Theoretical Foundations of Logic Programming

Mirosław Truszczyński
Department of Computer Science
University of Kentucky

July 24-27, 2008

Introduction

Logic programming

What is it?

- Declarative programming formalizm
- Knowledge representation formalizm

Two facets

- Prolog
- Answer-set programming

Logic programming

What is it?

- Declarative programming formalizm
- Knowledge representation formalizm

Two facets

- Prolog
- Answer-set programming

My goal

To present foundations of LP

- Focus on negation and its semantics

Overview

Roughly ...

- Basic syntax and semantics
- Horn logic programming — basis for Prolog (briefly)
- The need for negation
- Semantics of negation (supported, stable, Kripke-Kleene, well-founded)
- Properties of semantica (completion, Fages Lemma, loop theorem, equivalence)
- More general settings (logic HT, algebra)
- (Some) proofs

Some logic terminology

Language

- Constant, variable, function and predicate symbols
- Terms: strings built recursively from constant, variable and function symbols
- $c, X, f(c, X), f(f(c, X), f(X, f(X, c)))$
- Atoms: built of predicate symbols and terms
- $p(X, c, f(a, Y))$

Horn logic programming

Horn clause

- $p \leftarrow q_{1}, \ldots, q_{k}$
- where p, q_{i} are atoms
- Clauses are universally quantified
- special sentences
- Intuitive reading: if q_{1}, \ldots, q_{k} then p
- A collection of Horn clauses

Horn logic programming

Horn clause

- $p \leftarrow q_{1}, \ldots, q_{k}$
- where p, q_{i} are atoms
- Clauses are universally quantified
- special sentences
- Intuitive reading: if q_{1}, \ldots, q_{k} then p

Horn program

- A collection of Horn clauses

More terminology

Herbrand model

- Ground terms: no variable symbols
- Herbrand universe: collection of all ground terms
- Ground atoms: atoms built of predicate symbols and ground terms
- $p(a, c, f(a, a))$
- Herbrand base: collection of all ground atoms
- Herbrand model: subset of an Herbrand base

Horn logic programming

Semantics

- Given by Herbrand models
- $\operatorname{grnd}(P)$: the set of all ground instances of clauses in P
- Thus, no difference between P and $\operatorname{grnd}(P)$
- Key question: which ground facts hold in every Herbrand model of P ?
- Sufficient to restrict to Herbrand models contained in $H B(P)$
- Herbrand universe of $P, H U(P)$ (if no constant symbols in P, a single constant symbol introduced)
- Herbrand base of $P, H B(P)$
- Ground atoms not in $H B(P)$ are not true in all Herbrand models

We can say more

Least Herbrand model

- Every Horn program P has a least Herbrand model $L M(P)$
- the intersection of a set of Herbrand models of a Horn program is a Herbrand model of the program
- $H B(P)$ is an Herbrand model of P
- the intersection of all models is a least Herbrand model (and it is contained in $H B(P)$)
- Single intended Herbrand model
- For a ground $t, P \models p(t)$ if and only if $p(t) \in L M(P)$
- For ground t, if $P \notin p(t)$, defeasibly conclude $\neg p(t)$
- Closed World Assumption (CWA)

Computing with Horn programs

What do they specify, what can they express?

- A Horn program P specifies a subset X of the Herbrand universe for $P, H U(P)$, if for some predicate symbol p occurring in P we have:

$$
X=\{t \in H U(P): p(t) \in L M(P)\}
$$

- Finite Horn programs specify precisely the r.e. sets and relations Smullyan, 1968, Andreka and Nemeti, 1978

Reachability - an example

Program P

$\operatorname{arc}(a, b)$
$\operatorname{arc}(b, c)$.
$\operatorname{arc}(d, c)$
$\operatorname{reach}(X, X)$.
$\operatorname{reach}(X, Y) \leftarrow \operatorname{arc}(X, Z), \operatorname{reach}(Z, Y)$.

Reachability - an example

$H U(P), H B(P)$, ground (P)

- $H U(P)=\{a, b, c, d\}$
- $H B(P)=\{\operatorname{arc}(a, a), \operatorname{arc}(a, b), \ldots, \operatorname{reach}(a, a), \ldots\}$
- ground (P) :
$\operatorname{arc}(a, b) . \quad \operatorname{arc}(b, c) . \quad \operatorname{arc}(d, c)$.
reach $(a, a) . \quad r e a c h(b, b) . \quad r e a c h(c, c) . \quad r e a c h(d, d)$.
$\operatorname{reach}(a, a) . \leftarrow \operatorname{arc}(a, a), \operatorname{reach}(a, a)$.
$\operatorname{reach}(a, b) . \leftarrow \operatorname{arc}(a, b), \operatorname{reach}(b, a)$.
$r e a c h(c, b) . \leftarrow \operatorname{arc}(c, d), \operatorname{reach}(d, b)$.

