Automata Qual Exam (Spring 2012)

Answer ALL questions (Closed Book Exam)

Question 1 (15 points)
(a) If $L_{1} \bigcup L_{2}$ is regular, then L_{1} is regular.

Answer: No. Let $L_{1}=\left\{a^{n} b^{n} \mid n \geq 0\right\}$ and $L_{2}=\{a, b\}^{*}$.
(b) If $L_{1} \cdot L_{2}$ is regular, then L_{1} is regular.

Answer: No. Let $L_{1}=\left\{a^{n} b^{n} \mid n \geq 0\right\}$ and $L_{2}=\{a, b\}^{*}$.
(c) If L^{*} is regular, then L is regular.

Answer: No. Let $L=\left\{a^{n} b^{n} \mid n \geq 0\right\} \cup\{a, b\}$.

Question 2
Consider the following context-free grammar G :

$$
S \longrightarrow a a S b|a S b b| \epsilon
$$

Note: $L(G) \subseteq a^{*} b^{*}$. Below are the possible i and j such that $a^{i} b^{j} \in L(G)$:

i	j
0	0
1	2
2	1,4
3	3,6
4	$2,5,8$
5	$4,7,10$
6	$3,6,9,12$
7	$5,8,11,14$
8	$4,7,10,13,16$
9	$6,9,12,15,18$
10	$5,8,11,14,17,20$
11	$7,10,13,16,19,22$
12	\cdots
13	\cdots
\ldots	\cdots

(a) (15 points)

It is given that $L(G)=\left\{a^{2 n} b^{f(n, k)} \mid 0 \leq k \leq n\right\} \cup\left\{a^{2 n+1} b^{g(n, k)} \mid 0 \leq k \leq n\right\}$. What are $f(n, k)$ and $g(n, k)$?

Answer: $f(n, k)=n+3 k$ and $g(n, k)=n+3 k+2$.
(b) (15 points) Prove that the characterization for $L(G)$ given in part (a) is correct using mathematical induction. Note: you can assume without proof that $L(G) \subseteq a^{*} b^{*}$.

Answer:

Let $L_{n}=\left\{a^{2 n} b^{n+3 k}, a^{2 n+1} b^{n+3 k+2} \mid 0 \leq k \leq n\right\}$. Claim: $L(G)=\cup_{n \geq 0} L_{n}$.
As it is assumed that $L(G) \subseteq a^{*} b^{*}$, and L_{n} 's differ in the number of a 's, it suffices to prove by induction on n that $L(G) \cap\left(a^{2 n} b^{*} \cup a^{2 n+1} b^{*}\right)=L_{n}$.

Base case ($n=0$)
From the grammar rules, it is clear that $L(G) \cap\left(a^{0} b^{*} \cup a^{1} b^{*}\right)=\left\{a^{0} b^{0}, a^{1} b^{2}\right\}$.
On the other hand, $L_{0}=\left\{a^{0} b^{3 k}, a^{1} b^{3 k+2} \mid 0 \leq k \leq 0\right\}=\left\{a^{0} b^{0}, a^{1} b^{2}\right\}$.
Induction hypothesis: $(n=p)$
It is assumed that $L(G) \cap\left(a^{2 p} b^{*} \cup a^{2 p+1} b^{*}\right)=L_{p}$.
Induction step: $(n=p+1)$
(1) To show $L(G) \cap a^{2(p+1)} b^{*}=\left\{a^{2(p+1)} b^{(p+1)+3 k} \mid 0 \leq k \leq(p+1)\right\}$.

There are two cases in the derivation sequence for a string with $2(p+1) a$'s.
Case (i) $S \rightarrow a a S b \Rightarrow{ }^{*} a a w b=\alpha$ where $w \in a^{2 p} b^{j}$.
Since $S \stackrel{*}{\Rightarrow} w=a^{2 p} b^{j}$ and by the induction hypothesis, $j=p+3 k$ for $0 \leq k \leq p$. Therefore, $\alpha=a^{2 p+2} b^{j+1}=a^{2(p+1)} b^{(p+1)+3 k}$ for $0 \leq k \leq p$.

