Ph.D. Qualifying Exam: Analysis of Algorithms

This is a closed book exam. The total score is 100 points. Please answer all questions.

1. The Burrows-Wheeler transform (BWT) converts a string s of length n to another string t of length n, so that t is more likely to be represented as runs of the same character. We require that ${ }^{*}$ is always the last character in string s indicating its end. We also assume that * alphabetically sort after all other characters. A remarkable property of BWT is that there is an inverse transform to decode t back to s.

Answer the following questions regarding BWT.
(10 points) (a) The BWT encoding algorithm is given below as BWT(s). Please describe the output of BWT(s) when $s=M I S S I S S I P P I *$.

function BWT (string s)

Input: s is a string that must end with the * character

1. create a table, where rows are all possible right rotations of s including s
2. sort rows in the table alphabetically // treat each row as a word and sort the words
3. return (last column of the table)

Note: All possible right rotations of abc* including abc* are

$$
\begin{aligned}
& \mathrm{abc}{ }^{*} \\
& { }^{*} \mathrm{abc} \\
& \mathrm{c}^{*} \mathrm{ab} \\
& \mathrm{bc}{ }^{*} \mathrm{a}
\end{aligned}
$$

Solution:	
Table of all right rotations of s :	Sorting the rows, we get
MISSISSIPPI*	IPPI*MISSISS
*MISSISSIPPI	ISSIPPI*MISS
I*MISSISSIPP	ISSISSIPPI*M
PI*MISSISSIP	I*MISSISSIPP
PPI*MISSISSI	MISSISSIPPI*
IPPI*MISSISS	PI*MISSISSIP
SIPPI*MISSIS	PPI*MISSISSI
SSIPPI*MISSI	SIPPI*MISSIS
ISSIPPI*MISS	SISSIPPI*MIS
SISSIPPI*MIS	SSIPPI*MISSI
SSISSIPPI*MI	SSISSIPPI*MI
ISSISSIPPI * M	*MISSISSIPPI

(20 points) (b) The BWT decoding algorithm is given below as inverseBWT (t). Please describe the output of inverseBWT (t) when $t=\mathrm{STNENESE}$ *. You must show intermediate steps to derive the final output.

function inverseBWT (string t)

Input: t is a string encoded by applying BWT on some unknown s and contains the special character * but does not necessarily end with *

1. create empty table
2. $n \leftarrow$ length (t)
3. repeat n times
4. insert t as a column of table before the first column of the table // Note: the first insert creates the first column
5. sort rows of the table alphabetically
6. return (row that ends with the * character)

Solution: The length of t is $n=10$.						
Table:						
t :	001	01012	0120123	012301234	01234	012345012345
S	E SE	EE SEE	EE* SEE*	EE*T SEE*T	EE* ${ }^{\text {TE }}$	SEE*TE EE*TEN
T	E TE	EN TEN	ENN TENN	EnNE TENNE	ENNES	TENNES ENNESS
N	E NE	ES NES	ESS NESS	ESSE NESSE	ESSEE	NESSEE ESSEE*
E	E EE	E* EE*	E*T EE*T	E*TE EE*TE	E*TEN	EE*TEN E*TENN
N	N NN	NE NNE	NES NNES	NESS NNESS	NESSE	NNESSE NESSEE
E	N EN	NN ENN	NNE ENNE	NNES ENNES	NNESS	ENNESS NNESSE
S	S SS	SE SSE	SEE SSEE	SEE* SSEE*	SEE* ${ }^{\text {T }}$	SSEE*T SEE*TE
E	S ES	SS ESS	SSE ESSE	SSEE ESSEE	SSEE*	ESSEE* SSEE*T
*	T *T	TE *TE	TEN *TEN	TENN *TENN	TENNE	*TENNE TENNES
E	E*	*T E*T	*TE E*TE	*TEN E*TEN	*TENN	E*TENN *TENNE
Table:						
t :	0123456	0123456	01234567	01234567	012345678	8 012345678
S	SEE*TEN	EE*TENN	SEE*TENN	EE*TENNE	SEE*TENNE	EE*TENNES
T	TENNESS	ENNESSE	TENNESSE	EnNESSEE	TENNESSEE	EnNESSEE*
N	NESSEE*	ESSEE*T	NESSEE* T	ESSEE* ${ }^{\text {TE }}$	NESSEE*TE	ESSEE*TEN
E	EE*TENN	E*TENNE	EE*TENNE	E* TENNES	EE*TENNES	E*TENNESS
N	NNESSEE	NESSEE*	NNESSEE*	NESSEE* ${ }^{\text {T }}$	NNESSEE*T	T NESSEE*TE
E	ENNESSE	NNESSEE	EnNESSEE	NNESSEE*	ENNESSEE*	NNESSEE*T
S	SSEE*TE	SEE*TEN	SSEE*TEN	SEE* TENN	SSEE*TENN	- SEE*TENNE
E	ESSEE*T	SSEE*TE	ESSEE*TE	SSEE*TEN	ESSEE*TEN	N SSEE*TENN
*	*TENNES	TENNESS	*TENNESS	TENNESSE	*TENNESSE	TENNESSEE
E	E*TENNE	* TENNES	E*TENNES	* TENNESS	E*TENNESS	*TENNESSE

