propagation of the fragment constraint on fa guarantees

that its fourth point Vi+3 is at 3.8Å from Pα
i+2 (next property).

For every three adjacent amino acids whose positions are determined by

the propagation of the fragment constraint, the alldistant constraint for centroids

is woken up and propagated in an analogous way as presented above for Cα’s. In

this case the distance d used is 1 Å.

4.3.2.4 Pair propagator.

Let Pi be a pair variable involving two fragments fa and fb (elements

of the domain of Fragment variables Fi,Fj respectively). Let Pα
i , . . . , P

α
i+ki

and
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Pα
j , . . . , P

α
j+kj

, (j > i + ki + 2) be the Point variables describing the Cα atoms

involved in fa, fb, and let Vj . . . , Vj+kj be the local coordinates for the Fragment

variable Fj. Once the fragment variable Fi is ground, with position Vi . . . , Vi+ki ,

the pair constraint rotates and translates fb according to the rotation matrix Mi,j

and translation vector ~vj computed in preprocessing:

Pα
k = ~vj + (Ri ×Mi,j)× Vk, (k ∈ [j, j + kj]). (21)

where Ri is the rotation matrix describing the reference system of fa.

In order to efficiently handle the geometric transformation, we precompute

the positions of the Vj, . . . , Vj+kj of fb in the reference system of fa. Moreover the

computations for the shift vector ~vj and the rotation matrix Mi,j used to couple

the two fragments is computed in O(1): once the fragment fa has been placed, we

store the rotation matrix and the translation vector in a temporary array (used

in the branch exploration) and use these information to transform fb to the new

reference system according to the (21).

A domain dilation is hence applied to the Point variables Pj, Pj+1, Pj+2, to

allow some degree of freedom necessary to connect Fj with a predecessor fragment.

Namely, the domain of Pk is dilated of a distance d ∈ R accordingly to the

following:

D(Pk) + d = [~Lk − d, ~Uk + d], k = j, j + 1, j + 2.

Here the value of d is 1.8 Å for Cα−Cα distances and 0.5 Å for centroid-centroid
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distances.

For the sake of simplicity, we omit the formal description of the constraints

associated to the centroids. The centroids’ positions are rotated and translated

accordingly, as soon as the corresponding position of the Cα atoms are determined.

4.4 Implementation details

4.4.1 Variables and constraints representation

The set of variables adopted in the CSP is represented by a static C struct

(VARIABLES), that contains:

• An array of Point variables (var point)

• An array of Fragment variables (var fragment)

• An array of Pair variables (var pair)

• An array of 3D-positions for the centroids representation (centroids)

• A real value, modeling the energy value built during the branch exploration.

All the arrays defined in this structure are static, and created during the problem

definition phase.

Each variable is encoded as a C object that contains an identifier idx i.e. the

record position in the variable-type array (according to the type: point, fragment,

or pair); the flags indicating whether the variable is labelled, ground, failed

and changed; the domain representation for the variable; the index of the last
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variable trailed in the value-trail stack lasttrailed, and a list (implemented as a

dynamic array) for the constraints dependencies constr dep, i.e. the constraints

to be checked whenever the current variable changes its values. According to the

type of variable represented the domain is modeled as a static array of FRAGMENT,

a static array of PAIR or as a pair of POINT (upper bound, lower bound) to

represent the upper and lower corner of a point variable box domain.

The possible states of each variable are:

• labeled. Indicates that the variable has been selected, labeled and included

in the search tree. A value of −1 indicates that the variable has not been

labeled; any value grater than 0 denotes a labeling that was made on the

variable. For Point variables it is treated as a flag, while for Fragment and

Pair variables its value indicates the index of the domain element chosen

for the branch exploration.

• ground. For Point variables, it indicates that the variable has a unitary

domain size, i.e. lower bound = upper bound. This case is verified either

by an explicit value assignment or because of application of propagation

techniques. For Fragment variables it indicates that every Point variable

associated to the fragment has unitary domain size. For Pair variables,

it indicates that the first Fragment of the pair is ground and that all the

Point variables from the third to the last, that are associated to the second
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fragment of the pair, have a unitary domain size.

• failed. Indicates that the domain of the variable has become empty.

• changed. Indicates that the variable is in none of the other states and its

domain has just been modified.

When a Point variable is set ground, we store its domain value into a data

structure (referred as grid) that represent a discretized version of the 3D space.

Every cell of the grid is associated to a discrete 3D interval. More formally, every

cell g of the grid G is described by a function: h : N3 → G

h(x, y, z) = (x+
d

2
) + (y +

d

2
)d+ (z +

d

2
)d2,

where d is the grid dimension i.e. the original number of cells present on one side

of the grid.

The grid structure is useful to efficiently verify the consistency of k-ary distance

constraints in local consistent solutions. We employ such formalism to verify

local consistencies of the alldistant constraint: whenever a Point variable P is

set to ground, the alldistant constraint consistency is exploited looking at the

neighboring points Pi of P . That is, all the points Pi such that:

P.x− ε ≤ Pi.x ≤ P.x+ ε,

P.y − ε ≤ Pi.y ≤ P.y + ε,
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P.z − ε ≤ Pi.y ≤ P.z + ε.

where ε = dALLDIST THSCα
d

e. The aim of exploiting such constraints during

the search phase is anticipating the consistency and the propagation effect of the

active constraints.

We carefully calibrated the space such grid should reserve, and we dynamically

allocate more gird cells when needed (e.g. when the conformation folds on those

areas of the grid not yet defined), preventing the deallocation—the maximum

number of cells needed is bounded by the radius linear extension of the target

protein.

A constraint is encoded as a C object and described by an unique identifier

idx, a type that describe the type of constraint it represent, a distance value

dist (used by the application of distance constraints) representing the Euclidean

distance. The list of Point, Fragment, and Pair variables possibly involved in

the constraint are represented trough dynamic arrays: point var, frag var,

pair var, respectively. An additional list of Point variables (caused by point -

var), one of Fragment variables (caused by frag var) and one of Pair variables

(caused by pair var) are stored in the constraint data structure. These lists

are used to store the information about the variable which values is changed due

to the propagation of current constraint, and which will possible cause further

propagations.
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The collection of constraints present in the CSP is represented by a con-

straint store implemented as a dynamic array. At each moment of the search

exploration, the constraint store maintains the constraints to be satisfied in order

to fulfill the local consistency properties.

In order to efficiently handle the consistency procedures, an additional list

of constraints clist is created. This is modeled as a queue and contains all the

constraints to be checked during the Arc Consistency procedure. More specifi-

cally, during the consistency phase, after the modification of a domain of some

variable, the set of constraints involved in possible further propagation operations

is retrieved from the list of constraints (constr dep), present in each variable.

This allow to efficiently add the dependency constraints (the one linked with the

variable changed) to the Constraint Store. Recall that the constr dep arrays lists

the constraints in which the variable is involved. Moreover we introduce additional

lists of constraints (changed point, changed frag, changed pair) that provides

direct access to the constraints involving a specific Point, Fragment, or Pair vari-

able. The variables changed by the application of some constraint—stored in the

lists caused by point var, caused by frag var, caused by pair var of a woken

up constraint—are used in order to efficiently add the constraints to which they

are associated with (stored in the constr dep arrays) to the Constraint Store for

further application of arc reductions during the AC-3 procedure (see Algorithm

3).
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The exploration of the search space is handled by a standard propagation

+ backtrack procedure. To efficiently handle the backtracking procedure, we have

implemented a trail-value stack data structure. Every time a variable is going

to be in the changed state, its value is stored in the trail stack, together with

the variable description. The backtracking procedure is called whenever a domain

assignment is found to be inconsistent or to move to a different branch of the search

tree. The call to this procedure, enforces the restoring of the domain values of the

variables involved in the branch exploration. These values are retrieved from the

trail-value stack (in a reverse order w.r.t. the order in which they were stored).

4.4.2 Search Space

Searching all putative protein conformations can be represented as the

exploration of a search tree. In this abstraction, a path represents the sequence of

possible choices (nodes of the tree) made during the assembly of a local consistent

solution. At each level, the tree branches correspond to the candidate choices

(compatible fragments, or pairs) that can be selected, and describe the domain for

the selected variable. Selecting one of the possible candidates choices is referred,

in the search procedure, as the labeling phase. The edges connecting nodes of the

tree denote the propagation effect of the candidate choice made at the branch

exploration. A solution to the CSP is represented by a complete path from the

root node to a leaf.
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The search procedure (see Algorithm 2) is performed in three main steps:

1. Select a variable to instantiate (variable selection).

2. Guess a value for the selected variable (labeling).

3. Check the consistency of the guessed value and propagate the effect of the

choice.

For the first point we have implemented two variable selection strategies: a left-

most strategy that selects the non instantiated variable with lowest index and a

pair-first strategy to build the conformation blocks marked by a pair relation with

higher precedence. More details about the selection strategies will be provided in

the following Section.

In turn, in the labeling step, the values of the domains of the variables

selected are attempted starting with the most likely choice, or with the one max-

imizing local interaction (when applicable).

At the implementation level, the information related to the branches ex-

plorations is stored in the data structure domain table, a matrix representation

for the explored choices (var domain) associated to every variable selected. The

columns of this matrix represent the variable selected to solve the CSP—associated

to each level of the tree—while the rows identify the domains associated to the se-

lected variables—implemented as a bitmask to represent the status of the possible

variable labeling. In order to allow an efficient retrieval of the list of choices made
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(the path from the root node to the node heading the current subtree) we store the

information about the type of variable selected at each branch (var type), and

the indexes of the variables domain element labelled (label). These information

are, in addition, used to enable a fast reconstruction of the node in the concurrent

exploration of the search space (see Section 5.3).

The information about the path exploration, stored in the domain table,

allow an efficient handling of the backtracking procedure, and an efficient detection

of the completion of a branch. Moreover, this representation avoid the need of

an explicit search tree—siblings nodes are represented only once for every level of

choice.

The effect of the labeling phase results in propagating the constraints asso-

ciated to the labeled variable (whenever the values chosen result to be consistent

with the current local solution). This, in turn, as discussed in section 4.3.2, has

the ultimate effect of determine the position of a set of points in the cartesian

space.

Each step of propagation leads to modifications of the variable domains,

and consequentially of the data structures that represent them. In order to prop-

erly apply the backtrack procedure, we implemented a mechanism that restores

the correct state of computation allowing the search to move to a different branch.

This operation is handled by keeping track of the effect of propagation in a value-

trail stack, and using it to undo the modifications while backtracking. The value
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trailed in the stack include information about Point, Fragment and Pair vari-

ables values, energy components and position of the points in the grid support

structure. These values are restored in the reverse order in which they where

pushed into the stack.

Variable Selection discussion. In this paragraph we report a detailed dis-

cussion about the variable selection strategy implemented in this work. We have

implemented two variable selection strategies:

leftmost strategy. This strategy does not make use of the pair elements. The

collection of Fragment variables is viewed as a list in which its ith element

is the Fragment variable associated to fragments having ai as first point.

This strategy selects the leftmost non-ground fragment variable for the

successive labeling step.

pair-first strategy. This strategy is described in Procedure 4. Let f be the

labeling choice for the previous variable Fi instantiated. There are two

basic cases:

1. The last variable instantiated Fi is of type Fragment and the element

of the domain selected for the labeling phase f ∈ D(Fi) is a fragment

of type special. Note that this case also cover the one in which the last

variable selected was a Pair P describing a relation in which f is the
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second fragment of the pair.

Three cases may occur:

(a) If there exists a relation ρ(f, g) between fragments f ∈ D(Fi) and

g ∈ D(Fj) with variables Fj not yet instantiated, then the Pair

variable P describing this relation is selected (lines 4-5). Labeling

a pair variable will propagate the effect of wakening up a pair

constraint over the point variables associated to Fj as described in

section 4.3.2.4.