Reachability - an example

Least model

- $\operatorname{arc}(a, b), \operatorname{arc}(a, c), \operatorname{arc}(d, c)$
- reach $(a, a), \operatorname{reach}(b, b), r e a c h(c, c), \operatorname{reach}(d, d)$
- reach $(a, b), \operatorname{reach}(a, c), \operatorname{reach}(d, c), \operatorname{reach}(a, c)$
- Assume reach is the distinguished "solution" predicate $\{(a, a),(b, b),(c, c),(d, d),(a, b),(a, c),(d, c),(a, c)\}$

Reachability - an example

Least model

- $\operatorname{arc}(a, b), \operatorname{arc}(a, c), \operatorname{arc}(d, c)$
- reach $(a, a), \operatorname{reach}(b, b), \operatorname{reach}(c, c), \operatorname{reach}(d, d)$
- reach $(a, b), \operatorname{reach}(a, c), r e a c h(d, c), \operatorname{reach}(a, c)$

What's computed?

- Assume reach is the distinguished "solution" predicate
- $\{(a, a),(b, b),(c, c),(d, d),(a, b),(a, c),(d, c),(a, c)\}$

Computing with Horn programs

Possible issues?

- Function symbols necessary!
- List constructor $[\cdot \mid \cdot]$ used to define higher-order objects
- Terms - basic data structures
- Queries (goals):
- ? $\mathrm{p}(\mathrm{t}) \quad$ - is $p(t)$ entailed?
- ? $\mathrm{p}(\mathrm{X}) \quad$ - for what ground t, is $p(t)$ entailed?
- Proofs provide answers
- SLD-resolution
- Unification - basic mechanism to manipulate data structures
- Extensive use of recursion
- Leads to Prolog

Example

Manipulating lists: append and reverse

```
append([], X,X).
append([X|Y],Z,[X|T])}\leftarrow\operatorname{append}(Y,Z,T)
reverse([], []).
reverse([X|Y],Z)\leftarrow append}(U,[X],Z),reverse(Y,U)
```

- both relations defined recursively
- terms represent complex objects: lists, sets, ...

Example, cont'd

Playing with reverse

- Problem: reverse list $[a, b, c]$
- Ask query ? - reverse([a, b, c], X).
- A proof of the query yields a substitution: $X=[c, b, a]$
- The substitution constitutes an answer
- Query ? - reverse $([a \mid X],[b, c, d, a])$ returns $X=[d, c, b]$
- Query ? - reverse $([a \mid X],[b, c, d, b])$ returns no substitutions (there is no answer)

Example, cont'd

Observations

- Techniques to search for proofs - the key
- Understanding of the resolution mechanism is important
- It may make a difference which logically equivalent form is used:
- reverse $([X \mid Y], Z) \leftarrow \operatorname{append}(U,[X], Z)$, reverse (Y, U).
- reverse $([X \mid Y], Z) \leftarrow \operatorname{reverse}(Y, U)$, append $(U,[X], Z)$.
- termination vs. non-termination for query:
? - reverse $([a \mid X],[b, c, d, b])$
- Is it truly knowledge representation?
- is it truly declarative?
- implementations are not!
- Nonmonotonicity quite restricted

Negation in the body

Why negation?

- Natural linguistic concept
- Facilitates knowledge representation (declarative descriptions and definitions
- Needed for modeling convenience
- Clauses of the form:

$$
p(\vec{X}) \leftarrow q_{1}\left(\vec{X}_{1}\right), \ldots, q_{k}\left(\vec{X}_{k}\right), \operatorname{not} r_{1}\left(\vec{Y}_{1}\right), \ldots, \operatorname{not} r_{l}\left(\vec{Y}_{l}\right)
$$

- Things get more complex!

Semantics of programs with negation

Observations

- Still Herbrand models
- Still restricted to $H B(P)$
- But - usually no least Herbrand model!
- Program

$$
\begin{aligned}
& a \leftarrow \operatorname{not} b \\
& b \leftarrow \operatorname{not} a
\end{aligned}
$$

has two minimal Herbrand models: $M_{1}=\{a\}$ and $M_{2}=\{b\}$.

