Qual Exam (Spring 2015) Automata

Answer all questions. Closed book exam.

Question $1(10 \%+25 \%)$
Let $L^{\frac{1}{2}}=\{w \mid w w \in L\}$.
(a) Let $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ be a DFA. Using the notations $Q, \Sigma, \delta, q_{0}, F$, give the design of an NFA M^{\prime} such that $L\left(M^{\prime}\right)=L(M)^{\frac{1}{2}}$.

Answer (Sketch): For $q \in Q$, we define a DFA $M_{q}=\left(Q \times Q, \Sigma, \delta^{\prime},\left(q_{0}, q\right),\{q\} \times F\right)$ where $\delta^{\prime}\left(\left(q_{1}, q_{2}\right), a\right)=\left(\delta\left(q_{1}, a\right), \delta\left(q_{2}, a\right)\right)$. Then M^{\prime} is the nondeterministic union of DFAs $\left\{M_{q} \mid q \in Q\right\}$.
(b) Let $L=\left\{a^{n} b a^{n} b \mid n \geq 0\right\}$. Is $\left(L^{3}\right)^{\frac{1}{2}}$ regular? context-free? Justify your answer. Note that $L^{3}=\{x y z \mid x, y, z \in L\}$.

Answer (Sketch): $\left(L^{3}\right)^{\frac{1}{2}}=\left\{a^{n} b a^{n} b a^{n} b \mid n \geq 0\right\}$ is not context-free, which proof using pumping lemma is similar to that for $\left\{a^{n} b^{n} c^{n} \mid n \geq 0\right\}$.

Question 2 (25\%)
Let $\Sigma=\{a, b\}$. Given a string $w=a_{1} a_{2} \ldots a_{n}$ where $a_{1}, a_{2}, \ldots, a_{n} \in \Sigma$, we say that $a_{i_{1}} a_{i_{2}} \ldots a_{i_{k}}$ is a sample of w if $1 \leq i_{1}<i_{2}<\ldots<i_{k} \leq n$ and $0 \leq k \leq n$. Given a language L, we define $\operatorname{sample}(L)=\{x \mid x$ is a sample of $w \in L\}$. Show that regular languages are closed under sample by giving an algorithm that takes any regular expression r and returns a regular expression r^{\prime} such that $L\left(r^{\prime}\right)=\operatorname{sample}(L(r))$.

Answer: We assume that $\Sigma=\{a, b\}$.

```
sample( r ) {
    case r of
            \emptyset: return \emptyset
            \epsilon: return \epsilon
            a: return }\epsilon\cup
            b: return }\epsilon\cup
            r
            r}\cdot\mp@subsup{r}{2}{}: return sample( (r1) \cdot sample( (r2
            r* return (sample}(r)\mp@subsup{)}{}{*
}
```


Question 3 (15\%)

Given a string $w=a_{1} a_{2} \ldots a_{n}$ where $a_{1}, a_{2}, \ldots, a_{n} \in \Sigma$, we say that $a_{i_{1}} a_{i_{2}} \ldots a_{i_{n}}$ is a scramble of w if $\left\{i_{1}, i_{2}, \ldots, i_{n}\right\}=\{1,2, \ldots, n\}$. Given a language L, we define scramble $(L)=\{x \mid x$ is a scramble of $w \in L\}$. Is the class of regular languages closed under scramble? Justify your answer.

Answer (Sketch): No. scramble $\left((01)^{*}\right)=\left\{w \in\{0,1\}^{*} \mid w\right.$ has the same number of 0 's and 1^{\prime} 's $\}$, which can be shown to be not regular.

Question 4 (25\%)
Let $P=\left\{<M>\mid M\right.$ is a TM that accepts w^{R} whenever it accepts $\left.w\right\}$. Show that P is undecidable.

Answer (Sketch): (This question is taken from Problem 5.9 of the textbook.) We can modify the proof to Theorem 5.3 (REGULAR $_{\text {TM }}$ is undecidable). Instead of testing if x has the form $0^{n} 1^{n}$, we test if $x=01$. Then $L\left(<M_{2}>\right)$ either is $\{0,1\}^{*}$ (that is, $M_{2} \in P$) or $\{01\}$ (that is, $M_{2} \notin P$).