(b) The second case is illustrated in lines (6-9) when no Pair variable

can be selected (yet being the PLIST set non-empty). Let I1, . . . , Ih

be the intervals of non instantiated (Point) variables and let de-

note with s(I) (e(I)) the index of the first (last) variable in I.

The search continues by selecting the fragment variable starting

the shortest interval of non instantiated variables containing some

special fragment (that is possibly involved in a pair relation).

(c) If no special fragment can be found in any of the intervals of non

instantiated variables, the variable selection returns a candidate

according to the leftmost strategy (line 11). This case also applies

whenever all the Pair variables have been already instantiated—

PLIST = ∅—(line 15).
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2. The last variable instantiated Fi is of type standard. In this case Fi can

only be a Fragment variable. Again two cases may occur. If there are

Pair variables not still instantiated, points 1b and 1c are re-proposed.

Analogously to the previous case, if all the Pair variables have been

already instantiated the selection returns the variable that satisfies the

leftmost property.

Algorithm 4: The algorithm for the variable selection strategy

procedure: SelectVariable(f ∈ Fi);1

if f ∈ Fspc then // Includes case Fi.type = PAIR2

if PLIST 6= ∅ then3

if ∃g ∈ Fj ∧ g ∈ Fspc,∃P ∈ PLIST s.t. P = ρ(f, g) then4

return P5

else if ∀g ∈ Fspc, 6 ∃P ∈ PLIST s.t. P = ρ(f, g) then6

if ∃Fj ∈ Fspc s.t. j ∈ Ih then7

select Fj s.t. j = minh{j − s(Ih)};8

return Fj9

else10

use leftmost strategy;11

else // PLIST = ∅12

use leftmost strategy;13

else if f ∈ Fstd then14

if PLIST 6= ∅ then15

execute lines: 6–11;16

else // PLIST = ∅17

use leftmost strategy;18

Essentially the pair-first selection strategy tries to label first all the choices

for the Fragment variables of type special, possibly involved in some pair relation.

The rationale behind this choice is the hope in producing the highest constrained
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search space, before trying the more difficult task of “closing the loops” (i.e.

complete that parts of the search space representing the choices of high variability

in a protein conformation, where no homology information are retrievable).

Note that the selection strategy described above attempts to place Pair

variables in a cascade effect: the selection of a pair 〈fa, fb〉 can trigger at the next

step the selection of a pair 〈fb, fc〉 if such a relation exists. The intuition here

is that, multiple pair relations among fragments might denotes the presence of

groups of structures in the target protein, characterized by strong local interac-

tions. These local forces, bestowing high stability to the polypeptide, might give

a strong hint in how the final 3D protein structure looks like. Indeed, once these

blocks have been built, we guarantee the highly homologous conserved structures,

to be positioned optimally w.r.t to their pair mate—recall that the position of the

fragments in a pair are driven-oriented in order to maximize the energy function.

In last analysis, we exploit the homologies information of the special frag-

ments to simplify the CSP by reducing, as much as possible, the number of “blind

choices” to be performed in order to place fragments blocks. Note that, once all

the special fragments have been placed, the remaining choices covers those areas

of the polypeptide characterized by higher degree of freedom (i.e. random coils

and loops).
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4.5 Results

In this Section we provide the experimental results obtained using FI-

ASCO. We propose a test set of 20 proteins, including globular proteins and

viruses, for which a predicted structure exists in the PDB.

In Section 4.5.1 we report the methods and the parameters adopted to configure

our solver. In Section 4.5.2, we analyze the performances of the system comparing

it with TUPLES [DDFP11], a declarative-based solver, which inspired our current

solution. Finally, in Section 4.5.3, we discuss the quality of the solutions by

comparing our predictions with their native state structures from the PDB.

4.5.1 Methods

Assembly DB fragments. Recall, from Section 3.1.3, that a fragment of the

Assembly-DB is a sequence of L contiguous points in R3, and it is used to model

“short” part(s) of a target protein sequence. These elements constitute the build-

ing blocks to assembly a candidate protein conformation and, when additional

information about the protein secondary structure is given, such fragments are

mainly employed to model loops and those parts of a protein characterized by

high variability. The value L, for the fragments generated in the Assembly-DB

is set to be 41. Note that, such setting represent the shortest length it can be

employed, in our model, to satisfy the compatibility constraint guaranteeing the

1Each fragment in Fstd has a backbone composed by 4 Cα atoms.
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presence of an overlapping plane (see Section 4.3.2.3). Using this setting every

selected fragment contributes to model a single point in the construction of a

conformation.

Amino acids clustering. In order to produce a statistically significant analysis

of the PDB, when generating the Assembly DB, we cluster the set of amino

acid A into 9 classes (see 3.1.5). The amino acid clustering classes used in this

work are shown in Table 4.1. The number of tuples of length 4 generated from

the top-500 data-set is 62, 831 and the number of different 4-tuples generated

according to the partition of Table 4.1 is 6561, where 5830 of them are covered by

some template structure. To model the remaining structures, we use a “general

fragment” containing the most statistically relevant elements of the Assembly-DB.

The threshold ε defining the similarity (3.1.8) of two fragments is set to ε = 0.5 Å.

A1 = {Ala} A2 = {Leu, Met} A3 = {Arg, Lys, Glu, Gln}
A4 = {Pro, Asp, Ser} A5 = {Thr, Phe, His, Tyr} A6 = {Ile, Trp, Val}
A7 = {Cys} A8 = {Gly} A9 = {Pro}

Table 4.1: Amino acid clustering classes.

It follows that for fragments of length 4, the sum of squared Euclidean distances

between the components of the two fragments will be within 1 Å.

Variable domain size. The number of different fragment representatives gen-

erated for a given 4-tuple can be huge. For the most recurrent 4-tuples we record
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over 100 representatives. Such values are in direct relation to a Fragment vari-

able domain, and implicitly to the size of the protein conformation search space.

To prevent a huge search space, growth of the search space, we limit the size of

the Fragment variables domains to (at most) 10 elements. According to statical

analysis, such elements are among the top-10 most statistically relevant.

Energy contributions weights. The energy contributions EN CONT CG, EN -

CONT CA, EN ORI, EN TORS, defined respectively in Equations 14, 15, 16 and 17 are

weighted according to the following values:

wen ori = 2.0, wen cont ca = 0.5, wen cont cg = 0.5, wen tors = 1.

The distance within which the centroid contact potential contributions

are maximized, is set to the summation of their radius; the Cα − Cα contact

contributions it is set to 4.8 Å.

Distance constraints. The distance between two Cα atoms, ALLDIST THSCα,

that must be exceeded in order to satisfy for the alldistance constraint is fixed

to: 3.2 Å. For pairs of centroids, the distance ALLDIST THScg is set to 1 Å.

Recall that we use a discretized representation of the 3D space to efficiently

handle the alldistance constraint thought the grid data structure (see 4.4.1).

The grid size d, specifying the number of cells for each dimension is set to d = 128,

and the size cell size is set to 3 Å. That is, for every Point variable P in a cell
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ci,j,k, the consistency of the alldistance property is exploited by looking at the

points contained in the neighboring cells (ci±∆,j±∆,k±∆), and ∆ = 2.

Special Fragments. In every protein tested we specify the secondary structure

information as defined in the corresponding PDB report. We model the subse-

quence corresponding to such predictions by the use of user defined (or special)

fragments. However it is important to note that the tested proteins are not in-

cluded in the top-500 database used to generate the Assembly-DB.

For the experimental results, discussed in the following Sections, each com-

putation was performed on an Intel Xeon E5335 2.00GHz (using a single processor

core) with 4096 KB of cache size. The operating system is Linux, distribution Cen-

tOS release 5.2, and we compile the code using g++ 4.1.2 with theO3 optimization

flag.

We evaluate 20 proteins with known conformation from the PDB database,

and perform an exhaustive search of 2 days.

4.5.2 Efficiency

The aim of this section is to evaluate the efficiency of our solver in terms

of computational time. We do so by comparing FIASCO with TUPLES, by Dal

Palú et al. [DDFP11].

Recall that FIASCO is the imperative (C) extension of TUPLES. A fair

comparison is ensured in terms of model and search strategies adopted.
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The test set chosen for this evaluation, is the one provided in [DDFP11],

and we use the original results [DDFP11] of TUPLES for a direct comparison. We

need to point out that for the experiments showed in [DDFP11], TUPLES has

been tested on an AMD Opteron 2.2GHz machine, whilst our system runs on a

2GHz CPU. For a fair evaluation, this computational power gap should be taken

into account. However, since the computational power adopted to test our system

is strictly smaller then the one used by TUPLES, we will ignore such differences,

still being able to deliver a substantial speed improvement.

Table 4.2 reports the results obtained for 9 proteins of length ranging

between 12 and 60 amino acids, for which an exhaustive search of 2 days was

performed. The first two columns indicate the protein name and length. For

each solver we report Rmsd, Energy and time obtained by the generated solution.

The execution times (expressed in seconds (s) or minutes (m)) indicates the time

needed to compute the best solution within the a fixed 2 days time limit (according

to the specifications of [DDFP11]).

In both comparisons the knowledge deriving from secondary structure pre-

dictions is available and modeled as a constraint.

As a first consideration we would like to point out that, conversely from

TUPLES, FIASCO was able to exhaustively explore the search space for the

majority of the protein considered (only the tests for 2IGD and 1ENH were in-

terrupted due to time limit). In every test executed, FIASCO outperformed TU-
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Protein FIASCO TUPLES
PID N RMSD Energy Time RMSD Energy Time

1KVG 12 3.42 -11.66 0.05s 2.79 -59.122 9.88s
1LE0 12 4.16 -18.51 0.04s 3.12 -45.575 3.20s
1LE3 16 4.28 -81.62 0.28s 3.90 -69.017 218.79s
1EDP 17 3.34 -38.73 0.38s 3.04 -112.755 73.00s
1PG1 18 2.82 -14.85 0.23s 3.22 -109.456 11.00s
1ZDD 34 3.75 -229.17 0.75s 4.12 -231.469 1290m
1VII 36 5.04 -241.18 0.148s 7.06 -263.496 1086m
2GP8 40 5.08 -296.90 0.91s 5.96 -266.819 5794.88s
2K9D 44 5.59 -356.92 17.31s 6.99 -460.877 1453.44s
1ENH 56 5.58 -634.43 72m 5.10 -467.014 142m
2IGD 60 7.27 -672.50 1992m 16.35 -375.906 2750m
1AIL 73 6.67 -823.18 6.2m 9.78 -711.302 301m

Table 4.2: Efficiency results

PLES, in terms of computational time, being able to generate optimal solutions

(or sub-optimal solutions for targets 2IGD and 1ENH) remarkably faster. The

estimated average computational time gains are within 3 orders of magnitude.

The cause of such speedup are attributed to the careful imperative imple-

mentation (C) on which FIASCO relies.

4.5.3 Quality of the results

In this Section we analyze the predicted structure by a comparison with

their native state retrieved from the PDB data base. The accuracy of a prediction

is evaluated in terms of RMSD (see Equation (7)) where only the backbone atoms

are taken into account.

For this experiment we return the set of the 10-best predictions in terms

of energy minimization, and we report the best conformation found (in terms of
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RMSD). According to our observations the top-10 solutions constituite a good set

of representatives for the portion of the search space explored.

In Table 4.3 we report the RMSD of the best conformation, among the

top-10 predicted by FIASCO within a 2 days computational time limit. For every

protein analyzed, we also report the energy associated, the time needed to generate

the reported solution, the value (min RMSD) obtained using the RMSD as the

COP objective function, and the number of user defined fragments Fspc given in

the input specifications.