- Identifying a single intended model a major issue

Semantics of programs with negation

Great Logic Programming Schism

- Single intended model approach
- continue along the lines of Prolog
- Multiple intended model approach
- branch into answer-set programming

Single intended model approach

"Better" Prolog

- Extensions of Horn logic programming
- Perfect semantics of stratified programs
- 3-val well-founded semantics for (arbitrary) programs
- Top-down computing based on unification and resolution
- XSB - David Warren at SUNY Stony Brook
- Will come back to it

Multiple intended models

Answer-set programming

- Semantics assigns to a program not one but many intended models!
- for instance, all stable or supported models (to be introduced soon)
- How to interpret these semantics?
- skeptical reasoning: a ground atom is cautiously entailed if it belongs to all intended models
- intended models represent different possible states of the world, belief sets, solutions to a problem
- Nonmonotonicity shows itself in an essential way
- as in default logic

Normal logic programming

Preliminary observations and comments

- Logic programs with negation
- Still interested only in Herbrand models
- Thus, enough to consider propositional case
- Supported model semantics
- Stable model semantics
- Connection to propositional logic (Clark's completion, tightness, loop formulas)
- Kripke-Kleene and well-founded semantics
- Strong and uniform equivalence

Normal logic programming - propositional case

Syntax

- Propositional language over a set of atoms At (possibly infinite)
- Clause r

$$
a \leftarrow b_{1}, \ldots, b_{m}, \text { not } c_{1}, \ldots, \text { not } c_{n}
$$

- a, b_{i}, c_{j} are atoms
- a is the head of the clause: $h d(r)$
- literals b_{i}, not c_{j} form the body of the rule: $\quad b d(r)$
- $\left\{b_{1}, \ldots, b_{m}\right\}$ - positive body $\mathrm{bd}^{+}(r)$
- $\left\{c_{1}, \ldots, c_{n}\right\}$ - negative body $b d^{-}(r)$

One-step provability operator

Basic tool in LP

- Operator on interpretations (sets of atoms)
- $T_{P}(I)=\{h d(r): I \models b d(r)\}$
- If P is Horn, T_{P} is monotone
- Let $I \subseteq J$
- Let $b d(r)=b_{1}, \ldots, b_{m} \quad$ (no negation!)
- If $I \models b d(r)$ than $J \models b d(r)$
- Thus, $T_{P}(I) \subseteq T_{P}(J)$
- Least fixpoint of T_{P} exists and coincides with the least Herbrand model of P
- In general, not the case (due to negation)
- $\emptyset \models$ not a
- but $\{a\} \not \models$ not a

Supported-model semantics

Definition and some observations

- $M \subseteq A t$ is a supported model of P if $T_{P}(M)=M$
- Supported models are indeed models
- let $M \models b d(r)$
- then $h d(r) \in T_{P}(M)$
- and so, $h d(r) \in M$
- Supported models are subsets of $\operatorname{At}(P)$ (the Herbrand base of P)
- Thus, they are Herbrand models

Supported models - example

Program $p \leftarrow \operatorname{not} q$

- One supported model: $M_{1}=\{p\}$
- $M_{2}=\{q\} \quad$ - not supported (but model)
- p "follows"
- If q included in the program (more exactly: a rule $q \leftarrow$)
- Just one supported model: $M_{1}=\{q\}$.
- p does not 'follow"
- nonmonotonicity

Supported models - example

Program $\quad p \leftarrow p$

- Two supported models: $M_{1}=\emptyset$ and $M_{2}=\{p\}$
- The second one is self-supported (circular justification)
- A problem for KR

Clark's completion

Rules as implications

- $b d^{\wedge}(r)$ the conjunction of all literals in the body of r with all not c replaced with $\neg c$
$-c m p \vdash^{-}(P)=\left\{b d^{\wedge}(r) \rightarrow h d(r): r \in P\right\}$

Clark's completion

Rules as definitions

- Notation: $\operatorname{def}_{P}(a)=\bigvee\left\{b d^{\wedge}(r): h d(r)=a\right\}$
- Note: if a not the head of any rule in $P, \operatorname{def}_{P}(a)=\perp$
- $\mathrm{cmpl}^{\rightarrow}(P)=\left\{a \rightarrow \operatorname{def}_{P}(a): a \in A t\right\}$
- $\operatorname{cmpl}(P)=\mathrm{cmpl} \vdash^{\circ}(P) \cup \mathrm{cmpl}^{\rightarrow}(P)$
- Note: if $a \notin \operatorname{At}(P), \operatorname{cmpl}(P) \models \neg a$

