Automata Qual Exam (Spring 2012)

Answer ALL questions (Closed Book Exam)

Question 1 (15 points)

For each of the following, either show that it is always true or exhibit a counterexample.

(a) If $L_1 \cup L_2$ is regular, then L_1 is regular. (b) If $L_1 \cdot L_2$ is regular, then L_1 is regular.

(c) If L^* is regular, then L is regular.

Question 2

Consider the following context-free grammar G:

 $S \longrightarrow aaSb \mid aSbb \mid \epsilon$

Note: $L(G) \subseteq a^*b^*$. Below are the possible *i* and *j* such that $a^i b^j \in L(G)$:

i	j
0	0
1	2
2	1, 4
3	3, 6
4	2, 5, 8
5	4, 7, 10
6	3, 6, 9, 12
7	5, 8, 11, 14
8	4, 7, 10, 13, 16
9	6, 9, 12, 15, 18
10	5, 8, 11, 14, 17, 20
11	7, 10, 13, 16, 19, 22
12	
13	

(a) (15 points)

It is given that $L(G) = \{a^{2n}b^{f(n,k)} \mid 0 \le k \le n\} \cup \{a^{2n+1}b^{g(n,k)} \mid 0 \le k \le n\}.$ What are f(n,k) and g(n,k)? (b) (15 points) Prove that the characterization for L(G) given in part (a) is correct using mathematical induction. Note: you can assume *without proof* that $L(G) \subseteq a^*b^*$.

(c) (10 points) Give a context-free grammar G' such that $L(G') = \{w \mid w \in L(G), |w| \text{ is even } \}.$

(d) (10 points) Give a context-free grammar G'' such that $L(G'') = \{w \mid w \in L(G), |w| \text{ is odd } \}.$

Question 3

(a) (20 points) Explain how a deterministic Turing machine can simulate a nondeterministic Turing machine for recognizing the same language.

(b) (15 points) Suppose we modify the definition of nondeterministic Turing machine so that a string is accepted if the string is accepted by every possible computation path. (In contrast, a normal nondeterministic Turing machine accepts a string w if there exists one accepting path that accepts w.) Explain how a deterministic Turing machine can simulate a nondeterministic Turing machine according to the modified definition.