PID N RMSD Energy Time min RMSD N Fspc

1KVG* 12 4.10 -14.27 0.59s 2.26 0
1LE0* 12 4.16 -33.06 0.04s 1.28 0
1KVG 12 3.42 -11.66 0.05s 2.26 2
1LE0 12 4.16 -18.51 0.04s 1.28 2
1LE3 16 2.99 -12.45 0.06s 1.93 2
1EDP 17 3.34 -38.73 0.38s 2.39 2
1PG1 18 2.82 -14.85 0.23s 2.21 2
1EN0 25 3.04 -83.51 0.07s 1.66 2
1ZDD 34 3.59 -194.28 0.04s 1.73 2
1VII 36 3.75 -227.61 0.24s 2.12 3
1E0M 37 6.15 -274.18 73,616s 3.79 3
2GP8 40 5.08 -296.90 0.91s 3.90 2
2K9D 44 5.59 -356.92 17.31s 1.85 3
1ED0 46 9.70 -408.07 2432s 3.92 4
1ENH 56 5.58 -634.43 72m 3.26 3
2IGD 60 7.27 -672.50 1992m 5.84 4
1H40 69 8.35 -836.91 20,626s 3.73 4
2ZKO 70 4.77 -840.46 109.22s 2.73 3
1AIL 73 6.67 -823.18 376s 2.86 2
1AK8 76 9.54 -738.64 114,3s 5.45 4
1DGN 89 7.74 -991.41 3851.6 3.62 5
1KKG 108 10.79 -1,266.04 13,2s 9.33 4

Table 4.3: Qualitative results
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It is interesting to note that, for small proteins an accurate prediction

can be given (within 3 Å) and for medium size proteins the given predictions

often ranges between 3 Åand 5 Å. This indicates that the best solution returned,

describes well the folding of the polypeptide, preserving the dominant structural

characteristics. In Figure 4.1 we show the predicted structure for protein 2ZK02,

together with the user defined fragments inputed (respectively displayed at the

bottom and top of the Figure). The native structure is displayed in blue (darker

color) and the predicted one is in orange (lighter color). In the fragment block

representation we show the protein primary sequence together with its secondary

structure prediction. Each yellow box denote a user defined fragment Fi ∈ Fspc,

selected according to the suggested secondary structure prediction, and defines a

geometric constraint. From the representation displayed it is possible to observe

that the structural traits of the protein are well captured. On the other hand,

the areas characterized by the loops and random coils are not often modeled with

high accuracy, negatively affecting the whole predicted conformation.

We also report two de-novo prediction (no additional information used in

terms of secondary structures) for proteins 1KVG and 1LE0 (indicated with a “*”

in Table 4.3). Even in these experiments, we observed that the main characters

of the chains (e.g. secondary structures) can be reconstructed with good affinity,

2Chain A of Structural basis for dsRNA recognition by NS1 protein of human in-
fluenza virus A.
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F1 F2

F3

1.5. RESULTS

Figure 1.1: 1AIL: native structure in blue (darker) predicted structure in
oragne (lighter).

Figure 1.2: 2ZKO: native structure in blue (darker) predicted structure in
oragne (lighter).

F 1 F 2

F 3

Figure 1.3: User defined fragments (Fspc) for proteins 2ZKO (top).

27

Figure 4.1: 2ZKO user defined fragment (top) and structure prediction (bottom). The
native structure is displayed in blue (darker) and predicted structure in orange (lighter).

using the current fragment set, although the most variable parts of the proteins

can difficultly be captured. At a first glance this may be interpreted as a weakness

of the fragment set employed for the predictions, in that does not provide a good

structural coverage. Interestingly, in a successful investigation, we observed that in

the vast majority of the cases, the Assembly DB suffices as a provider of structural

information to build a good final conformation (i.e. one that is close enough to

its native state). In such experiments we set the constraint optimization problem

to minimize the RMSD measure rather then the energy function. The results are

reported in the penultimate column of Table 4.3. It is possible to observe that, the
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best structure are predicted with an error ranging within 1–2 Å for small proteins,

and 2–3 Å for medium size proteins. This implies that a good solution to the

problem exists in the search space generated.

The source of the lack of high accuracy in modeling the loops, could find

its roots in the use of the approximated protein representation and in the energy

model adopted. In particular the latter, is accurate in capturing the proteins

substructures occurring with high frequency in nature (e.g. secondary structures),

but unconditionally packs those protein regions characterized by a higher flexibil-

ity. These regions shall be characterized by a less stability in terms of free energy

(weaker bonds are formed) and consequentially they should not be tightly packed

as the rest of the sequence does.

Investigations in these aspects is object of future works. We plan to build a loop

closure model relying on statistical considerations and on the topology of the

super-secondary structures connected by such loop [Lau04, FFOF06, TBOdB09].

Moreover, a migration to a full atom model for protein backbone representation,

would reflect in a more accurate fragment set to be used by the assembly proce-

dure, and a more refined energy model.

An additional observation needs to be provided for the prediction of pro-

teins 1GP8, 2IGD and 1KKG. In these tests the search space generated is re-

markably large due to the branching factor. Indeed even minimizing the RMSD

measure does not provide predictions that are close enough the native state in the
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fixed computational time.
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CHAPTER

FIVE

FIASCO: A PARALLEL AND MULTITHREAD

SOLUTION

In this chapter we explore the use of high performance computing

solutions to enhance the performances of FIASCO and improve the quality of the

results.

In Section 5.1 we describe the model adopted in the parallel investigation.

In particular, we exploit an MPI-based cluster distributed solution, in multi-core

platforms with a thread-based approach (described in section 5.2). In Section 5.3

we focus on the scheduling and communication techniques on which FIASCO’s

parallel system relies. In section 5.4 we discuss the main techniques used to exploit

an efficient load balancing strategy. Finally, in Section 5.5 we present a discussion

on the efficiency of the new framework and its scalability.

We show that the use of concurrent constraint solvers, in the context of

fragment assembly, allows to exploit the analysis of proteins of size up to 300
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amino acids.

5.1 Parallelization of FIASCO

The process of exploring different choices of fragments allows us to view

the space of all the putative conformations as a search tree; the nodes of the tree

represent points of choice (e.g., choice of the fragment for a given small amino acid

sequence) and the creation of a conformation for a primary sequence corresponds

to the exploration of a path from the root node to a leaf of the tree.

In order to speedup the process of exploring the search space, we developed

a parallel version of the constraint solver. The approach introduces a number of

concurrently operating constraint solvers—from now on referred to as agents—

each operating on a different subtree of the search space.

5.1.1 Concepts of search parallelism

The parallel version of FIASCO is based on the exploitation of search paral-

lelism from the search tree [Per99, GPC+01, MSVH09]. The main idea consists in

allowing different agents to explore different subproblems. In the context of reso-

lution of a CSP, expanding local consistent solutions, located at different positions

of the search tree, is an independent task and can be performed concurrently by

the agents without need of communication. The need of communication arises in

the context of relocating a concurrent solver to avoid overlapping subproblems and

in the context of the resolution of a COP (e.g. to propagate bound information).
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We focus on the nondeterministic exploration of the search space by dy-

namically characterizing the decisional branches of the tree, so to be able to fulfill

an efficient rescheduling mechanism. Following the approach of [Per99] we de-

fine accessible parts of the search tree to allow different agents to conduct an

exploration of a portion of the tree. Figure 5.1 illustrates two agents concurrently

exploring different parts of the search tree. The agents share a common path,

that identifies the decisional choices made to head the root node of the target

subtree. An agent that accesses to a specific subtree is in charged of complete the

associated search space exploration autonomously. However, upon request, parts

of the subtree can be shared with other agents.

A1 A2

common path

subtree subtree

Figure 5.1: Concurrent search tree exploration

To efficiently share parts of the tree, avoiding overlapping searches and un-

less re-computations, we propose a fully decentralized solution implemented upon

a two level parallelization: at a cluster level, each agent, possibly executed on a

different processor, communicates to other agents through the MPI protocol; at

a multithread level, we define two main tasks to be carried by an agent (com-
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munication and search exploration) and implemented them as two independent

threads. The cluster based together to the thread-based parallelization results

in a minimization of the overall amount of communications in a clean modular

structure.

5.1.2 Agents

Let us introduce the following notation. Let A be the set of agents used

for a parallel computation, with |A | = n. Denote with Ai the athgent in A (when

a ring topology is considered).

Each agent in A is in charge of conducting two activities, each implemented

as a separate thread:

1. constructing the subtree of the search space assigned to the agent;

2. enabling the agent to relocate to different parts of the search tree whenever

necessary (e.g., whenever the subtree is completed).

The two activities are relatively independent of each other; while the construction

of the subtree is a purely “local” activity (conducted by a worker thread), that

affects exclusively the specific agent, the movement of agents in the search tree

requires communication among them (e.g., to locate unexplored subtrees)—this

is performed by the scheduler thread.

The idea is to keep the overall average amount of tasks, repartitioned to

each agent, as balanced as possible. To do so we rate each task with a cost
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expressing the quality of a task. Such qualitative measure is introduced to give

each agent a coarse portrait of the global search exploration status. Agents use

these information to employ the best1 decisional processes in the load balancing

strategy.

5.1.3 Tasks and Task Queues

The basic unit of interaction among agents is referred to as a task. A task

contains the information related to the decisional choices the worker agent has

performed during a partial exploration of the search tree and it can be viewed as

a path from the from the root node to a node rooting an unexplored subtree.

To describe a task, we adopt the minimal information, to be used by a

worker, to locate a specific unexplored subtree, i.e. the list of the variable selected,

together with their type, labeling choice, and explored domains, that are made

during a the generation a partial consistent solution.

In the context of concurrent search space exploration, a challenge is to

resume the search of a constraint solver on an arbitrary unexplored subtree, en-

suring a low overhead. This can be seen as the problem of efficiently handling a

path reconstruction.

The structure of the tasks generated in FIASCO, allows a solver to recon-

struct the path from the root node to the node rooting the subtree to explore,

1According to the perceived knowledge of other agents task cost.
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simply by enforcing the chain of choices for the variables values, as specified in the

task description. Note that these labeling choices are performed without enforcing

the bound consistency checks and by delaying the propagation of the constraints

woken up, as late as possible: e.g. right before starting the actual exploration of

the subtree.

We define two types of tasks, based on the amount of additional informa-

tion and actions required to an agent in order to start the execution of the task

(i.e., construction of the corresponding subtree). This concept is referred as task

heaviness.

Definition 5.1.1 (Heavy Task). A task that is missing the runtime information

(constraint store, value-trail stack, constraint status, variable domains, etc.) on

the path from the root node, is defined heavy task.

An heavy task requires a reconstruction of the path from the root node,

before the exploration of the subtree associated can begin.

Definition 5.1.2 (Light Task). A task for which the runtime information on the

path from the root node is already available is defined light task.

Figure 5.2 shows a schematic representation of the task heaviness in terms of the

information contained in each class of tasks. In particular, an heavy task contains

exclusively the description of the explored path, while a light task supplement it

with the internal constraint solver information.
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Constraint	Store

||V2-V1||>0.4
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pair F1, F3

+

Heavy Task

Light Task

Figure 5.2: Heavy and Light task description.

To efficiently handle the different type of tasks, every agent in the pool has

access to two task queues, differentiated in the nature of task they contain. Let

denote with QH and QL the heavy and the light task queues respectively. QH

represent a set of nodes received from other agents, while QL is represented by a

structure that describes the ongoing exploration of a subtree.

5.1.3.1 Task Description

Due to the irregularity of the search tree structure, we implemented a dy-

namic load balancing strategy that uses distributed information on the exploration

state of each worker agent.

In order to exploit the information used in the dynamic load balancing

strategy, we introduce a qualitative description of a task. The main idea is to

capture information characterizing the difficulty of a task, and how long it is

believed a task will keep a worker busy. In last analysis, these information are
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used by every agent in A to select the best area of the tree where to relocate

(when needed).

In the following paragraphs we discuss the individual components used to

qualitatively describe a task.

Load. We introduce two descriptors, lw and ls, representing, respectively the

level of the subtree from which an agent has started/resumed its exploration,

and the level from which an agent could give away some task to serve incoming

requests.

According to the position of ls in the search tree w.r.t. its height, we are able to

guess the heaviness of the task in terms of the number of nodes to be explored in

order to find a solution.

