Discrete Mathematics Qual Exam (Spring 2016)

Closed book exam

Question 1 (30\%)
Prove by mathematical induction on n that if $d_{1}+d_{2}+\ldots+d_{n}=2(n-1)$ where $d_{1}, d_{2}, \ldots, d_{n} \geq 1$ and $n \geq 2$, then there exists a tree with n nodes whose degrees are exactly $d_{1}, d_{2}, \ldots, d_{n}$.

Hint: To argue that an undirected graph is a tree, you have to explain that the graph is connected and acyclic.

Answer:

Base case: when $n=2$. Since $d_{1}+d_{2}=2(2-1)=2$ and $d_{1}, d_{2} \geq 1$, we deduce that $d_{1}=d_{2}=1$. There exists a tree with 2 nodes and 1 edge that satisfy the degree requirements.

Induction hypothesis: Assume that the statement is verified for any n positive integers which sum is $2(n-1)$, where $n \geq 2$.

Induction step: Consider any $n+1$ positive integers which sum is $2 n$.
As $n \geq 2$, we have $2(n+1)>2 n>n+1$, which implies that there exists a vertex with degree larger than 1 , and another vertex with degree 1.

Without loss of generality, we let $d_{n+1}=1$ and $d_{n}>1$. We define $d_{n}^{\prime}=d_{n}-1$. Then $d_{1}, d_{2}, \ldots, d_{n-1}, d_{n}^{\prime} \geq 1$ and $d_{1}+d_{2}+\ldots, d_{n-1}+d_{n}^{\prime}=2 n-2=2(n-1)$. By the induction hypothesis, there exists a tree with degree sequence $d_{1}, d_{2}, \ldots, d_{n-1}, d_{n}^{\prime}$. By extending the vertex with degree d_{n}^{\prime} with one more edge to a new vertex, we still have a tree which degree sequence is now $d_{1}, d_{2}, \ldots, d_{n-1}, d_{n}, d_{n+1}$, where $d_{n+1}=1$.

Question $2(5 \%+20 \%)$
Suppose that we are given a key k to search for in a hash table with positions $0,1,2, \ldots, m-1$, and suppose that we have a hash function h mapping the keys into the set $\{0,1,2, \ldots, m-1\}$. The search scheme is as follows:

1. Compute the value $j=h(k)$, and set $i=0$.
2. Probe in position j for the desired key k. If you find it, or if this position is empty, terminate the search.
3. Set $i=i+1$. If i now equals m, the table is full, so terminate the search. Otherwise, set $j=(i+j) \bmod m$, and return to step 2 .

Assume that m is a power of 2 .
(a) Express the value of j in step 2 in terms of h, k, i and m. (Note: if your answer involves a summation, be sure to rewrite it in a closed-form formula.)

Answer: $j=(h(k)+1+2+\ldots+i) \bmod m=\left(h(k)+\frac{i(i+1)}{2}\right) \bmod m$.
(b) Prove that this algorithm examines every table position in the worst case.

Hint: Show that the j values are distinct for $i=0,1,2, \ldots, m-1$. Consider two j values that correspond to i and i^{\prime} where $0 \leq i<i^{\prime} \leq m-1$. Verify that the difference between the two j values is $\left(\left(i^{\prime}+i+1\right)\left(i^{\prime}-i\right) / 2\right) \bmod m$. Next, use case analysis to argue that $\left(\left(i^{\prime}+i+1\right)\left(i^{\prime}-i\right) / 2\right) \neq 0 \bmod m$.

Answer:

We want to argue that $i(i+1) / 2 \bmod m \neq i^{\prime}\left(i^{\prime}+1\right) / 2 \bmod m$ for $0 \leq i<i^{\prime} \leq m-1$. Equivalently, we want to show that $\left(i^{\prime}\left(i^{\prime}+1\right) / 2-i(i+1) / 2\right) \bmod m \neq 0$, which is the same as showing $\left(\left(i^{\prime}+i+1\right)\left(i^{\prime}-i\right) / 2\right) \bmod m \neq 0$.

- Case 1. $\left(i^{\prime}+i+1\right)$ is odd, $\left(i^{\prime}-i\right)$ is even.

As $\left(i^{\prime}+i+1\right)>1$ is odd, and $0<\left(i^{\prime}-i\right) / 2<m$,
$\left(i^{\prime}+i+1\right)\left(i^{\prime}-i\right) / 2$ cannot be a multiple of m, which is a power of 2 .

- Case 2. $\left(i^{\prime}+i+1\right)$ is even, $\left(i^{\prime}-i\right)$ is odd, $\left(i^{\prime}-i\right)>1$.

As $0<\left(i^{\prime}+i+1\right) / 2<m$ and $\left(i^{\prime}-i\right)$ is an odd number not equal to 1 , $\left(i^{\prime}+i+1\right)\left(i^{\prime}-i\right) / 2$ cannot be a multiple of m, which is a power of 2 ,

- Case 3. $\left(i^{\prime}+i+1\right)$ is even, $\left(i^{\prime}-i\right)=1$.
$\left(i^{\prime}+i+1\right)\left(i^{\prime}-i\right) / 2=i^{\prime}$ cannot be a multiple of m, since $0<i^{\prime} \leq m-1$.