Clark's completion

Example

$$
\begin{aligned}
& a \leftarrow b, \operatorname{not} c \\
& a \leftarrow d \\
& b \leftarrow a
\end{aligned}
$$

- $\operatorname{def}(a)=(b \wedge \neg c) \vee d$
- $\operatorname{def}(b)=a$
- $\operatorname{def}(c)=\perp$
- cmp $\digamma^{\leftarrow}=\{b \wedge \neg c \rightarrow a ; d \rightarrow a ; a \rightarrow b\}=\{(b \wedge \neg c) \vee d \rightarrow a ; a \rightarrow b\}$
-cmpl ${ }^{\leftarrow}=\{\operatorname{def}(a) \rightarrow a ; \operatorname{def}(b) \rightarrow b ; \operatorname{def}(c) \rightarrow c\}$
- cmpl $\rightarrow=\{a \rightarrow \operatorname{def}(a) ; b \rightarrow \operatorname{def}(b) ; c \rightarrow \operatorname{def}(c)\}$
- cmpl $=\{a \leftrightarrow \operatorname{def}(a) ; b \leftrightarrow \operatorname{def}(b) ; c \leftrightarrow \operatorname{def}(c)\}\}$
- cmpl has two models: \emptyset and $\{a, b\}$

Clark's completion

Connection to supported models

- A set $M \subseteq A t$ is a supported model of a program P if and only if M is a model (in a standard sense) of $c m p l(P)$
- Connection to SAT
- Allows us to use SAT solvers to compute supported models of P

Connection to supported models - proof

M - supported model of $P: \quad M=T_{P}(M)$

- Let $a \in M \Rightarrow \exists r \in P$ st: $h d(r)=a \quad$ and $\quad M \models b d(r)$
- $\Rightarrow M \models b d^{\wedge}(r), \quad M \models \operatorname{def}(a)$ and $\quad M \models a \leftrightarrow \operatorname{def}(a)$
- Let $a \notin M \Rightarrow \quad \forall r \in P$ st: $h d(r)=a, \quad M \neq b d(r)$
- $\Rightarrow M \not \models \operatorname{def}(a)$ and $M \models a \leftrightarrow \operatorname{def}(a)$

- Thus, $M=T_{P}(M)$ and M supported

Connection to supported models - proof

M - supported model of $P: \quad M=T_{P}(M)$

- Let $a \in M \Rightarrow \exists r \in P$ st: $h d(r)=a$ and $M \models b d(r)$
- $\Rightarrow \quad M \models b d^{\wedge}(r), \quad M \models \operatorname{def}(a)$ and $M \models a \leftrightarrow \operatorname{def}(a)$
- Let $a \notin M \Rightarrow \quad \forall r \in P$ st: $h d(r)=a, \quad M \not \vDash b d(r)$
- $\Rightarrow \quad M \nLeftarrow \operatorname{def}(a)$ and $M \models a \leftrightarrow \operatorname{def}(a)$

Conversely: let $M \models c m p l(P)$

- $\Rightarrow \quad M \models P$ and $\mathrm{so}, T_{P}(M) \subseteq M$
- Let $a \in M \Rightarrow M \models \operatorname{def}(a)$
- $\Rightarrow \quad \exists r \in P$ st: $M \models b d^{\wedge}(r)$
- $\Rightarrow M \models b d(r)$ and $a \in T_{P}(M) \Rightarrow M \subseteq T_{P}(M)$
- Thus, $M=T_{P}(M)$ and M supported

Stable model semantics

Supported models of interest, but ...