This concept is referred in our description as the load of a task2. The task load

applies to the intuition that the more ls is close to the root node, the largest

(unless branch and bound) is the subtree described by such task. Analogously,

when ls is close to the maximum height of the tree, inverse consideration hold.

Difficulty. Let define WM and Wm as the maximum and minimum height of the

tree explored by the worker, within a fixed window history (i.e., a certain number

of visited nodes). Observing the difference between the maximum and minimum

2Note that a task is the collection of the information to be given away to serve
incoming task requests.

117



level WM−Wm, in a fixed window size, we are able to capture the pace at which an

agent proceeds in the vertical exploration of tree. We use an exponential moving

average to smooth out short-term fluctuations and highlight longer-term trends,

defined by the followings:

WM(t) = α WM + (1− α) WM(t− 1) (22)

and

Wm(t) = α Wm + (1− α) Wm(t− 1) (23)

where WM(t) and Wm(t) are the average maximum and minimum levels explored

at a time t, and 0 ≤ α ≤ 1. In our experiments we found that a good value for

alpha is 0.3.

Availability We introduce the concept of availability to describe how rapidly

the available (light) tasks will be consumed by the current agent. With this

descriptor we intend to capture the probability that the tasks present in the LQ

will be still available to serve an incoming task request.

Let Na be the set of nodes that can potentially be given away to serve a single

incoming request, i.e. the non explored siblings of the node at level pointed by

ls. Note that the distance between ls and Wm(t) describes the distance between

the next level from which it is possible to take tasks to give away and takes

into account the average number of backtracking moves performed during the
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exploration of current subtree. Intuitively, this quantity represents an estimation

on how quickly the nodes in Na will be consumed by current worker agent.

The concept of availability of nodes to give away, is defined by the following:

max (0, Wm(t)− ls) (24)

The more ls is far apart from Wm(t) the longer we expect the choices in Na to be

available to serve incoming task requests.

Combining the arguments presented above, we are able to model a qualita-

tive description of the task, currently being executed by some agent, with respect

to the number of nodes it will be able to give away to fulfill an incoming request.

Let κ : 〈N× R× R〉 → R, the function κ(ls,Wm,WM) is defined by:

|Na|
(
wl
(
1− ls

H

)
+ wd

(max (0,Wm − ls)
H

)
+ wa

(max (0,WM −Wm)

H

))
(25)

where wl, wd, wa represent respectively the weights for task load, difficulty and

availability, and H is the maximum height of the search tree. Later in the text

we will use an abuse of notation for the task cost related to an agent Ai, by the

expression κ(Ai). Note that all the factors in the equation (25) are normalized to

the size of the problem (i.e. the number of decisional choices made at each branch

of the tree).

This concept is also referred as task cost in the following Sections.
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5.2 The multi-thread model

The multi-thread model adopted in our parallel solution, relies on two types

of threads: workers, and schedulers. For every agent Ak ∈ A , we indicate with

Wk(Sk) its worker (scheduler) component.

5.2.1 Worker

In the FIASCO multi-thread model, each worker thread is in charge of

exploring the portion of the search tree to it assigned. Based on the nature of the

task, when a worker resumes its search exploration, one of the following scenario

may occur:

1. If a light task is selected, the worker simply starts the search procedure

(described in Section 4) from the level rooting the node ending the path

described by the selected task.

2. If an heavy task is selected, before being able to start the exploration of the

subtree, the worker needs to employ a task reconstruction procedure (Algo-

rithm 5) to explicit the labeling choices expressed in the task description.

The overall structure of the path reconstruction procedure is described in Algo-

rithm 5. Given an heavy task T ∈ QH , the algorithm selects every pair of variables

and associated values (V, v) from the variable list T.VLIST , stored in the task de-

scription (line 6). The variable type (point, fragment or pair) is identified by
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additional information carried in the task representation. The values for the se-

lected variable are assigned without requiring bounds consistency checks (line 7),

since the path being explored is fruit of an earlier investigation of some constraint

solver in A . It follows that the instantiation of each value is local consistent

among all the choices of the path T .

In line 8, the constraint associated to the instantiated variables are silently acti-

vated. In other words, the constraints c involving the variable V are added to the

constraint store Q, by taking into account that there is no need to verify the pres-

ence of a support for c in the domain of every variable it involves—the constraint

propagation is delayed.

The condition of line 2, ensures the path described by the task T to be

constructed; when such condition is verified, the rule iteration step is performed—

by the AC-3 algorithm discussed in Procedure 3—ensuring the propagation of all

the awaken constraints and the correct initialization of the constrained search

space. A call to the search routine (line 4) resumes the worker exploration on the

subtree described by the received task.

After the search exploration is resumed, we guarantee the presence of some

light tasks in QL, unless the subtree being explored results to be too small—i.e.

the level rooting such subtree is deeper then the threshold Θmax expand.

This light task queue population is efficiently handled by updating the

worker level (lw, introduced in Section 5.1.3.1). Figure 5.3 shows how this proce-
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Algorithm 5: FIASCO’s path reconstruction procedure.

procedure: path reconstruction(task T );1

if T.VLIST = ∅ then2

AC-3(C , T.VLIST );3

return search(C , FLIST);4

select (V ar, val) from T.VLIST ;5

instantiate values val on V ar;6

Q← Q ∪ {(V, c) | c ∈ C , V ∈ T.VLIST} T.VLIST ← T.VLIST r {V ar};7

FLIST ← FLIST r {V ar};
path reconstruction(T );8

dure is executed when a new (heavy) task T is started. Before going ahead with

the exploration of the subtree described by T , the state of lw is increased of a value

parametric to the position of worker in the tree after the task reconstruction. The

value of ls (scheduler level) points at the root of the subtree of T , and denotes the

position from which an agent could give away some task to satisfy incoming re-

quests. In terms of computational complexity, the effect of generating light tasks,

and pushing them to QL, is executed in O(1). Note that while the horizontal

W

ls

lw

received Task

QL

Figure 5.3: Light task queue population.
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exploration of the search tree advances, the light tasks in QL are consumed by

the worker. In the general picture scheduler and worker compete to acquire light

tasks, in case a task request must be satisfied and QH = ∅. Therefore all accesses

to the light task queue are performed in mutual exclusion.

A worker thread, other than complete the exploration of the search space

assigned, is in charged to update the cost difficulty component used in the cost

calculation—see Equation (25).

This process is carried out by collecting information about the values WM

and Wm (defined in Section 5.1.3.1) at a constant interval rate (set at 1000 nodes

exploration). In addition, for every K > 0 pairs of values collected, the average

moving averages expressed by the (22) and (23) are computed and their values

made available for cost calculation.

The evaluation for the quality of a task, that includes the computation of

other two components (load and availability), is performed by the scheduler thread

to do not overload the worker with unnecessary computations.

5.2.2 Scheduler

The use of a fully decentralized schema, and the consequential adoption

of a dynamic task rescheduling among the agents, arises the necessity of a robust

and efficient communication system. The communication among agents lie on a

protocol that is managed by the scheduler.
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A general outline of the scheduler is given in Algorithm 6. The procedure

handles incoming communications asynchronously, and processes them according

to the type of message and the actual status of the worker (idle–jobless/busy).

Algorithm 6: A general overview of the scheduler algorithm

while ¬ global termination do1

if worker.status=idle ∧ (QH 6= ∅) then2

QH ← QH r T ;3

reactivate the worker on task T ;4

decode incoming message (if any) according to their msg.type;5

if STATINFO timer elapsed then6

compute the task cost and update the statinfo table;7

send msg.type=statinfo to next agent in the ring;8

if worker.status=idle then9

if global termination then10

collect local best-k solution and send msg.terminate to11

next Agent in the ring;

if Msg buffer queue M 6= ∅ then12

process message according to msg.type;13

return global best-k solution(s);14

Among other tasks the scheduler is in charge of fill the (heavy) task queue by col-

lecting tasks from other agents in A , and reactivate a worker exploration. The in-

formation on the status of exploration of the search space of the current worker are

reticulated among the agents, to help the scheduler in the load balancing strategy.

Termination is guaranteed by a suitably modified Dijkstra termination detection

algorithm in a token-ring fashion [Mis83, Mat87, DS80]. Upon termination, the

k−best solutions found by every agent are circulated in a ring model among the

agents in A , and processed, in turn, to return the global k-best solutions. A more
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detailed discussion on the communication schema and the scheduling procedures

is treaded in the next Section.

5.3 Scheduling and Communication

Cluster-level parallelism is exploited allowing concurrent constraint solvers

to work on different branches of the search tree. Due to the irregularity of the

structure of the tree, a dynamic load balancing result necessary to ensure high

efficiency in relocating agents from low quality area of the search space. A dynamic

rescheduling of tasks among agents, involve an intensive communication system

to exchange the information necessary to make the best decision about the worker

relocation.

In the multithread model, an additional level of communication is required

in order to allow worker and scheduler thread to exchange details about their local

states.

In the next sections we will discuss the communication details and the

scheduling techniques used in both level of parallelism.

5.3.1 Thread communication protocol.

In this section we discuss the protocol for the communication between

worker and scheduler. The model adopted makes use of variables, local to the

scope of the agent, to allow the exchange of information between the two parts.

The access to these shared variables is regulated with the classical mutual exclu-
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sion access formalism. The amount of mutual exclusion tests performed in such

communications has been carefully calibrated.

According to the status of the exploration of the search space, we label a

worker as idle, if it is not currently involved in the process of the search space

exploration, and QL ∪QH = ∅; a worker is jobless if it is likely, according to the

task cost evaluation, that the search space exploration will impending terminate

and therefore QL = ∅; finally a worker is said busy if it is actively exploring some

branch of the search tree and it is none of the other states.

The knowledge about the worker state allow the scheduler to undertake

specific actions to guide the overall process of the global search space exploration

employing targeted cluster-based communication.

The definition of a worker state jobless/idle is twofold: on one side

it activate the scheduler in querying a task requests, and on the other side it

report the worker unavailability to generate new task for incoming requests. The

worker state active, allow the scheduler to employ a sub-task generation process,

to fulfill incoming task requests. A discussion on the sub-task generation and load

balancing is provided in Section 5.4.

In a multi-core environment, this protocol allows high modularity: multiple

workers can be controlled by a single scheduler. According to such considerations,

FIASCO can be adapted to best fit different hardware specifications.
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5.3.2 Cluster level parallelization

In order to exploit an efficient parallelization at cluster level, we organize

agents in a hybrid topology by identifying two classes of communications:

• token-based communications uses messages adopting a ring topology, where

data is transmitted sequentially from one ring agent to the next one;

• arbitrary communication do not constrain the message traffic. Data can

flow within any pair of agents in the pool.

For the first class of messages a control token mechanism is necessary to restrict

the access to the media. In this framework the action of sending a message is

regulated by the token passing strategy. Only agents holding the control token

can send the associated message.

W

QL

QH

S
mutex

busy/jobless/idle
task request/task

Figure 5.4: Thread and cluster communication within an agent

The cost of message passing involves the use of an agent internal resources

as well as the occupation of the communication channel. In order to reduce the

127



message traffic in the system during the execution of the parallel problem, we

carefully design a convenient communication protocol and an efficient communi-

cation strategy that uses messages to exchange information and requests among

agents.

Figure 5.3.2 depict an overview of the two level communication protocol

introduced above. Thread based communication acts locally to an agent A, to

guarantee updated information between its worker W and scheduler S , while the

cluster based communication allow message exchange among agents to exchange

local information and manage task requests. In the following Section we describe

the protocol used for an efficient message handling.

5.3.2.1 Messages

Our parallel system uses 6 type of messages to exploit various type of

communications. We provide here a brief description of the message type with

respect their content and use.

• statinfo msg. A message of type statinfo contains the Statistical In-

formation Table (see Section 5.4.2). Such messages are reticulated among

the agents arranged into a ring topology, with the purpose of exchanging

information on the exploration status of the search space. The perceived

knowledge about the global status of the tree exploration helps, in last anal-

ysis, in selecting the more convenient agent to contact for a task request,
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when relocation is required.