Case (ii) $S \rightarrow a S b b \Rightarrow{ }^{*} a w b b=\beta$ where $w \in a^{2 p+1} b^{j}$.
Since $S \stackrel{*}{\Rightarrow} w=a^{2 p+1} b^{j}$ and by the induction hypothesis, $j=p+3 k+2$ for $0 \leq k \leq p$. Therefore, $\beta=a^{2 p+2} b^{j+2}=a^{2(p+1)} b^{p+3 k+2+2}=$ $a^{2(p+1)} b^{(p+1)+3 k+3}=a^{2(p+1)} b^{(p+1)+3(k+1)}$ for $0 \leq k \leq p$. Equivalently, $\beta=a^{2(p+1)} b^{(p+1)+3 k}$ for $1 \leq k \leq p+1$.

The two cases give rise to strings $a^{2(p+1)} b^{(p+1)+3 k}$ for $0 \leq k \leq p+1$.
(2) To show $L(G) \cap a^{2(p+1)+1} b^{*}=\left\{a^{2(p+1)+1} b^{(p+1)+3 k+2} \mid 0 \leq k \leq(p+1)\right\}$.

There are two cases for deriving a string with $2(p+1)+1 a$'s.
Case (i) $S \rightarrow a a S b \Rightarrow{ }^{*} a a w b=\alpha$ where $w \in a^{2 p+1} b^{j}$.
Since $S \Rightarrow{ }^{*} w=a^{2 p+1} b^{j}$ and by the induction hypothesis, $j=p+3 k+2$ for $0 \leq k \leq p$. Therefore, $\alpha=a^{2 p+3} b^{j+1}=a^{2(p+1)+1} b^{(p+1)+3 k+2}$ for $0 \leq k \leq p$.

Case (ii) $S \rightarrow a S b b \Rightarrow{ }^{*} a w b b=\beta$ where $w \in a^{2(p+1)} b^{j}$.
Since $S \stackrel{*}{\Rightarrow} w=a^{2(p+1)} b^{j}$ and by the result of $(1), j=(p+1)+3 k$ for $0 \leq k \leq(p+1)$. Therefore, $\beta=a^{2(p+1)+1} b^{j+2}=a^{2(p+1)+1} b^{(p+1)+3 k+2}$ for $0 \leq k \leq p+1$.

The two cases give rise to strings $a^{2(p+1)+1} b^{(p+1)+3 k+2}$ for $0 \leq k \leq p+1$.
(c) (10 points) Give a context-free grammar G^{\prime} such that $L\left(G^{\prime}\right)=\{w \mid w \in$ $L(G),|w|$ is even $\}$.

Answer: $S_{e} \rightarrow a a S_{e} b\left|a a S_{e} b b b b\right| \epsilon$
(d) (10 points) Give a context-free grammar $G^{\prime \prime}$ such that $L\left(G^{\prime \prime}\right)=\{w \mid w \in$ $L(G),|w|$ is odd $\}$.

Answer: $S_{o} \rightarrow a S_{e} b b$

Question 3
(a) (20 points) Explain how a deterministic Turing machine can simulate a nondeterministic Turing machine for recognizing the same language.

Answer: (see the textbook)
(b) (15 points) Suppose we modify the definition of nondeterministic Turing machine so that a string is accepted if the string is accepted by every possible computation path. (In contrast, a normal nondeterministic Turing machine accepts a string w if there exists one accepting path that accepts w.) Explain how a deterministic Turing machine can simulate a nondeterministic Turing machine according to the modified definition.

Answer: Let w be the input to a nondeterministic Turing machine M. If M accepts w, M will accept w in all possible computation paths. That is, there is a time t such that all computation paths are completed successfully within time t. We want to simulate M by a deterministic machine $M^{\prime} . M^{\prime}$ will try out each possible t in ascending order. For a specific t, M^{\prime} will enumerate all possible computation paths of lengths within t in a lexicographical way according to the sequence of 'choices' made during the nondeterministic computation. For a specific t, there are finitely many enumeration of paths of lengths at most t. Therefore, M^{\prime} can try out all the computation paths in a finite amount of time. If all computation paths are successfully completed within t steps, then M^{\prime} accepts. If there are some computation paths that fail within t steps, then M^{\prime} rejects. Otherwise, every computation path may
either succeed or may attempt to continue for more than t steps. In the last case, M^{\prime} will start another round of simulation for computation paths of lengths up to $t+1$ steps.