- Some supported models based on circular arguments
- $p \leftarrow p$
- $\{p\}$ is supported model (circular argument)
- Some more stringent bases for selecting intended models needed

Stable model semantics

Gelfond-Lifschitz reduct

- P - logic program
- M - set of atoms
- Reduct P^{M}
- for each $a \in M$ remove rules with not a in the body
- remove literals not a from all other rules

Stable model semantics

Definition through reduct

- Reduct P^{M} is a Horn program
- It has the least model $L M\left(P^{M}\right)$
- M is a stable model of P if

$$
M=L M\left(P^{M}\right)
$$

Stable model semantics

And now through Gelfond-Lifschitz operator

- $G L_{P}(M)=L M\left(P^{M}\right)$
- M is a stable model if and only if

$$
M=G L_{P}(M)
$$

- $G L_{P}$ is antimonotone
- For $M \subseteq N$:

$$
G L_{P}(N) \subseteq G L_{P}(M)
$$

Stable models - examples

Multiple stable models
$p \leftarrow q$, not s
$r \leftarrow p, \operatorname{not} q$, not s
$s \leftarrow \operatorname{not} q$
$q \leftarrow \operatorname{nots}$

- Two stable models: $M_{1}=\{p, q\}$ and $M_{2}=\{s\}$
- No stable models!!

Stable models - examples

Multiple stable models

$$
\begin{aligned}
p & \leftarrow q, \operatorname{not} s \\
r & \leftarrow p, \operatorname{not} q, \text { not } s \\
s & \leftarrow \operatorname{not} q \\
q & \leftarrow \operatorname{not} s
\end{aligned}
$$

- Two stable models: $M_{1}=\{p, q\}$ and $M_{2}=\{s\}$

No stable models

$p \leftarrow \operatorname{not} p$

- No stable models!!

Stable models - properties

Stable models are models!

- Let M be a stable model
- M is a model of all rules that are removed from the program when forming the reduct
- M is a model of every rule that contributes to the reduct
- Indeed, each such rule is subsumed by a rule in the reduct and M satisfies all rules in the reduct

Stable models - properties

Stable models are minimal models!

- Let N be a stable model and M a model s.t. $M \subseteq N$
- Then

$$
N=G L_{P}(N) \subseteq G L_{P}(M) \subseteq M
$$

- Thus, $N \subseteq M$ and so $N=M$
- The minimality of N follows
- Stable models form an antichain!

Stable models - properties

Lemma: If M model of $P, G L_{P}(M) \subseteq M$

- Since M model of P, then M is a model of P^{M}
- $a \leftarrow b_{1}, \ldots, b_{m}$ - a rule in reduct
- $a \leftarrow b_{1}, \ldots, b_{m}$, not c_{1}, \ldots, not c_{n} - the original rule in P
- M satisfies the latter, and it satisfies every not c_{i} (as $c_{i} \notin M$)
- Thus, M satisfies the reduct rule

Stable models - properties

Connection to supported models

- If M is a stable model of P then it is a supported model of P
- Let M be a stable model of P
- Then M model of P and so, $T_{P}(M) \subseteq M$
- $r=a \leftarrow b_{1}, \ldots, b_{m}$, not c_{1}, \ldots, not $c_{n} \quad$ - a rule in P such that $M \models b d(r)$
- Then $r^{\prime}=a \leftarrow b_{1}, \ldots, b_{m}$ belongs to the reduct P^{M}
- And $M \models b d\left(r^{\prime}\right)$
- Since M is a model of $P^{M}, a \in M$
- Hence, $T_{P}(M) \subseteq M$ and so, $M=T_{P}(M)$
- That is, M is supported!!

Fages Lemma

But ...

- The converse not true, in general (as it should not be)

- Positive dependency of p on itself is a problem

Fages Lemma

But ...

- The converse not true, in general (as it should not be)

Counterexample

- $p \leftarrow p$
- $\{p\}$ is supported but not stable
- Positive dependency of p on itself is a problem

Fages Lemma

Positive dependency graph $G^{+}(P)$

- Atoms of P are vertices
- (a, b) is an edge in $G^{+}(P)$ if for some $r \in P: \quad h d(r)=a$, $b \in b d^{+}(r)$
P is tight if $G^{+}(P)$ is acyclic
Alternatively if there is a labeling of atoms with non-negative integers $(a \mapsto \lambda(a))$ s.t.
- for every rule $r \in P$

- Connection to topological ordering of positive dependency graphs

Fages Lemma

Positive dependency graph $G^{+}(P)$

- Atoms of P are vertices
- (a, b) is an edge in $G^{+}(P)$ if for some $r \in P: \quad h d(r)=a$, $b \in b d^{+}(r)$

Tight programs

- P is tight if $G^{+}(P)$ is acyclic
- Alternatively, if there is a labeling of atoms with non-negative integers $(a \mapsto \lambda(a))$ s.t.
- for every rule $r \in P$

$$
\lambda(h d(r))>\max \left\{\lambda(b): b \in b d^{+}(r)\right\}
$$

- Connection to topological ordering of positive dependency graphs

Fages Lemma

The statement - finally

- If P is tight then every supported model is stable
- Intuitively, circular support not possible