• terminate msg. A message of type terminate is sent in a ring fashion

mode whenever the global termination conditions have been detected (the

termination conditions are discussed in the following Section). Prior sending

a termination message, an agent collects the top−k conformations generated

by its associated worker, and encode them into the message data.

An agent receiving a termination message, selects the best−k solution from

the comparison of the conformation received and its own best−k solutions,

and forward the termination message into the ring. Successively the agent

can safetely terminate its execution.

• task req msg. A message of type task req is sent from an agent Ai to

an agent Aj whenever the agent Ai needs to relocate its worker into an

area of the tree being explored by the agent Aj. The selection of the tree

branch, where to attempt to relocate the agent Ai, is performed by taking

into account the perceived3 quality of the subtree being consumed by the

agent Aj.

• task msg. A message of type task is generated in response of a task request,

if the current agent is able to produce a subtask to serve the requesting agent

3The word “preceived” here, is used to stress that the information an agent has
access to, might not be up to date.
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Ai.

A message of type task request contains an heavy task, that will be used

by the receiving agent to reconstruct the path from the root node to the

node rooting such task, in order to relocate its worker in the desired area of

the search tree.

• no task msg. A message of type no task is sent in response to a task req

message, whenever the receiver agent is not able to generate a new task to

fulfill the request (i.e. its the worker status is either idle or jobless).

• ttoken msg. A message of type ttoken is sent to control the actions related

to the reticulation of the termination messages. A ttoken message contains

the token number and color, and notifies the receiving agent about its state

of termination token holder. Such messages are sent from token holder agent

to the next agent in a ring fashion, whenever the local termination property

is satisfied (see section 5.3.2.2).

5.3.2.2 Termination detection.

Recall that FIASCO’s parallel framework is implemented on a pure decen-

tralized system, therefore the termination of the parallel execution needs a careful

treatment. The termination detection scheme used in this work is a variation of

the standard token wave Dijkstra algorithm [DS80]. Let us introduce the following

definitions.
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Definition 5.3.1 (Local termination property). An agent Ak satisfies the local

termination property if and only if:

∀i ∈ {1, . . . , n} statusk(Wi) = idle. (26)

where statusk(Wi) denotes a function that returns the believed Wi status

according to the agent Ak observations in its Statistical Information Table. That

is, the local termination for agent Ai is detected whenever no task requests can

be employed according to the current agent knowledge about the state of A .

Definition 5.3.2 (Global termination property). The global termination property

is satisfied if and only if:

∀i ∈ {1, . . . , n} status(Wi) = idle. (27)

Note that the local termination is a local (w.r.t. the agent) property, i.e.

local termination(Ai) 6⇒ (∀Aj ∈ A local termination(Aj)),

whilst, the global termination is satisfied globally by the agents of the pool:

global termination(Ai)⇒
(
∀Aj ∈ A global termination(Aj)

)
.

The general outline of the algorithm used to detect termination among

agents, is showed in Algorithm 7 that is part of the scheduler procedure (outlined

in Algorithm 6). We assume that the algorithm is running on agent Ak.

Every agent in A is colored either to black or white. Agents who satisfy the

local termination property are colored to white, conversely are colored to black.
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At the beginning a token is assigned the value 0 (ttoken.num) and every

agent is colored to black.

When an agent detects the local termination property (Line 3), it becomes

white (Line 4) and it generate a white token with value 1 (line 9). The token

is passed in the ring and its value incremented any time a process receiving the

token satisfies the local termination property. Note that more that one token

can be generated in the ring, therefore our policy imposes an agent to accept a

termination token only if has value greater then the previous accepted one (Line 5).

This guarantees that only one valid token reticulate among the agents. Since the

information contained in the statistical information table might not faithful reflect

the actual global state of the agents pool, an agent satisfying the local termination

property can be reawakened by receiving new more updated information. To take

account of this condition, a dual-pass ring termination strategy is employed. If

a white agent receives a white token containing value 2n it can detect the global

termination property (Line 12–14). At this stage the agent sends a termination

message, that is reticulated in ring two times: the first time, the message has

the effect of void any other termination token present in the ring (Line 16), and

the second time it trigger the receiving agent to collect the results produced by

the worker (encoded in the termination message) and forward the termination

message into the ring (Line 20–22). If more then one termination message is

generated at the first iteration, we consider valid the one generated by the agent
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with the smallest id (Line 17–18). After forwarding the solutions to the next

process in the ring an agent can safety terminate. The set of best solutions is

returned by the last agent alive (see Algorithm 6).

Algorithm 7: Termination detection algorithm for agent Ak

local termination← 1;1

if (∀Wi ∈ A ) statusk(Wi) = idle then2

local termination← 1;3

Wi.color ← white;4

if recv(ttoken.num) > ttoken.num then5

ttoken.num← recv(ttoken.num);6

if local termination ∧ (ttoken.id = 0 ∨ recv(ttoken.id) = k) then7

if ttoken.color = white then ttoken.num← ttoken.num+ 1 ;8

ttoken.color ← white ;9

send msg.type = ttoken to Ak+1;10

if Wk.color = black then ttoken.color = black;11

if recv(ttoken.num) = 2n then12

term no← 1 ;13

send msg.type = terminate1 to Ak+1;14

if (recv(terminate1.Id) then15

void ttoken;16

if recv(terminate1.Id) > term Id then17

void recv(terminate1);18

else19

if recv(terminate1.term no) < n then20

term no← term no+ 1;21

send msg.type = terminate1 to Ak+1;22

if (recv(terminate1) ∧ term no = n) ∨ (recv(terminate2) then23

collect best-k solutions;24

send msg.type = terminate2 to Ak+1;25

global termination ← 1;26
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5.4 Load balancing

In this section we discuss the main techniques used to produce an efficient

load balancing in the parallel system outlined above.

5.4.1 Partitioning the search space for the initial task

Consider a set of n agents A1, . . . , An ∈ A available for a concurrent

exploration of a search space S. In order to correctly initialize the agents in A ,

assigning them a specific portion of the search space, we require the satisfaction

of the following properties:

1. No overlapping task shall be produced.

2. Every leaf of the search tree shall be reachable by some agent in A .

Note that the two proprieties above can, more succinctly, be described in terms

of partitioning the search space S into a set of sets of tasks T = { ~T1, . . . , ~Tn}.

Noting that |T| = |A |, hence it is possible to define a bijection p : A → T, that

assigns each agent to a specific set of tasks. By definition of partition,
⋂n
i=1 Ti = ∅

and
⋃n
i=1 Ti = S; it follows that the properties (1) and (2), can be implicitly

guaranteed prior existence of such a function p. In last analysis, we can reduce

the former problem to the problem of finding a bijection p to map agents to tasks.

Since a task is represented by a path leading from the root node of the

search tree to the node rooting the subtree to explore, the function p can be
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defined by devising a parallel, coordinated exploration of the tree to lead each

agent with a unique set ~Ti ∈ T. Note that an enumeration for the set of agents

and the set of nodes in the tree is straightforward. It follows that the existence

of a bijection from A to T guarantees that the process of partitioning the search

space among agents can be performed with no need of communication.

The initial exploration of the search tree is executed concurrently by every

agents in A following a modified depth-first search. In this phase, we label each

node with “[a, b]”, with a, b ∈ N and a ≤ b. Such label denotes the set of agents

Aa, . . . , Ab that need to be initialized with some task (prior starting the search

exploration). Such tasks will be generated by recursively expanding the current

node.

At the beginning the entire set of agents is mapped into the search tree

root node, that has label [1, n]. As the search exploration unfolds, the agents are

equally repartitioned among the nodes of the tree. The expansion of a node u

with label [a, b] produces nodes v1, . . . , vk, and the set of agents with id’s in [a, b]

is repartitioned in k nodes as follow:

i. If k ≤ (b−a) (more agents than nodes are found) each agent is mapped into

a node vi by assigning b (b−a)
k
c agents to every node vi and the remaining

agents L ≡ [(b− a) mod k] nodes to the first v1, . . . , vL nodes.

ii. If k > (b − a) (fewer agents then nodes are found) the set of tasks is dis-
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tributed equally among the agents by assigning b k
(b−a)
c task to each node,

and the remaining L ≡ [k mod (b − a)] tasks to the first Aa, . . . , Aa+L

agents.

At the end of this parallel step every agent is mapped with a distinct set

of nodes4, and at the same time it is guaranteed that the assigned tasks have the

shortest possible path from the root node—i.e. they are potentially the largest

tasks that may have been generated by such exploration. Note, moreover that

this procedure generate only light tasks, and as soon as this partitioning procedure

terminates every agent is ready to begin the tasks exploration.

Figure 5.5 illustrates an example of the parallel partitioning procedure

where |A | = 10. The root node has label [1, 10] to indicate that all 10 agents will

share such node in the initial task set. The DFS is executed by all the agents in

parallel; after the first expansion, case (i) applies—the number of agents is bigger

the number of available nodes. From left to right, agents A1 . . . , A4, A5 . . . , A7

and A8 . . . , A10 will be sharing the same path. Expanding the children nodes,

produces an assignment of tasks to the agents light task queue. In particular a

single task is given to all the Agents but A5 and A8, which will be initialized with

two tasks (the ones ending at nodes [5, 5] and [8, 8] respectively) according to case

(ii).

4The set of tasks initially assigned to an agent is represented by siblings nodes
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[1,10]

[1, 4] [5, 7] [8,10]

[1,1] [2,2] [3,3] [4,4] [5,5] [6,6] [7,7] [5,5] [8,8] [9,9] [10,10] [8,8]

A1 A2 A3 A4 A5 A6 A7 A5 A8 A9 A10 A8

Figure 5.5: Parallel partitioning of the search space

5.4.2 Statistical Information Table

Exploring a search space in a distributed and fully decentralized environ-

ment involve a significant amount of communication to ensure a correct load

balancing. Indeed, without a clear knowledge of an arbitrary agent search explo-

ration state, many task request might be addressed to agents that are exploring

a poor area of the search tree and therefore cannot fulfill the incoming requests.

To reduce the amount of superfluous communication we introduce the concept of

a Statistical Information.

The idea is that partial information about the global search exploration

state can direct agents to commit better choices in terms of selection process for

a task request. Intuitively, when relocation is necessary, a good load balancing

strategy would seek to relocate the considered agent in a promiscuous zone of

the search space, where some other agent is actively involved. This description is

mainly captured by the cost function of a task introduced in Section 5.1.3.1.
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The statistical information are held by each agent Ak in the form of table

(referred as T k) constituted of n rows. Each row T k(i) is associated to the agent

Ai ∈ A , and contains the information necessary to exploit the load blanching

strategy. Every row of the table T k(i), carries a flag (idle) referred to the worker

Wi’s exploration state; an identification number (id) of agent Ak; the id (succ id)

of the agent that Ak expect to contact for the next task request (whenever a

relocation results necessary); the cost evaluating the Ak’s task quality, according

to equation (25); a termination code (term code) used to detect the termination

properties. In addition, each T k(i) contains a list of the Ai’s most recent agents

contacted for a task request, referred as the window history, and the set of agents

(agents to serve) that has decided to contact agent Ak whenever they need to

relocate their associated worker in some other area of the search tree.

The Statistical Information table is circulated as a token among the agents

(organized as a ring for this purpose) through a message of type statinfo. A

statinfo message requires the cost of current task exploration to be up to date.

