Qual Exam (Spring 2015) Automata

Answer all questions. Closed book exam.

Question 1 (10% + 25%)

Let $L^{\frac{1}{2}} = \{ w \mid ww \in L \}.$

(a) Let $M = (Q, \Sigma, \delta, q_0, F)$ be a DFA. Using the notations $Q, \Sigma, \delta, q_0, F$, give the design of an NFA M' such that $L(M') = L(M)^{\frac{1}{2}}$.

Answer (Sketch): For $q \in Q$, we define a DFA $M_q = (Q \times Q, \Sigma, \delta', (q_0, q), \{q\} \times F)$ where $\delta'((q_1, q_2), a) = (\delta(q_1, a), \delta(q_2, a))$. Then M' is the nondeterministic union of DFAs $\{M_q \mid q \in Q\}$.

(b) Let $L = \{a^n b a^n b \mid n \ge 0\}$. Is $(L^3)^{\frac{1}{2}}$ regular? context-free? Justify your answer. Note that $L^3 = \{xyz \mid x, y, z \in L\}$.

Answer (Sketch): $(L^3)^{\frac{1}{2}} = \{a^n b a^n b a^n b \mid n \ge 0\}$ is not context-free, which proof using pumping lemma is similar to that for $\{a^n b^n c^n \mid n \ge 0\}$.

Question 2 (25%)

Let $\Sigma = \{a, b\}$. Given a string $w = a_1 a_2 \dots a_n$ where $a_1, a_2, \dots, a_n \in \Sigma$, we say that $a_{i_1} a_{i_2} \dots a_{i_k}$ is a sample of w if $1 \leq i_1 < i_2 < \dots < i_k \leq n$ and $0 \leq k \leq n$. Given a language L, we define sample $(L) = \{x \mid x \text{ is a sample of } w \in L\}$. Show that regular languages are closed under sample by giving an algorithm that takes any regular expression r and returns a regular expression r' such that L(r') = sample(L(r)).

Answer: We assume that $\Sigma = \{a, b\}$.

```
\begin{array}{cccc} \operatorname{sample}(\ r\ ) &\{\\ & \operatorname{case}\ r\ \operatorname{of}\\ & \emptyset: & \operatorname{return}\ \emptyset\\ & \epsilon: & \operatorname{return}\ \epsilon\\ & a: & \operatorname{return}\ \epsilon \cup a\\ & b: & \operatorname{return}\ \epsilon \cup b\\ & r_1 \cup r_2 \colon \operatorname{return}\ \operatorname{sample}(r_1)\ \cup\ \operatorname{sample}(r_2)\\ & r_1 \cdot r_2 \colon \operatorname{return}\ \operatorname{sample}(r_1) \cdot \operatorname{sample}(r_2)\\ & r^* & \operatorname{return}\ (\operatorname{sample}(r))^* \end{array}
```

Question 3 (15%)

Given a string $w = a_1 a_2 \dots a_n$ where $a_1, a_2, \dots, a_n \in \Sigma$, we say that $a_{i_1} a_{i_2} \dots a_{i_n}$ is a scramble of w if $\{i_1, i_2, \dots, i_n\} = \{1, 2, \dots, n\}$. Given a language L, we define scramble $(L) = \{x \mid x \text{ is a scramble of } w \in L\}$. Is the class of regular languages closed under scramble? Justify your answer.

Answer (Sketch): No. scramble($(01)^*$) = { $w \in \{0,1\}^* \mid w$ has the same number of 0's and 1's }, which can be shown to be not regular.

Question 4 (25%)

Let $P = \{ \langle M \rangle \mid M \text{ is a TM that accepts } w^R \text{ whenever it accepts } w \}$. Show that P is undecidable.

Answer (Sketch): (*This question is taken from Problem 5.9 of the textbook.*) We can modify the proof to Theorem 5.3 (**REGULAR**_{TM} is undecidable). Instead of testing if x has the form $0^n 1^n$, we test if x = 01. Then $L(\langle M_2 \rangle)$ either is $\{0, 1\}^*$ (that is, $M_2 \in P$) or $\{01\}$ (that is, $M_2 \notin P$).