Automata Qual Exam (Spring 2012)

Answer ALL questions (Closed Book Exam)

Question 1 (15 points)

(a) If $L_1 \cup L_2$ is regular, then L_1 is regular. **Answer:** No. Let $L_1 = \{a^n b^n \mid n \ge 0\}$ and $L_2 = \{a, b\}^*$. (b) If $L_1 \cdot L_2$ is regular, then L_1 is regular. **Answer:** No. Let $L_1 = \{a^n b^n \mid n \ge 0\}$ and $L_2 = \{a, b\}^*$. (c) If L^* is regular, then L is regular. **Answer:** No. Let $L = \{a^n b^n \mid n \ge 0\} \cup \{a, b\}$.

Question 2

Consider the following context-free grammar G:

 $S \longrightarrow aaSb \mid aSbb \mid \epsilon$

Note: $L(G) \subseteq a^*b^*$. Below are the possible *i* and *j* such that $a^i b^j \in L(G)$:

i	$\mid j$
0	0
1	2
2	1, 4
3	3, 6
4	2, 5, 8
5	4, 7, 10
6	3, 6, 9, 12
$\overline{7}$	5, 8, 11, 14
8	4, 7, 10, 13, 16
9	6, 9, 12, 15, 18
10	5, 8, 11, 14, 17, 20
11	7, 10, 13, 16, 19, 22
12	
13	
•••	

(a) (15 points)

It is given that $L(G) = \{a^{2n}b^{f(n,k)} \mid 0 \le k \le n\} \cup \{a^{2n+1}b^{g(n,k)} \mid 0 \le k \le n\}.$ What are f(n,k) and g(n,k)?

Answer: f(n,k) = n + 3k and g(n,k) = n + 3k + 2.

(b) (15 points) Prove that the characterization for L(G) given in part (a) is correct using mathematical induction. Note: you can assume without proof that $L(G) \subseteq a^*b^*$.

Answer:

Let $L_n = \{a^{2n}b^{n+3k}, a^{2n+1}b^{n+3k+2} \mid 0 \le k \le n\}$. Claim: $L(G) = \bigcup_{n \ge 0} L_n$.

As it is assumed that $L(G) \subseteq a^*b^*$, and L_n 's differ in the number of a's, it suffices to prove by induction on n that $L(G) \cap (a^{2n}b^* \cup a^{2n+1}b^*) = L_n$.

Base case (n = 0)

From the grammar rules, it is clear that $L(G) \cap (a^0 b^* \cup a^1 b^*) = \{a^0 b^0, a^1 b^2\}$. On the other hand, $L_0 = \{a^0 b^{3k}, a^1 b^{3k+2} \mid 0 \le k \le 0\} = \{a^0 b^0, a^1 b^2\}$.

Induction hypothesis: (n = p)It is assumed that $L(G) \cap (a^{2p}b^* \cup a^{2p+1}b^*) = L_p$.

Induction step: (n = p + 1)

(1) To show
$$L(G) \cap a^{2(p+1)}b^* = \{a^{2(p+1)}b^{(p+1)+3k} \mid 0 \le k \le (p+1)\}.$$

There are two cases in the derivation sequence for a string with 2(p+1) a's.

Case (i) $S \to aaSb \Rightarrow^* aawb = \alpha$ where $w \in a^{2p}b^j$. Since $S \Rightarrow^* w = a^{2p}b^j$ and by the induction hypothesis, j = p + 3k for 0 < k < p. Therefore, $\alpha = a^{2p+2}b^{j+1} = a^{2(p+1)}b^{(p+1)+3k}$ for 0 < k < p.

Case (ii) $S \to aSbb \Rightarrow^* awbb = \beta$ where $w \in a^{2p+1}b^j$. Since $S \Rightarrow^* w = a^{2p+1}b^j$ and by the induction hypothesis, j = p + 3k + 2 for $0 \le k \le p$. Therefore, $\beta = a^{2p+2}b^{j+2} = a^{2(p+1)}b^{p+3k+2+2} = a^{2(p+1)}b^{(p+1)+3k+3} = a^{2(p+1)}b^{(p+1)+3(k+1)}$ for $0 \le k \le p$. Equivalently, $\beta = a^{2(p+1)}b^{(p+1)+3k}$ for $1 \le k \le p+1$.

The two cases give rise to strings $a^{2(p+1)}b^{(p+1)+3k}$ for $0 \le k \le p+1$.

(2) To show $L(G) \cap a^{2(p+1)+1}b^* = \{a^{2(p+1)+1}b^{(p+1)+3k+2} \mid 0 \le k \le (p+1)\}.$

There are two cases for deriving a string with 2(p+1) + 1 a's.

Case (i) $S \to aaSb \Rightarrow aawb = \alpha$ where $w \in a^{2p+1}b^j$. Since $S \Rightarrow w = a^{2p+1}b^j$ and by the induction hypothesis, j = p + 3k + 2 for $0 \le k \le p$. Therefore, $\alpha = a^{2p+3}b^{j+1} = a^{2(p+1)+1}b^{(p+1)+3k+2}$ for $0 \le k \le p$. Case (ii) $S \to aSbb \Rightarrow awbb = \beta$ where $w \in a^{2(p+1)}b^j$. Since $S \Rightarrow w = a^{2(p+1)}b^j$ and by the result of (1), j = (p+1) + 3k for $0 \le k \le (p+1)$. Therefore, $\beta = a^{2(p+1)+1}b^{j+2} = a^{2(p+1)+1}b^{(p+1)+3k+2}$ for $0 \le k \le p+1$.

The two cases give rise to strings $a^{2(p+1)+1}b^{(p+1)+3k+2}$ for $0 \le k \le p+1$.

(c) (10 points) Give a context-free grammar G' such that $L(G') = \{w \mid w \in L(G), |w| \text{ is even } \}.$

Answer: $S_e \rightarrow aaS_eb \mid aaS_ebbbb \mid \epsilon$

(d) (10 points) Give a context-free grammar G'' such that $L(G'') = \{w \mid w \in L(G), |w| \text{ is odd } \}.$

Answer: $S_o \rightarrow a S_e b b$

Question 3

(a) (20 points) Explain how a deterministic Turing machine can simulate a nondeterministic Turing machine for recognizing the same language.

Answer: (see the textbook)

(b) (15 points) Suppose we modify the definition of nondeterministic Turing machine so that a string is accepted if the string is accepted by every possible computation path. (In contrast, a normal nondeterministic Turing machine accepts a string w if there exists one accepting path that accepts w.) Explain how a deterministic Turing machine can simulate a nondeterministic Turing machine according to the modified definition.

Answer: Let w be the input to a nondeterministic Turing machine M. If M accepts w, M will accept w in all possible computation paths. That is, there is a time t such that all computation paths are completed successfully within time t. We want to simulate M by a deterministic machine M'. M' will try out each possible t in ascending order. For a specific t, M' will enumerate all possible computation paths of lengths within t in a lexicographical way according to the sequence of 'choices' made during the nondeterministic computation. For a specific t, there are finitely many enumeration of paths of lengths at most t. Therefore, M' can try out all the computation paths in a finite amount of time. If all computation paths are successfully completed within t steps, then M' rejects. Otherwise, every computation path may

either succeed or may attempt to continue for more than t steps. In the last case, M' will start another round of simulation for computation paths of lengths up to t + 1 steps.