When an agent receives a STATINFO table, it updates its own row, and forwards

it into the ring. The whole process is regulated by a timer to prevent floating

the channel with a big amount of statinfo messages. Once an agent receives a

statinfo message it starts a countdown, set at the value T k.timer, contained in

the table. At the end of the countdown, the table is forwarded to the next agent

of the ring.
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The rate at which the information are circulated is parametric to the search

space exploration status of the agents in A . The idea is motivated by the obser-

vation that when the parallel search starts most of the workers will be involved

in solving some tasks, and, in general, agent relocation is not expected. It fol-

lows that a small amount of information is sufficient to handle this phase. As

the exploration of the search space unrolls, the active tasks will implicitly become

smaller; in this phase, agents relocation is expected at a higher frequency. To take

account these variations, we dynamically update the rate at which the statistical

information are circulated in the ring. At the beginning of the concurrent search,

the value of the T.timer is fixed to 1
n

seconds (with n = |A |). During the parallel

process, any time an agent, willing to relocate, receives two consecutive messages

of type no task, it will decrease the value of the T.timer of a constant factor εt.

This choice is motivated from the fact that the agents to contact for task requests

are selected according to the information contained in the Statistical Information

table. When two consecutive negative replies are received, it can be supposed that

the statistical information, used for the agent selection for task requests, are out

of date. When an agent receive the Statistical Information table, it will select as

countdown the lowest value between its internal countdown and T.timer. This

strategy ensures the reactivity of the system following the evolution of the space

exploration. Note that it is sufficient one reticulation of the Statistical Informa-

tion tables to update the rate at which the information are spread among the
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agents.

Since the termination information is also carried in such tables, at the

end of the concurrent search, only negative answers can be generated to any task

request. Therefore the T.timer will be rapidly decremented to its lowest limit

(set as the estimated time necessary to compute the task cost information5.

5.4.3 A load balancing strategy

In a complete decentralized system an efficient task rescheduling becomes

necessary to balance out the irregularity of the search tree. The concept intro-

duced in the previous Sections allows to exploit a rened load balancing strategy.

Two key features that such strategy guarantees are: to promptly relocate agents

that terminate a local exploration, and to minimize the number of communica-

tions among agents. These two features are in often in contrast: a reasonable

assumption, in a decentralized system, is that the more information is available

to the agent, the more refined would be the relocation of the requesting agent.

In last analysis the load balancing problem can be expressed as the problem

of finding the best position of the tree where to relocate a requiring agent, so to

globally guarantee the minimization of the overall agent’s idle time. We use the

Statistical Information to seek this goal, and in particular we use the qualitative

task description of the active agents, to select the possible agent to contact for a

5Recall that the task cost take account of the calculation of an average moving
average described in section 5.1.3.1
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task request.

In the hereinafter discussion, we use the following notation. Let T k be a

Statinfo Table held by agent Ak (that identifies the agent to relocate). We use

the notation T k(i) to indicate the information relative to the agent Ai, held by

the Statinfo Table of Ak.

The preference order, w.r.t. the best agent to contact for a task request,

is expressed by sorting the T k(i)i∈{1,...,n} for each agent Ak ∈ A , in a descending

order according with respect to the task cost. During the sorting process, we

also take account the agent neighborhood factor. Consider the case when Ak’s

relocation is needed and the cost of two candidate choices for the next task re-

quest, Ai, Aj, differ of some ε > 0. The agent in the closest Ak’s ring topology

neighborhood will be preferred for a task request. To illustrate the rationale be-

hind this choice, assume that the workload of every agent in the pool is highly

balanced, and the statistical information are traveling fast allow sharing similar

statistical data. In a such scenario, if a set of agents require relocation, only the

top ranked agent (or a small subset of top ranked agents) will be selected to fulfill

such requests. As a result, many agents will attempt to contact the same small

set of the selected agents. To avoid such a bottleneck, the neighborhood factor,

helps in taking into account the requiring agent’s neighbors, by assigning them a

higher priority when a the cost function is computed—the neighborhood priority

decreases linearly with the neighbor distance. This formalism is expressed by the
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following: (∀Ai ∈ A )(i 6= k),

κ(Ak) = w1

(
κ(Ak)

)
+ w2

( 1

|k − i|+ 1

)
(28)

where the κ(Ak) is referred to the equation (25), and w1, w2 are weights associated

to the task cost and neighborhood factor.

Whenever an agent receive a message of type statinfo the Statinfo Table

is updated and the successor function selects the next process to contact for a task

request. Note that this step is completed before the table is forwarded back into

the ring.

Prior describing the strategy used to selected the “best” agent to contact

in case of relocation, we need to introduce few definition.

Definition 5.4.1 (Successor). A successor function δ is a mapping from the set

of agents to the set of agents, δ : A → A , that assigns every agent to the “best”

agent to contact in case of task request.

Observe that the successor function is not surjective: an agent Ak can be

the successor of more then one agent in A . This concept is expressed by the

following definition:

Definition 5.4.2 (ATS). Given an agent Ak ∈ A , the set of agents Ai ∈ A s.t.

δ(Ai) = Ak is defined the set of the set of the Agents To be Served by Ak:

ATS(Ai) = {Ai | δ(Ak) = Ai}
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We introduce two properties that the successor function should satisfies:

Definition 5.4.3 (Anti-reflexive property). The successor of an agent Ai cannot

be Ai:

∀Ai ∈ A , δ(Ai) 6= Ai

Definition 5.4.4 (Anti-symmetric property). The successor of the successor of

an agent Ai shall not be Ai. Or equivalently, if the successor of an agent Ai is Aj,

hence Aj’s successor shall be different from Ai:

∀Ai, Aj ∈ A , (δ(Ai) = Aj) =⇒ (δ(Aj) 6= Ai)

The latter property can be relaxed in case no other agent choice results

feasible in A (e.g. when |A | = 2).

The successor function is computed according to the Algorithm 8. The

procedure refers to the cost calculation for agent Ak and requires the T k to be

sorted in descending order with respect to the κ(Ak). The default successor is

chosen by selecting the first element of the sorted T k that is not already present

in the Ak’s window history (Line 1). The while loop (Lines 4–16) is aimed at

checking the satisfaction of the following conditions over the chosen successor

agent:

i. The antireflective and antisymmetric properties for the successor of Ak are

verified in Lines 5 and 7 respectively.
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ii. The conditions in Line 10 ensures the current agent Ak not to be in the

ATS’s set of the successor δ(Ak) selected, and that the size of the agent to

serve set of δ(Ak) to be smaller then a threshold ΘATS.

iii. In Line 12 we ensure that the δ(Ak) is not among the last L−agents selected

as successor by Ak in the previous request.

Note that if no feasible candidate can be found in the whole A , the antisymmetric

property is relaxed, and properties ((ii) and (iii) dropped)—the first agent that

was not satisfying the antisymmetric property is selected (Line 9).

Observe, moreover, that the order to which these conditions are verified

reflect their importance in terms of failure in achieving a valid successor.

If conditions (i, ii, iii) are satisfied the algorithm updates the selected

process in the statinfo table T k, together with its window history and the ATS

set (Lines 22–23). In case no the agents in A is able to fulfill these requirement,

the first agent with the highest cost not in the window history or not having Ak

as successor if returned.

It is important to note that, the key principle of this load balancing strategy

is given by the information carried in the Statistical Information Tables. There-

fore, we take advantage of any communication between two agents, As (sender)

and Ar (receiver), to send updated information (of the sender Statistical Infor-

mation). Whenever a communication message needs to be employed, (for a task
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Algorithm 8: Successor function algorithm for agent Ak

Data: T k sorted in descending order w.r.t. the cost function
sel← mini{i | Ai 6∈ T k(k).wh};1

selfail ← sel;2

check← 0; count← 1;3

while check ∨ count ≥ |A | do4

if k = sel then5

sel ← sel + 1 mod |A |;6

else if k = δ(T k(sel)) then7

sel← sel + 1 mod |A |;8

selfail ← sel;9

else if Asel ∈ ATS(T k(sel)) ∨ |ATS(T k(sel))| ≥ ΘATS then10

sel ← sel + 1 mod |A |;11

else if Asel ∈ T k(k).wh then12

sel ← sel + 1 mod |A |;13

else14

check← 1;15

count← count + 1;16

if count ≥ |A | then17

if k = sel then sel← sel + 1 mod |A |;18

sel← selfail;19

else20

T k(k).succ← sel;21

T k(k).wh← T k(k).wh ∪ {Asel};22

ATS(T k(sel))← ATS(T k(sel)) ∪ {Ak};23

request, a task response, etc.), we append to the original message, the sender in-

formation T s(s). The receiving agent Ar updates its Statistical Information table

by substituting the field T r(s) with the most updated received one.

The idea in this approach is motivated by the fact that the length of the

messages is almost irrelevant, in terms of message-passing cost, when compared to

the channel occupation cost while sending the message. For this reason we adopt

the policy of always send the maximal amount of (updated) information.
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5.4.4 Some Implementation details

FIASCO parallel system has been implemented on a traditional Beowulf

cluster, using InfiniPath MPI and C++ under GCC 4.2.2. Each agent is im-

plemented as an MPI process, and the thread protocol is implemented with the

option MPI THREAD FUNNELED, to ensure that only the main thread (sched-

uler) will make MPI calls (all MPI calls are funneled to the main thread). FIASCO

make uses of Open MPI, version 1.2.7, hence we do not allow a dynamic process

handling.

Every agent is attributed an incremental id starting at 0 and the system

topology, with respect to message passing, is an hybrid topology: all to all for task

request, and ring based for Statistical Information passing and token handling.

All communications are handled asynchronously by the scheduler thread,

allowing the computation to proceed, while waiting for messages from other

agents, or handling the physical resources necessary to send and receive messages.

Such protocol ensures the maximum performances, and reduce the idle intervals.

5.5 Experimental results

In this Section we present some experimental results targeted at testing

the performances and the scalability of the parallel system. We run exhaustive

searches according to the model described in Section 4.

In Section 5.5.1 we test the quality of the parallel system analyzing the load
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balancing, when light work conditions and high fragmentation occurs. For this

purpose we select a test of target proteins, for which a complete enumeration of

the conformational space can be handled within a reasonable amount of time (in

the order of few minutes). We test our system with up to 64 concurrent solvers.

Scalability results are discussed in Section 5.5.2, where we test the system for

those proteins for which, the time allowed in the sequential implementation was

not sufficient to explore the complete conformational search space. We discuss

the quality of the results and computational time gain, when compared to the

sequential results. We refer to FIASCO seq for the tests performed using the

sequential implementation of FIASCO, and FIASCO par, for the test performed

over the parallel version of the solver.

We show that the parallelization of FIASCO, results to be effective, al-

lowing us to tackle longer proteins (100–300 amino acids), and to improve the

quality of the results—when compared to the sequential version—in the analysis

of shorter targets.

Methods. The setting applied to the solver in order to conduct the experiments,

are the same of those used to test the sequential version (described in Section

4.5.1).

For the task cost calculation (see Section 5.1.3.1) we found that good values

for the load, difficulty and availability weights defined in Equation (25) are: wl =
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0.30, wd = 0.1 and wa = 0.60.

The neighboring factor, described by the Equation (28), has been set up with

weights: w1 = 1 and w2 = 2.

We set the threshold Θmax expand = b 7
10
Hc, where H denotes the height of the search

tree. Recall that Θmax expand indicates the maximum depth of the tree from which

a task can be generated—by removing it from the light task queue of a working

agent—to serve incoming requests.

For what concerns with the Statistical Information Tables, we set the size for the

window history set (wh) and the agents to serve set (ATS) to 2, if the number of

agents in A is greater then 8. Such information is relaxed otherwise.

The initial delay time an agent needs to wait in order to send a statinfo mes-

sages to the next agent of the pool, is set to be 0.001 seconds and the time incre-

ment, caused by receiving two consecutive negative responses at a task request,

is: 0.00005 seconds.

5.5.1 Performances

In this Section we analyze the performances of the parallel system. We

target our tests to evaluate the load balancing and the quality of the message

passing strategy adopted.

For this experiment, we use a test set composed of four proteins, suitable

modified in order to allow a complete enumeration of the conformation search
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space in a small amount of time (in the order of 20–1000 seconds). The idea is to

test the system in conditions of high fragmentation and load balancing and when

light work is conduced by the agents in A .