Fages Lemma - example

Program P
$p \leftarrow q$, not s
$r \leftarrow p, \operatorname{not} q$, not s
$s \leftarrow \operatorname{not} q$
$q \leftarrow$ nots

- $\{p, q\}$ and $\{s\}$ are supported models of P

- Thus, they are stable (which we verified directly earlier)

Fages Lemma - example

Program P
$p \leftarrow q$, not s
$r \leftarrow p$, not q, not s
$s \leftarrow \operatorname{not} q$
$q \leftarrow \operatorname{not} s$

Graph $G^{+}(P)$

- $\{p, q\}$ and $\{s\}$ are supported models of P

- Thus, they are stable (which we verified directly earlier)

Fages Lemma - example

Program P

$$
\begin{aligned}
p & \leftarrow q, \text { not } s \\
r & \leftarrow p, \operatorname{not} q, \text { not } s \\
s & \leftarrow \operatorname{not} q \\
q & \leftarrow \operatorname{not} s
\end{aligned}
$$

Graph $G^{+}(P)$

P is tight

- $\{p, q\}$ and $\{s\}$ are supported models of P
- $T_{P}(\{p, q\})=\{p, q\}$
- $T_{P}(\{s\})=\{s\}$
- Thus, they are stable (which we verified directly earlier)

Fages Lemma

Proof

- Let P be tight and M be its supported model
- Then M is a model of P^{M}
- Let N be a model of P^{M}
- Claim: for every k, if $a \in M$ and $\lambda(a)<k$, then $a \in N$
- Holds for $k=0$ (trivially)
- Let $a \in M$ and $\lambda(a)=k$
- Since M supported, there is $r \in P$ such that $a=h d(r)$ and $M \models b d(r)$
- In particular, $b d^{+}(r) \subseteq M$ and so, $b d^{+}(r) \subseteq N$ (by I.H.)
- Since $M \models b d(r), M$ contributes to the reduct
- Since N is a model of $P^{M}, a \in N$
- It follows that $M=L M\left(P^{M}\right)$

Relativized tightness

- Let $X \subseteq A t(P)$
- P is tight on X if the program consisting of rules r such that $b d^{+}(r) \subseteq X$ is tight
- If P is tight on X and M is a supported model of P such that $M \subseteq X$, then M is stable

Relativized tightness

- Let $X \subseteq A t(P)$
- P is tight on X if the program consisting of rules r such that $b d^{+}(r) \subseteq X$ is tight

Generalization

- If P is tight on X and M is a supported model of P such that $M \subseteq X$, then M is stable

Generalized Fages Lemma - example

Program P

$p \leftarrow q$, not s
$r \leftarrow p$, not q, not s
$s \leftarrow \operatorname{not} q$
$q \leftarrow$ nots
$p \leftarrow r$

- $\{p, q\}$ and $\{s\}$ are still supported models of P

- Since P is tight on each of them, they are stable

Generalized Fages Lemma - example

Program P
$\begin{aligned} p & \leftarrow q, \operatorname{not} s \\ r & \leftarrow p, \operatorname{not} q, \text { not } s \\ s & \leftarrow \operatorname{not} q \\ q & \leftarrow \operatorname{not} s \\ p & \leftarrow r\end{aligned}$

Graph $G^{+}(P)$

$\{p, q\}$ and $\{s\}$ are still supported models of P

- Since P is tight on each of them, they are stable

Generalized Fages Lemma - example

Program P

Graph $G^{+}(P)$

$$
\begin{aligned}
p & \leftarrow q, \operatorname{not} s \\
r & \leftarrow p, \operatorname{not} q, \text { not } s \\
s & \leftarrow \operatorname{not} q \\
q & \leftarrow \operatorname{not} s \\
p & \leftarrow r
\end{aligned}
$$

P is not tight

- $\{p, q\}$ and $\{s\}$ are still supported models of P
- $T_{P}(\{p, q\})=\{p, q\}$
- $T_{P}(\{s\})=\{s\}$
- Since P is tight on each of them, they are stable

