
Department of Computer Science Spring 2015 New Mexico State University

Ph.D. �alifying Exam: Analysis of Algorithms
�is is a closed book exam. �e total score is 100 points. Please answer all questions.

1. �e Burrows-Wheeler transform (BWT) converts a string s of length n to another string t of length n,
so that t is more likely to be represented as runs of the same character. We require that * is always
the last character in string s indicating its end. We also assume that * alphabetically sort a�er all other
characters. A remarkable property of BWT is that there is an inverse transform to decode t back to s .

Answer the following questions regarding BWT.

(a)(10 points) �e BWT encoding algorithm is given below as BWT(s). Please describe the output of BWT(s)
when s =MISSISSIPPI*.

function BWT (string s)

Input: s is a string that must end with the * character

1. create a table, where rows are all possible right rotations of s including s

2. sort rows in the table alphabetically // treat each row as a word and sort the words

3. return (last column of the table)

Note: All possible right rotations of abc* including abc* are

abc*
*abc
c*ab
bc*a

Solution:
Table of all right rotations of s:
MISSISSIPPI*
*MISSISSIPPI
I*MISSISSIPP
PI*MISSISSIP
PPI*MISSISSI
IPPI*MISSISS
SIPPI*MISSIS
SSIPPI*MISSI
ISSIPPI*MISS
SISSIPPI*MIS
SSISSIPPI*MI
ISSISSIPPI*M

Sorting the rows, we get
IPPI*MISSISS
ISSIPPI*MISS
ISSISSIPPI*M
I*MISSISSIPP
MISSISSIPPI*
PI*MISSISSIP
PPI*MISSISSI
SIPPI*MISSIS
SISSIPPI*MIS
SSIPPI*MISSI
SSISSIPPI*MI
*MISSISSIPPI

�e output of BWT(s) is thus the last column of the table on the right: SSMP*PISSIII.

(b)(20 points) �e BWT decoding algorithm is given below as inverseBWT(t ). Please describe the output of
inverseBWT(t ) when t=STNENESE*E. You must show intermediate steps to derive the �nal
output.



function inverseBWT (string t )

Input: t is a string encoded by applying BWT on some unknown s and contains the special
character * but does not necessarily end with *

1. create empty table

2. n ← length(t )

3. repeat n times

4. insert t as a column of table before the �rst column of the table
// Note: the �rst insert creates the �rst column

5. sort rows of the table alphabetically

6. return (row that ends with the * character)

Solution: �e length of t is n = 10.

t :

S
T
N
E
N
E
S
E
*
E

Table:

0
E
E
E
E
N
N
S
S
T
*

01
SE
TE
NE
EE
NN
EN
SS
ES
*T
E*

01
EE
EN
ES
E*
NE
NN
SE
SS
TE
*T

012
SEE
TEN
NES
EE*
NNE
ENN
SSE
ESS
*TE
E*T

012
EE*
ENN
ESS
E*T
NES
NNE
SEE
SSE
TEN
*TE

0123
SEE*
TENN
NESS
EE*T
NNES
ENNE
SSEE
ESSE
*TEN
E*TE

0123
EE*T
ENNE
ESSE
E*TE
NESS
NNES
SEE*
SSEE
TENN
*TEN

01234
SEE*T
TENNE
NESSE
EE*TE
NNESS
ENNES
SSEE*
ESSEE
*TENN
E*TEN

01234
EE*TE
ENNES
ESSEE
E*TEN
NESSE
NNESS
SEE*T
SSEE*
TENNE
*TENN

012345
SEE*TE
TENNES
NESSEE
EE*TEN
NNESSE
ENNESS
SSEE*T
ESSEE*
*TENNE
E*TENN

012345
EE*TEN
ENNESS
ESSEE*
E*TENN
NESSEE
NNESSE
SEE*TE
SSEE*T
TENNES
*TENNE

t :

S
T
N
E
N
E
S
E
*
E

Table:

0123456
SEE*TEN
TENNESS
NESSEE*
EE*TENN
NNESSEE
ENNESSE
SSEE*TE
ESSEE*T
*TENNES
E*TENNE

0123456
EE*TENN
ENNESSE
ESSEE*T
E*TENNE
NESSEE*
NNESSEE
SEE*TEN
SSEE*TE
TENNESS
*TENNES

01234567
SEE*TENN
TENNESSE
NESSEE*T
EE*TENNE
NNESSEE*
ENNESSEE
SSEE*TEN
ESSEE*TE
*TENNESS
E*TENNES

01234567
EE*TENNE
ENNESSEE
ESSEE*TE
E*TENNES
NESSEE*T
NNESSEE*
SEE*TENN
SSEE*TEN
TENNESSE
*TENNESS

012345678
SEE*TENNE
TENNESSEE
NESSEE*TE
EE*TENNES
NNESSEE*T
ENNESSEE*
SSEE*TENN
ESSEE*TEN
*TENNESSE
E*TENNESS

012345678
EE*TENNES
ENNESSEE*
ESSEE*TEN
E*TENNESS
NESSEE*TE
NNESSEE*T
SEE*TENNE
SSEE*TENN
TENNESSEE
*TENNESSE

Page 2



t :

S
T
N
E
N
E
S
E
*
E

Table:

0123456789
SEE*TENNES
TENNESSEE*
NESSEE*TEN
EE*TENNESS
NNESSEE*TE
ENNESSEE*T
SSEE*TENNE
ESSEE*TENN
*TENNESSEE
E*TENNESSE

0123456789
EE*TENNESS
ENNESSEE*T
ESSEE*TENN
E*TENNESSE
NESSEE*TEN
NNESSEE*TE
SEE*TENNES
SSEE*TENNE
TENNESSEE* ¡-- The solution
*TENNESSEE

(c)(15 points) Let t be the BWT transform of s , i.e., t=BWT(s). Study the solution in (b). From the insight gained,
what is the relationship between s and inverseBWT(t )? Prove your claim.

Solution: We show that s and inverseBWT(t ) are two equal strings. Using loop invariant
argument, we can show that the decoding algorithm inverseBWT() will grow the pre�xes of
the rows, rotated versions of s , from t until the length of the string t is reached.

(d)(15 points) Let n be the length of the input string s and t in the two functions. Please analyze the time
complexity of both the encoding and decoding algorithms.

Solution:

If we use comparison-based sorting, we must also consider that the time cost of each compar-
ison is not constant, but a linear function of the length of the strings. A sorting of n strings
each of length n will thus take O (n2 lgn) time.

Accordingly, the time complexity of BWT(s) is O (n2 lgn); and for inverseBWT(t ), the time
complexity is O (n(lgn) (

∑n
i=1 i )) = O (n3 lgn).

2.(30 points) �e longest path problem �nds a longest simple path in a graph. We are here concerned with directed
and edge-weighted graphs. �e length of a path is the summation of the weights of edges on the path.

A Hamiltonian path is a simple path that visits each vertex in a graph exactly once. �e Hamiltonian
path problem answers whether a Hamiltonian path exists in a graph.

Show that the Hamiltonian path problem is equivalent to a special case of the longest path problem.

Solution:

For a given graph of n vertices in a Hamiltonian path problem, we can formulate a longest path
problem by treating the weight of each edge as 1.

Longest path⇒Hamiltonian path: If solving the longest path returns a simple path of length n−1,
it must be a Hamiltonian path by de�nition;

Page 3



Hamiltonian path⇒ longest path: If there is at least one Hamiltonian path in the graph, it must
be a longest simple path in a graph of n-nodes and solving the longest path problem thus must
return some Hamiltonian path.

3.(10 points) Contemplate in what way algorithm design & analysis may bene�t your future doctoral study. You
will need to give a concrete research topic that could evolve into your dissertation and describe how
you may address the topic with a technique in algorithm analysis.

Solution: Grading: naming a topic area (5 points); naming a relevant algorithm technique that is
defendable (5 points);

Page 4