An analysis of concurrent solvers in bigger search spaces is treated in the next

Section.

For each combination of protein and number of agents employed, we per-

formed 20 runs and recorded the average values of computational time, idle time

per process, number of task requests and number of successful rescheduling.

In Figure 5.6 we report the parallel speedup obtained using a number of

agents ranging from 2 to 64. The black solid line represent the theoretical linear

speedup. As it can be observed the reported speedup are close to the linear one,

when a contained number of agents is used. The speedup slowly degrade as the

number of the employed agents increases. This behavior is due to the condition

of high fragmentation characterizing each test.

In another experiment we investigate in the amount of time spent by each

agent in the process of relocating in a different branch of the search tree. The

results are illustrated in Figure 5.7, where we plot in a logarithmic scale, the

percentage of the average idle time per process. From such results it is evident

that a very short time it is consumed in the process of rescheduling—considered as

the interval marked by the instant a worker become idle to the instant in which it

restart the search. These results confirm the strength of our rescheduling strategy.
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Figure 5.6: Parallel Speddup

We would like to stress that in the context of a concurrent exploration, a

decentralized load balancing strategy is essential to smooth out the irregularity

of the search tree. Indeed there is no knowledge about the size of each subtree

in which a relocation could take place—the effects of the propagation are not

predictable apriori.

In Table 5.1, for completeness, we report the detailed results obtained from

the experiments discussed above. In the first column we describe the number of

agents (#A) used in each computation, and for each protein we report the time (in

seconds) recorded to exhaustively complete the exploration of the search space,
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Figure 5.7: Parallel idle time

the percentage of idle time per agent (% Idle), the parallel speedup achieved (P.S.),

the total number of task requests during the parallel computation (#T.R.) and the

percentage of successful rescheduling (%S.R.)—defined as the ratio #msg.task
#msg.task req

.

Note that, in average, each agent requires a relocation 4 to 7 times in

each computation. In this context it is possible to appreciate the accuracy of

our rescheduling strategy while selecting the right agents to contact for task re-

quests. Observing the percentage of successful rescheduling (i.e. the number of

task requests that have being fulfilled in the first reply), it is possible to note

that the global status of the search exploration is well captured by the statistical
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1VII s 2GP8 l
#A Time % Idle P.S. #T.R. %S.R Time % Idle P.S. #T.R. %S.R

1 26.51 0 0 0 – 88.94 0 0 0 –
2 13.93 0.03 1.90 2 1.00 45.14 0.00 1.97 5 1.00
4 6.91 0.10 3.84 12 0.93 23.48 0.02 3.79 10 1.00
8 3.63 0.02 7.30 8 1.00 12.20 0.22 7.29 29 0.97
12 2.29 0.04 11.58 11 1.00 8.32 0.32 10.69 49 1.00
16 1.75 0.06 15.15 15 1.00 5.61 0.75 15.85 51 1.00
24 1.23 0.57 21.55 23 1.00 4.1 1.05 21.69 64 0.99
32 0.87 1.21 30.40 27 1.00 3.21 2.21 27.74 86 1.00
48 0.59 5.20 44.63 46 0.98 2.56 2.66 34.74 92 0.99
64 0.48 9.54 55.00 45 0.98 1.84 2.19 48.28 108 1.00

1ZDD l 2ZKO s
#A Time % Idle P.S. #T.R. %S.R Time % Idle P.S. #T.R. %S.R

1 91.12 0 0 0 – 1856 0 0 0 –
2 46.57 0.00 1.96 3 1.00 933.8 0.01 1.99 5 1.00
4 22.87 0.00 3.98 11 1.00 492.1 0.02 3.77 15 1.00
8 11.81 0.00 7.98 38 1.00 274.1 0.83 6.77 80 0.99
12 8.68 0.01 10.50 33 0.99 168.7 1.93 11.00 84 1.00
16 6.68 0.49 13.64 26 1.00 134.9 1.01 13.76 250 1.00
24 3.86 3.41 23.56 60 0.98 100.6 1.00 18.45 277 1.00
32 3.11 2.15 29.28 91 099 80.33 1.74 23.10 289 1.00
48 2.40 2.45 37.97 152 0.99 52.61 1.84 35.28 332 1.00
64 1.81 3.69 50.59 187 0.96 43.01 2.79 43.15 418 0.99

Table 5.1: Parallel experimental results

information reticulated among the agents.

From the above observations, it follows that the reasons for the speedup

degradation, observed when the number of agents increases consistently, have to

be investigated in the way a constraint solver relocation is handled, or in other

words, in how efficiently a solver relocate to a specific branch of the tree in order

to resume the search. This will be object of future investigations.
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5.5.2 Scalability

The goal of this section is to analyze the scalability of our system. We

analyze a subset of 6 target proteins from the test set used in section of 4.5.3

and 2 additional large proteins (n > 100). The test set is evaluated using 128

concurrent processes, and we impose a computation time limit of 2 hours. We

collected the best-10 solution returned by each agent, and among these, we select

the one that minimizes the RMSD measure.

In order to establish a comparison between FIASCO seq and the FIASCO par,

we introduce an efficiency measure index (gain), defined as the ratio between the

time necessary to generate the best solution in the sequential version, and the time

spent by the parallel system in producing a solution of equal or better quality (in

terms of RMSD).

Table 5.2 summarizes the experimental results collected from the test set, and it

is divided in two sections: the first, is dedicated to the comparison of the parallel

with the sequential version of the solver, while the second reports the best values

generated in each run.

In the “First Improvement” section of Table 5.2 we report the RMSD, the energy

value and the computational time associated to the first conformation generated

that matches or exceeds the quality of the prediction given by the sequential test.

Moreover, for every prediction we report the gain factor. In the “Best Solution”
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Protein First Improvement (2h) limit Best Solution (2h) limit

PID N RMSD Energy Time (s) gain RMSD Energy Time (s)

1E0M 37 6.14 -233.04 17.68 4,165 5.06 -275.05 4,216.7
1ENH 56 5.58 -264.71 419.5 13 5.06 -275.12 4,614.14
2IGD 60 7.09 -244.86 2.42 49,514 5.84 -310.82 305.97
1H40 69 6.92 -304.21 0.476 43,332 4.24 -383.71 559.75
1AK8 76 9.17 -268.14 17.32 6,602 9.17 -268.14 17.32
1DGN 89 5.76 -285.69 37.5 102.66 5.76 -285.69 37.5

Best solution (1d) limit
3L2A 129 3.78 -2,552.77 26,709
3EMN 295 2.65 -7,315.15 19,275

Table 5.2: Computational time gain and qualitative results

columns we describe the RMSD, the energy value and the computational time,

associated to the best solution generated by the test. The last two columns of

Table 5.2 reports the analysis of two large proteins for which it is given a one

day computational time limit. In particular for the target 3EMN X it has been

performed an RMSD rather then energy optimization (refer to Section 6.1.1 for

details).

Observe that the computational time improvements of FIASCO par imple-

mentation w.r.t. the sequential one are promising: exploiting concurrency allows,

in general, to generate solutions, that are qualitatively comparable with the ones

generated in its sequential counterpart, gaining different order of magnitude in

computational time.

It is interesting to note that, in the most of the cases, the speedup ob-

served, are superior that a simple linear progression w.r.t. the number of con-

current agents used in the search. The reason for such a speedup needs to be
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investigated analyzing the differences between the sequential and the concurrent

behavior of the solvers with respect to the areas of the search tree explored during

the computation.

Let’s first focus on the behavior of the solver in FIASCO seq. Given any order

over the solutions space, the search space is exhaustively analyzed producing so-

lutions, for the defined CPS, exploring the leftmost paths first (w.r.t. the given

path enumeration). It follows that, in every local minima reached, the solver will

generate many solutions that are not able to substantially improve the quality

of the already generated conformations. On the other hand in the concurrent

search, given enough agents, a good differentiation—w.r.t. the fragment used to

assembly a conformation—of the explored solutions may be provided. It is impor-

tant the note that different areas of the tree are associated with different degree

of flexibility of specific conformation sub-structures. Moreover, according to the

agent partitioning strategy (see Section 5.4.1) the concurrent solvers branches at

the higher parts of the search tree; it follows that every time a new solution is

generated by some agent in A , there is a high chance that it differs from solutions

generated by other agents with respect to its sub-structural composition.

Therefore, in the comparison of the two implementation, producing qualitative

comparable results in an incomplete exploration of the search space, rewards the

one able to generate the most different set of conformations.

Consider now the prediction for the case of target protein 1ENH. The
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outcome of the parallel test execution results to be poor (approximately 13x)

in terms of gain measure, when considering the number of agents used for the

computation. We shall analyze the reasons behind such result. Note that the

best solutions reported (both for FIASCO seq and FIASCO par) are generated

in about only the 1% of the total execution time allowed. This implies that

such conformations are located in roughly the first 1/100 portion of search space

explored (assuming the absence of many fail nodes at higher rightmost levels of

the tree).

It is likely that the RMSD landscape for such configurations, presents a consis-

tent local minima that is reached in the earlier stages of the exploration—areas

further to the left in the search tree. In this respect, considering the way we par-

titionate the search space, it is to be expected that the parallel and the sequential

exploration would converge to such minima at similar phases. To confirm such

hypothesis, we have tracked the exploration conducted by each agent in A , and

find out that the solution for the target 1ENH, reported in Table 5.2, is gener-

ated by an agent with low id (A6)6; moreover when the solution was generated

we recorded no task rescheduling for such agent. Such hypothesis was also con-

firmed by physically inspecting the sequence of decisional choices made by the

agent generating such solution.

6Recall that in our search space partitioning strategy the smaller is the agent id, the
(roughly) leftmost is the area of the tree it will be in charge to explore.
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The last observation we would like to rise is related to the energetic values

found among the solutions generated by the two implementation of FIASCO. In

fact the energy values returned by the parallel exploration are always smaller then

the one outputted by its sequential counterpart.

First, we shall take into account that the computational time limit imposed to

two systems, is greatly different (2 days for the sequential version and 2 hours

for the parallel exploraiton). In fact when sufficient time is given, the behavoiur

of the search carried by the concurrent solvers will be similar, in terms of energy

minimization, to the one carried by a sequential search (e.g. for the target 3L2A).

However, it is interesting to note, that even when such time limit difference are

taken into account, FIASCO par was able to generate better conformations in

terms of RMSD measure, associated to lower energy values, when compared to

the ones generated by the sequential tests.

In order to understand such behavior we need to inspect the way the con-

formational search space is explored in the two versions of the system, focusing

on the objective function evaluation. Remark that the system outputs a candi-

date solution, every time the energy value associated to the conformation found

exceeds the best energy value recorder during the whole process. Optimizing the

energy values, while proceeding in a leftmost exploration of the conformational

search space, causes the number of solution generated per unit of time to dras-

tically decrease. Clearly, while the search exploration proceeds, the optimization
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function value becomes more and more refined, which implies that the probability

of finding new conformations with better energy associated usually decreases. The

implication here is that the energy minimization does not (exclusively) relies on

a particular branch explored, but more on the chain of events that have lead the

search in a particular status,

This behavior makes the structure comparisons unfear in a context in which

it is difficult to describe structure characterization trough an energy function.

A possible direction of investigation would be to consider a more “targeted”

use of the energy model. Different energy functions may be adopted for different

structures of the protein—assuming that knowledge of such structured is given

in input—or different energy weights could be proposed in various region of the

protein. In our model, for example the torsional contributions weights may be

lowered for the amino acids modeling coil regions (such us loops)

Another idea in which future investigation may be focusing, deal with op-

timizing protein sub-structure first with targeted energetic functions and hence

focus on the whole conformation using a different optimization function to opti-

mize the weaker interaction that stabilize the protein structure in its globally.
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CHAPTER

SIX

ONGOING AND FUTURE WORKS

In this Chapter we present the current stage of the work in

progress and propose different ideas and intuitions for the future directions.