Question 3. $(4 \%+4 \%+4 \%+4 \%+7 \%+7 \%)$
Let X and Y be random variables over a finite sample space S.
(a) Define the concept of the expected value $E(X)$.

Answer:

$E(X)=\sum_{x \in S} x \cdot \operatorname{Prob}\{X=x\}$.
(b) Define the concept that X and Y are independent.

Answer:

$\forall x, y \in S, \operatorname{Prob}\{X=x$ and $Y=y\}=\operatorname{Prob}\{X=x\} \cdot \operatorname{Prob}\{Y=y\}$.
(c) Define $X+Y$. Let $Z=X+Y$. How is $\operatorname{Prob}[Z=z]$ calculated?

Answer:

Let $Z=X+Y$. For $z \in S, \operatorname{Prob}(Z=z)=\sum_{x, y \in S, z=x+y} \operatorname{Prob}(X=x$ and $Y=y)$.
(d) Define $X Y$. Let $Z=X Y$. How is $\operatorname{Prob}[Z=z]$ calculated?

Answer:

Let $Z=X Y$. For $z \in S, \operatorname{Prob}(Z=z)=\sum_{x, y \in S, z=x y} \operatorname{Prob}(X=x$ and $Y=y)$.

(e)

Are there random variables X and Y that are not independent such that $E(X+$ $Y) \neq E(X)+E(Y)$? If your answer is yes, then define such random variables X and Y, show that X and Y are not independent and that $E(X+Y) \neq$ $E(X)+E(Y)$. If your answer is no, then give a proof that for any variables X and Y (that are not necessarily independent), $E(X+Y)=E(X)+E(Y)$.

Answer:

$$
\begin{aligned}
& E(Z) \\
&= E(X+Y) \\
&= \sum_{z \in S} z \cdot \operatorname{Prob}(Z=z) \\
&= \sum_{z \in S} z \cdot \sum_{x, y \in S, z=x+y} \operatorname{Prob}(X=x \text { and } Y=y) \\
&=\sum_{z \in S} \cdot \sum_{x, y \in S, z=x+y}(x+y) \cdot \operatorname{Prob}(X=x \text { and } Y=y) \\
&= \sum_{x, y \in S}(x+y) \cdot \operatorname{Prob}(X=x \text { and } Y=y) \\
&= \sum_{x, y \in S} x \cdot \operatorname{Prob}(X=x \text { and } Y=y)+\sum_{x, y \in S} y \cdot \operatorname{Prob}(X=x \text { and } Y=y) \\
&= \sum_{x \in S} x \cdot \sum_{y \in S} \operatorname{Prob}(X=x \text { and } Y=y)+\sum_{y \in S} y \cdot \sum_{x \in S} \operatorname{Prob}(X=x \text { and } Y=y) \\
&= \sum_{x \in S} x \cdot \operatorname{Prob}(X=x)+\sum_{y \in S} y \cdot \operatorname{Prob}(Y=y) \\
&= E(X)+E(Y)
\end{aligned}
$$

There is a shorter way to answer this question. See Section 18.3 of the MIT notes that we adopted for CS278.

Are there random variables X and Y that are not independent such that $E(X Y) \neq E(X) E(Y)$? If your answer is yes, then define such random variables X and Y, show that X and Y are not independent and that $E(X Y) \neq E(X) E(Y)$. If your answer is no, then give a proof that for any variables X and Y (that are not necessarily independent), $E(X Y)=E(X) E(Y)$.

Answer:

Yes. Let $S=\{0,1\}$. We define $\operatorname{Prob}(X=0$ and $Y=0)=0.1, \operatorname{Prob}(X=0$ and $Y=1)=$ $0.2, \operatorname{Prob}(X=1$ and $Y=0)=0.3$ and $\operatorname{Prob}(X=1$ and $Y=1)=0.4$. Then $E(X)=0.7$ and $E(Y)=0.6$. But, $E(X Y)=0.4 \neq 0.42=E(X) E(Y)$.

Question 4 (15\%)
A full binary tree is either a single-node tree, or consisting of a node with two subtrees that are full binary trees.

How many 11-node full binary trees are there?
You are required to make use of the recurrence principle in the calculations.

Answer:

Let $f(n)$ denote the number of full binary trees of n nodes.

$$
\begin{aligned}
& f(1)=1 . \\
& f(2)=0 . \\
& f(3)=f(1) f(1)=1 . \\
& f(4)=f(1) f(2)+f(2) f(1)=0 . \\
& f(5)=f(1) f(3)+f(2) f(2)+f(3) f(1)=1+0+1=2 . \\
& f(6)=f(1) f(4)+f(2) f(3)+f(3) f(2)+f(4) f(1)=0 . \\
& f(7)=f(1) f(5)+f(2) f(4)+f(3) f(3)+f(4) f(2)+f(5) f(1)=2+0+1+0+2=5 . \\
& f(8)=0 . \\
& f(9)=f(1) f(7)+f(2) f(6)+f(3) f(5)+f(4) f(4)+f(5) f(3)+f(6) f(2)+f(7) f(1) \\
& \\
& =5+0+2+0+2+0+5=14 . \\
& f(10)=0 . \\
& f(11)=14+5+2 * 2+5+14=42 .
\end{aligned}
$$