	Table:	
$t:$	0123456789	0123456789
S	SEE*TENNES	EE*TENNESS
T	TENNESSEE*	ENNESSEE*T
N	NESSEE*TEN	ESSEE*TENN
E	EE*TENNESS	E*TENNESSE *
N	NNESSEE*TE	NESSEE*TEN
E	ENNESSEE*T	NNESSEE*TE
S	SSEE*TENNE	SEE*TENNES
E	ESSEE*TENN	SSEE*TENNE
${ }^{*}$	${ }^{*}$ TENNESSEE	TENNESSEE* i-- The solution
E	E*TENNESSE	${ }^{*}$ TENNESSEE

(15 points)
(15 points)
(c) Let t be the BWT transform of s, i.e., $t=\mathrm{BWT}(s)$. Study the solution in (b). From the insight gained, what is the relationship between s and inverseBWT (t) ? Prove your claim.

Solution: We show that s and inverseBWT (t) are two equal strings. Using loop invariant argument, we can show that the decoding algorithm inverseBWT() will grow the prefixes of the rows, rotated versions of s, from t until the length of the string t is reached.
(d) Let n be the length of the input string s and t in the two functions. Please analyze the time complexity of both the encoding and decoding algorithms.

Solution:

If we use comparison-based sorting, we must also consider that the time cost of each comparison is not constant, but a linear function of the length of the strings. A sorting of n strings each of length n will thus take $O\left(n^{2} \lg n\right)$ time.

Accordingly, the time complexity of $\mathrm{BWT}(s)$ is $O\left(n^{2} \lg n\right)$; and for inverseBWT (t), the time complexity is $O\left(n(\lg n)\left(\sum_{i=1}^{n} i\right)\right)=O\left(n^{3} \lg n\right)$.
(30 points) 2. The longest path problem finds a longest simple path in a graph. We are here concerned with directed and edge-weighted graphs. The length of a path is the summation of the weights of edges on the path.

A Hamiltonian path is a simple path that visits each vertex in a graph exactly once. The Hamiltonian path problem answers whether a Hamiltonian path exists in a graph.

Show that the Hamiltonian path problem is equivalent to a special case of the longest path problem.

Solution:

For a given graph of n vertices in a Hamiltonian path problem, we can formulate a longest path problem by treating the weight of each edge as 1.

Longest path \Rightarrow Hamiltonian path: If solving the longest path returns a simple path of length $n-1$, it must be a Hamiltonian path by definition;

Hamiltonian path \Rightarrow longest path: If there is at least one Hamiltonian path in the graph, it must be a longest simple path in a graph of n-nodes and solving the longest path problem thus must return some Hamiltonian path.
(10 points) 3. Contemplate in what way algorithm design \& analysis may benefit your future doctoral study. You will need to give a concrete research topic that could evolve into your dissertation and describe how you may address the topic with a technique in algorithm analysis.

Solution: Grading: naming a topic area (5 points); naming a relevant algorithm technique that is defendable (5 points);