Loops and loop formulas

External support formula for $Y \subseteq \operatorname{At}(P)$

- For a rule r :
- $b d^{\wedge}(r) \quad$ the conjunction of all literals in the body of r
with all not c replaced with $\neg c$
- For $Y \neq \emptyset$:
- $E S_{P}(Y)$ the disjunction of $b d^{\wedge}(r)$ for all $r \in P$ st:
- $h d(r) \in Y$
- $b d^{+}(r) \cap Y=\emptyset$
- For finite programs: well-formed formulas
- Hence, will assume finiteness
- $E S_{P}(\{a\})=\operatorname{def}_{P}(a)$

Loops and loop formulas

External support formula for $Y \subseteq A t(P)$

- For a rule r :
- $b d^{\wedge}(r) \quad$ the conjunction of all literals in the body of r
with all not c replaced with $\neg c$
- For $Y \neq \emptyset$:
- $E S_{P}(Y)$ the disjunction of $b d^{\wedge}(r)$ for all $r \in P$ st:
- $h d(r) \in Y$
- $b d^{+}(r) \cap Y=\emptyset$
- For finite programs: well-formed formulas
- Hence, will assume finiteness

Observations

- $E S_{P}(\{a\})=\operatorname{def}_{P}(a)$
cf. Clark's completion

A characterization of stable models

for finite programs, the following conditions are equivalent

- X is a stable model of P
- X is a model of $c m p)^{\digamma}(P) \cup\left\{Y^{\wedge} \rightarrow E S_{P}(Y): Y \subseteq A t(P), Y \neq \emptyset\right\}$
- X is a model of $c m p)^{\leftarrow}(P) \cup\left\{Y^{\vee} \rightarrow E S_{P}(Y): Y \subseteq A t(P), Y \neq \emptyset\right\}$
- OK to replace $\mathrm{cmpl} \vdash(P)$ with $\mathrm{cmpl}(P)$
- cmpl $\rightarrow(P) \subseteq\left\{Y^{\wedge} \rightarrow E S_{P}(Y): Y \subseteq \operatorname{At}(P)\right\}$
- cmpl ${ }^{\rightarrow}(P) \subseteq\left\{Y^{\vee} \rightarrow E S_{P}(Y): Y \subseteq \operatorname{At}(P)\right\}$

Definition

- A loop is a non-empty set $Y \subseteq A t(P)$ that induces in $G^{+}(P)$ a strongly connected subgraph
- In particular, all singleton sets are loops

Loops - example

Program P

$$
\begin{aligned}
& p \leftarrow q, \text { not } r \\
& q \leftarrow p \\
& r \leftarrow \operatorname{not} p
\end{aligned}
$$

Loops - example

Program P

$$
\begin{aligned}
& p \leftarrow q, \text { not } r \\
& q \leftarrow p \\
& r \leftarrow \text { not } p
\end{aligned}
$$

Graph $G^{+}(P)$

- $\{p\},\{q\},\{r\},\{p, q\}$ are loops
- $\{p, q, r\}$ is not!

Loop Theorem

For finite programs, the following conditions are equivalent

- X is a stable model of P
- X is a model of $c m p I^{\leftarrow}(P) \cup\left\{Y^{\wedge} \rightarrow E S_{P}(Y): Y\right.$ - a loop $\}$
- X is a model of $c m p / \leftarrow(P) \cup\left\{Y^{\vee} \rightarrow E S_{P}(Y): Y-\right.$ a loop $\}$
- OK to replace $\mathrm{cmpl} \leftarrow(P)$ with $\mathrm{cmpl}(P)$
- Singleton sets are loops!

Loop Theorem

Let X be a stable model of P

- $\Rightarrow X \models P \quad \Rightarrow \quad X \models P^{X}$
- $X \models P \quad \Rightarrow \quad X \models \mathrm{cmpl} \vdash^{\circ}(P)$
- Let Y be a loop st: $X \models Y^{\wedge} \Rightarrow X \cap Y \neq \emptyset$
- Let $a \in Y$ be the "first" element of Y in X recall that $X=L M\left(P^{X}\right)$
- $\Rightarrow \quad \exists r \in P$ st: $\quad a=h d(r), \quad b d^{+}(r) \cap Y=\emptyset$
- $\Rightarrow \quad b d^{\wedge}(r)$ is a disjunct of $E S_{P}(Y)$
- Also: $b d^{+}(r) \subseteq X \quad$ and $\quad b d^{-}(r) \cap X=\emptyset \Rightarrow \quad X \models b d^{\wedge}(r)$
- $\Rightarrow \quad X \vDash E S_{P}(Y) \quad \Rightarrow \quad X \models Y^{\wedge} \rightarrow E S_{P}(Y)$
- No difference if Y^{\wedge} replaced with Y^{\vee}