In Section 6.1 we discuss the current work in progress and present prelim-

inary results on two case of study. We apply our work to two sets of unknown

proteins one associated to the Ebola virus and one derived from the study of the

inner ear of the Xenopous laevis.

In Section 6.2 we propose different ideas aimed at achieving further com-

putational speedup and at improving the quality of the predictions inquiring new

constraint and propagators, energy-based branch and bounds, novel heuristics,

and employ the use of specialized structure evaluation functions targeted at mod-

eling characteristic protein regions.
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6.1 Current works and Special studies

FIASCO is an ongoing work, and our current focus is in refining the protein

representation model. The reduced backbone-centroid model is being replaced

with a full atom backbone-centroid representation to predict hydrogen bonds with

more accuracy and allow the use of a more refined energy function. Moreover,

careful experiments on the fragment set in use are being performed. The aim of

these tests is to provide concrete evidence about the structural coverage, at low

RMSD threshold, provided using the current fragment set. We are also planning to

reduce the approximations introduced by the amino acid partitioning introduced

to map the 20 amino acid into 9 classes.

On another side, we are working on the refinement of the pair model.

The idea is to pre-compute the possible interaction between any compatible pair

of special fragment. The intuition is derived by the studies on super-secondary

models[Sin05, KM97, OTdB07, CC98, MBHC95, CH02, BKV00]. It is believed,

in fact, that at the earlier stages of the protein folding, when interactions within

local shapes are stabilized, such structures tend to group together to form well

recognized pattern, called super-secondary structures. We design a model for the

helix-helix interactions and early results show interesting behavior in reaching

local minima (in the RMSD minimization landscape) sharply faster. This implies

that the placements of the blocks, modeled by the pair interactions, guide the
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search avoiding many moves that are not biologically meaningful.

6.1.1 Cases of Study

In this section we report preliminary results on two case of study, in which

we focus on the prediction of unknown proteins structures sequenced using mi-

croarrays, and in the prediction of suitable modified protein structures, targeted

at drug design. The experiments are an ongoing work, and are conducted in close

collaboration with experts in the fields of biology and computational biology; we

tested our solver analyzing the Reston Ebola Virus VP35 Interferon Inhibitory Do-

main [LSF+10] and the voltage-dependent anion channel protein, Xenopus laevis

inner ear [OTT+11a, UCC+08b].

We show that our system is suitable to handle the cases in which specific

homology or structural information on the targets is available.

Reston Ebola Virus VP35 Interferon Inhibitory Domain Ebola viruses

causes lethal hemorrhagic fever in primates (including humans). The Reston

Ebola virus (REBOV) is the only known Ebola virus that is nonpathogenic to

humans[GJ03]. The VP35 protein, is an inhibitory domain, critical for immune

suppression, and in [LSF+10] Leung et al. characterized such domain observing

minor differences from the lethal ZEBOV Ebola virus—overall backbone RMSD

of 0.64 Å[LSF+10].

Taking into account the structural similarities of the two proteins, and the low
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Figure 6.1: REBOV VP35 prediction. The main geometrical user defined constraints
(top) and structure prediction (bottom). The native structure is displayed in blue
(darker) and predicted structure in orange (lighter).

tolerance for sequence variability, the study of the REBOV VP35 IID protein is

highly important in the domain of drug design.

We provide a reconstruction of the REBOV VP35 protein (3L2A), showing

that our tool is suitable at exploiting predictions where sub-structures may be

arbitrarily substituted with ad-hoc built geometrical conformation, or using small

structures form the Assembly-db. Figure 6.1 shows the block structure (top) given

in input as special fragment for the protein structure analysis. The figure shows

the primary sequence of the protein 3L2A, together with the secondary structure

prediction. The special fragments are indicated as F1, F2, F3, and processed as
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a set of geometrical constraints. Note that in the constraint modeling phase we

can emphasize those protein regions in which higher variability (characterizing

differences between REBOV and ZEBOV) is desired. For example we can allow

point mutations in loop regions to observe structural differences from the set of

solutions so generated.

In Figure 6.1 (bottom) we report the best prediction produced, in terms of en-

ergy minimization, superimposed to the native structure. The prediction error

is within 3.78Å, and it is obtained using 128 cores in a computation of 24-hours

computation. The prediction can be further improved by the use of Molecular Dy-

namics refinement as shown in [DDFP11]. In the future works we plan to extend

the protein representation model to a full atom backbone, to be able to generate

more refined solutions and use a more precise energy functions.

Note that FIASCO is inherently able to generate different structures satis-

fying the required constraints imposed on the protein model. This ability makes

it highly suitable to explore possible conformational variations in those regions

believed to control the inhibitory activity. This characteristic makes FIASCO a

suitable tool for biomedical investigations, related to drug design.

3EMN X: voltage-dependent anion channel protein, Xenopus laevis in-

ner ear. In this section we present preliminary results of our effort in adapt-

ing the FIASCO solver for the analysis of membrane proteins essential for in-
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ner ear functions. The inner ear is the sensory organ responsible for detect-

ing sound and sensing changes in both linear and angular acceleration. Under-

standing changes in gene expression as the inner ear develops is a crucial step

in determining genes required for the development and function of this organ

[OTT+11b, UCC+08a, JSP+07].

The novel protein proposed for the analysis is sequenced from genes involved in ion

binding and/or transport in the developing and mature inner ear of the African

clawed frog, Xenopus laevis.

In the earliest stages of this experiment we conducted homology searches,

consisted in comparing the unknown sequence with all the known structures stored

in the PDB, using BLAST[AMS+97], which resulted in 3 proteins with homology

higher then 97%: 3EMN X (e-value 3e-134 ), 2K4T A (e-value 1e-133 ), 2JK4 A

(e-value 7e-133 ). The e-value, represent the probability to get the retrieved

alignment by generating a random sequence, and it indicates that the results

obtained are very reliable.

Moreover we verified the consistency of the core residues using multiple sequence

alignment (ClustalW)[TGH02], to eventually substitute the residues that differ in

the alignments, with structural templates from the original sequence.

For the geometrical constraint modeling, we selected the best results re-

turned by the protein alignment analysis w.r.t. the target protein. The structures

determined are associated to protein sequences: 3EMN X, 2K4T A and 2JK4 A.
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Figure 6.2: 3EMN X prediction. The native structure is displayed in blue (darker) and
predicted structure in orange (lighter).

The fragment set used, ranged from 4 to 100. For this experiment we select to

optimize the RMSD measure (w.r.t. native structure 3EMN X) since a high ho-

mology between the two sequences was detected (≥ 99%) with low probability of

errors.

Figure 6.2 shows the best prediction obtained using three fragment blocks,

modeling the above constraints. In blue (darker color) we show the native struc-

ture of protein 3EMN X (found to have the 99% of similarity with the target

sequence) and in orange (lighter color) the predicted structure. The prediction

was computed using 128 cores, yielding an accuracy of 2.65Å.
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6.2 Intuitions, ideas and future directions

In this Section we propose different ideas aimed at improving our solver in

terms of quality of the predictions and efficiency in generating them.

Energy branch & bounds. Experimental evidence shows that while search-

ing for the best prediction, the solver generates many conformations that are not

biologically meaningful. Recall that the meter adopted to evaluate the accuracy

of a prediction, is the energy function. We plan to develop a branch-and-bound

strategy that relies on the exploitation of the energy function evaluated on local

consistent solutions. Such bound, would help in pruning those areas of the tree

that do not contribute in producing a conformation associated with a lower en-

ergy value (w.r.t the best collected so far). Note that such bound can also be

employed during the concurrent searches. In the parallel search exploration, the

energy values are locally improved by agents working in different regions of the

tree. Allowing the bounds information to reticulate among the concurrent solvers

would help in guiding each agent in performing a “more” global-oriented search

optimization.

Novel propagators. Employing efficient propagators (possibly) enhances the

performances of the system. We plan to supplement the constraint solver with a

new propagator which allows a better exploitation of the geometrical and distance
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constraints. In particular, the novel propagator would help to identify inconsistent

geometries for a chain of fragments to be placed. Such inconsistencies derive from

the assembly of fragments leading in a very constrained region of the search space.

Simulating k-fragment assembly steps, we can identify the possible points reached

by the evolution of the peptide structure. Such information can be used to remove

the chain of fragments that happen to the reach regions already occupied by some

other protein block (placed in some previous assembly step).

Exploiting specialized energy models. The experimental results analyzed

in Chapter 4 and Chapter 5 show that the energy model adopted in this work, is

accurate in capturing the behavior of local interactions shaping secondary struc-

tures and macro blocks. Although the parts of the proteins characterized by a

higher variability are not always well described, influencing the overall solution.

e have noticed that—even though in small amounts—the indiscriminate optimiza-

tion of the energy function, causes an unconditional packing of many areas of the

protein, including those regions characterized by a higher flexibility (e.g. loops

and random coils). In general, it is reasonable to think that the packing of these

regions does not follows the same rules of the one adopted by other more statisti-

cally recurrent structures. Indeed, these regions are more suitable to accommodate

geometrical variations, to optimize the interaction of secondary structures.

It seams plausible that different protein regions fold in a slightly different way,
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mainly according to their local structure.

A possible direction of investigation would be to consider a more “targeted” use

of the energy model. Different energy functions may be adopted to model spe-

cific protein structures and blocks of structures—assuming that knowledge of such

structures is given in input—or different energy weights could be adopted in var-

ious region of the protein. The idea is to shift from a global optimization of the

energy function, to a more localized one, so to accommodate the characteristic

of different protein regions. In this way we can exploit the structural knowledge,

currently used to model geometrical constraints, as part of the interaction model.

New heuristics in loop modeling. The “function” of the protein loops can

be simplistically described as that of connecting regions of secondary structures.

Due to the difficulties of predicting the loop structure, given its amino acids

sequence, we plan to investigate on a loop closure model that relies on statistical

considerations and on the topology of the super-secondary structures that can be

connected by such a loop [Lau04, FFOF06, TBOdB09].

Ad-hoc constraint generation suggestion system. For what concern the

user defined constraint generation, experiments underline that the way protein

regions are partitioned (to produce special fragments) plays an important role in

the result of the final conformation. It is our intention to automatize the system to

suggest the splitting sites for candidates special fragments. This suggestion system
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would help in producing conformations that are structurally closer to the protein

native state, yet, possibly, reducing the computational workload by avoiding some

unnecessary degrees of freedom, in those area of the protein in which homology

information can be used to generate special fragment candidates.
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CONCLUSIONS

In this Thesis we presented a novel framework for the prediction and anal-

ysis of protein structures. Our approach relies on the use of constraint solving

techniques to implement a fragment assembling methodology used to construct

the protein tertiary structure. The fragments are built from a statistically signifi-

cant set of short peptides extracted from the Protein Data Bank, as well as longer

fragments obtained through user observations, homology studies, or secondary

structure predictions.

The assembly process is modeled to met the requirements expressed by the im-

posed constraints, which in turn describe biological meaningful information de-

vised from various knowledge and observations. The main constraint in use casts

the local structural behavior and it is model using the concept of fragment. Other

constraints capture geometrical restrictions, estimated distances and relative block

positions and entropic considerations, derived from a suitable energy model.

We develop an ad-hoc imperative framework, seeking high modularity in the
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way constraints are handled and the effect of their application propagated. We

carefully implemented crucial data structures to handle efficient consistency and

propagation of constraints. In addition, to scale up to large protein structure

prediction, we introduced a parallel implementation, that guarantees an efficient

exploration of the search space of possible conformations. In doing so, we exploit

an MPI-based cluster distributed system, in a multi-thread environment.

Current results show that our system is suitable to tackle proteins up to

300 amino acids for which homology information is given. In addition, we show

that the our system is able to produce predictions within a marginal error range,

for short peptides for which a weak or no homologies information are supported.

Compared with other systems (e.g. Rosetta), the model proposed in this

work has the advantage to present high modularity enabling the simple handling

of ad-hoc constraints to model specific requirements, different search strategies

and energetic models.
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