
Automata Qual Exam (Spring 2012)
Answer ALL questions (Closed Book Exam)

Question 1 (15 points)

(a) If L1
⋃
L2 is regular, then L1 is regular.

Answer: No. Let L1 = {anbn | n ≥ 0} and L2 = {a, b}∗.
(b) If L1 · L2 is regular, then L1 is regular.
Answer: No. Let L1 = {anbn | n ≥ 0} and L2 = {a, b}∗.
(c) If L∗ is regular, then L is regular.
Answer: No. Let L = {anbn | n ≥ 0} ∪ {a, b}.

Question 2

Consider the following context-free grammar G:

S −→ aaSb | aSbb | ε

Note: L(G) ⊆ a∗b∗. Below are the possible i and j such that aibj ∈ L(G):

i j

0 0
1 2
2 1, 4
3 3, 6
4 2, 5, 8
5 4, 7, 10
6 3, 6, 9, 12
7 5, 8, 11, 14
8 4, 7, 10, 13, 16
9 6, 9, 12, 15, 18
10 5, 8, 11, 14, 17, 20
11 7, 10, 13, 16, 19, 22
12 . . .
13 . . .
. . . . . .

(a) (15 points)

It is given that L(G) = {a2nbf(n,k) | 0 ≤ k ≤ n}∪{a2n+1bg(n,k) | 0 ≤ k ≤ n}.
What are f(n, k) and g(n, k)?
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Answer: f(n, k) = n+ 3k and g(n, k) = n+ 3k + 2.

(b) (15 points) Prove that the characterization for L(G) given in part (a) is
correct using mathematical induction. Note: you can assume without proof
that L(G) ⊆ a∗b∗.

Answer:
Let Ln = {a2nbn+3k, a2n+1bn+3k+2 | 0 ≤ k ≤ n}. Claim: L(G) = ∪n≥0 Ln.

As it is assumed that L(G) ⊆ a∗b∗, and Ln’s differ in the number of a’s, it
suffices to prove by induction on n that L(G) ∩ (a2nb∗ ∪ a2n+1b∗) = Ln.

Base case (n = 0)
From the grammar rules, it is clear that L(G)∩ (a0b∗∪a1b∗) = {a0b0, a1b2}.
On the other hand, L0 = {a0b3k, a1b3k+2 | 0 ≤ k ≤ 0} = {a0b0, a1b2}.

Induction hypothesis: (n = p)
It is assumed that L(G) ∩ (a2pb∗ ∪ a2p+1b∗) = Lp.

Induction step: (n = p+ 1)

(1) To show L(G) ∩ a2(p+1)b∗ = {a2(p+1)b(p+1)+3k | 0 ≤ k ≤ (p+ 1)}.

There are two cases in the derivation sequence for a string with 2(p+ 1) a’s.

Case (i) S → aaSb
∗⇒ aawb = α where w ∈ a2pbj .

Since S
∗⇒ w = a2pbj and by the induction hypothesis, j = p + 3k for

0 ≤ k ≤ p. Therefore, α = a2p+2bj+1 = a2(p+1)b(p+1)+3k for 0 ≤ k ≤ p.

Case (ii) S → aSbb
∗⇒ awbb = β where w ∈ a2p+1bj .

Since S
∗⇒ w = a2p+1bj and by the induction hypothesis, j = p + 3k + 2

for 0 ≤ k ≤ p. Therefore, β = a2p+2bj+2 = a2(p+1)bp+3k+2+2 =
a2(p+1)b(p+1)+3k+3 = a2(p+1)b(p+1)+3(k+1) for 0 ≤ k ≤ p. Equivalently,
β = a2(p+1)b(p+1)+3k for 1 ≤ k ≤ p+ 1.

The two cases give rise to strings a2(p+1)b(p+1)+3k for 0 ≤ k ≤ p+ 1.

(2) To show L(G) ∩ a2(p+1)+1b∗ = {a2(p+1)+1b(p+1)+3k+2 | 0 ≤ k ≤ (p+ 1)}.

There are two cases for deriving a string with 2(p+ 1) + 1 a’s.

Case (i) S → aaSb
∗⇒ aawb = α where w ∈ a2p+1bj .

Since S
∗⇒ w = a2p+1bj and by the induction hypothesis, j = p+3k+2 for

0 ≤ k ≤ p. Therefore, α = a2p+3bj+1 = a2(p+1)+1b(p+1)+3k+2 for 0 ≤ k ≤ p.
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Case (ii) S → aSbb
∗⇒ awbb = β where w ∈ a2(p+1)bj .

Since S
∗⇒ w = a2(p+1)bj and by the result of (1), j = (p + 1) + 3k for

0 ≤ k ≤ (p + 1). Therefore, β = a2(p+1)+1bj+2 = a2(p+1)+1b(p+1)+3k+2 for
0 ≤ k ≤ p+ 1.

The two cases give rise to strings a2(p+1)+1b(p+1)+3k+2 for 0 ≤ k ≤ p+ 1.

(c) (10 points) Give a context-free grammar G′ such that L(G′) = {w | w ∈
L(G), |w| is even }.

Answer: Se → aaSeb | aaSebbbb | ε

(d) (10 points) Give a context-free grammar G′′ such that L(G′′) = {w | w ∈
L(G), |w| is odd }.

Answer: So → aSebb

Question 3

(a) (20 points) Explain how a deterministic Turing machine can simulate a
nondeterministic Turing machine for recognizing the same language.

Answer: (see the textbook)

(b) (15 points) Suppose we modify the definition of nondeterministic Turing
machine so that a string is accepted if the string is accepted by every possible
computation path. (In contrast, a normal nondeterministic Turing machine
accepts a string w if there exists one accepting path that accepts w.) Explain
how a deterministic Turing machine can simulate a nondeterministic Turing
machine according to the modified definition.

Answer: Let w be the input to a nondeterministic Turing machine M . If M
accepts w, M will accept w in all possible computation paths. That is, there
is a time t such that all computation paths are completed successfully within
time t. We want to simulate M by a deterministic machine M ′. M ′ will try
out each possible t in ascending order. For a specific t, M ′ will enumerate
all possible computation paths of lengths within t in a lexicographical way
according to the sequence of ’choices’ made during the nondeterministic
computation. For a specific t, there are finitely many enumeration of paths
of lengths at most t. Therefore, M ′ can try out all the computation paths in
a finite amount of time. If all computation paths are successfully completed
within t steps, then M ′ accepts. If there are some computation paths that
fail within t steps, then M ′ rejects. Otherwise, every computation path may
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either succeed or may attempt to continue for more than t steps. In the
last case, M ′ will start another round of simulation for computation paths
of lengths up to t+ 1 steps.
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