Loop Theorem

Let $X \models \mathrm{cmpl}^{\circ}(P) \cup\left\{Y^{\wedge} \rightarrow E S_{P}(Y): Y\right.$ - a loop $\}$

- $\Rightarrow \quad X \models P \quad \Rightarrow \quad X \vDash P^{X}$
- Let $X^{\prime}=L M\left(P^{X}\right) \quad \Rightarrow \quad X^{\prime} \subseteq X$
- Let $X \backslash X^{\prime} \neq \emptyset$
- Consider subgraph H of $\left.G^{(} P\right)$ induced by $X \backslash X^{\prime}$
- Let Y be a "terminal" strongly connected component of H no edge in H starts in Y and ends outside of Y

Loop Theorem

Let $X \models \mathrm{cmpl}^{\circ}(P) \cup\left\{Y^{\wedge} \rightarrow E S_{P}(Y): Y\right.$ - a loop $\}$

- $\Rightarrow \quad X \models P \quad \Rightarrow \quad X \vDash P^{X}$
- Let $X^{\prime}=L M\left(P^{X}\right) \quad \Rightarrow \quad X^{\prime} \subseteq X$
- Let $X \backslash X^{\prime} \neq \emptyset$
- Consider subgraph H of $G(P)$ induced by $X \backslash X^{\prime}$
- Let Y be a "terminal" strongly connected component of H no edge in H starts in Y and ends outside of Y

Loop Theorem

Proof, cont'd

- $X \models Y^{\wedge} \rightarrow E S_{P}(Y) \quad$ (also: $X \models Y^{\vee} \rightarrow E S_{P}(Y)$)
- Since $Y \subseteq X: \quad \Rightarrow \quad X \models E S_{P}(Y)$
- $\Rightarrow \quad \exists r \in P$ st: $h d(r) \in Y, \quad b d^{+}(r) \cap Y=\emptyset, \quad X \models b d^{\wedge}(r)$
$\Rightarrow \quad b d^{+}(r) \subseteq X \quad$ and $\quad r^{X} \in P^{X}$
- Since Y terminal and $b d^{+}(r) \cap Y=\emptyset: \quad \Rightarrow \quad b d^{+}(r) \subseteq X^{\prime}$
- if $a \in b d^{+}(r): \quad a \in X$
- $(h d(r), a)$ edge in $G^{+}(P)$
- if $a \in X \backslash X^{\prime}: \quad(h d(r), a) \quad$ edge in H
- $\Rightarrow a \in Y$, contradiction
$\Rightarrow \quad a \in X^{\prime}$
- Since $X^{\prime} \models P^{X}: \quad \Rightarrow \quad X^{\prime} \models r^{X}$
- $\quad \Rightarrow h d(r) \in X^{\prime}$
- Since $X^{\prime} \cap Y=\emptyset: \quad \Rightarrow \quad$ contradiction

Program inconsistency

Some programs have no stable nor supported models

- Sufficient conditions for the existence of stable models
- 4-val supported and stable models

Sufficient conditions

General dependency graph $G(P)$

- Atoms of P are vertices
- (a, b) is an edge in P if for some $r \in P: \quad h d(r)=a, b \in b d(r)$
- If $b \in b d^{+}(r)$ - edge is positive
- If $b \in b d^{-}(r)$ - edge is negative

Call-consistent: if $G(P)$ has no odd cycles (cycles with an odd

number of negative edges)
Stratified: if $G(P)$ has no paths with infinitely many negative edges
> - in particular, no cycles with a negative edge (for finite programs both conditions are equivalent)

Sufficient conditions

General dependency graph $G(P)$

- Atoms of P are vertices
- (a, b) is an edge in P if for some $r \in P: \quad h d(r)=a, b \in b d(r)$
- If $b \in b d^{+}(r)$ - edge is positive
- If $b \in b d^{-}(r)$ - edge is negative

A propositional program P is

- Call-consistent: if $G(P)$ has no odd cycles (cycles with an odd number of negative edges)
- Stratified: if $G(P)$ has no paths with infinitely many negative edges
- in particular, no cycles with a negative edge (for finite programs both conditions are equivalent)

Sufficient conditions

Results

- If a finite logic program is call-consistent, it has a stable model
- If a program is stratified it has a unique stable model

Stratification through splitting

Splitting

- Let P and Q be programs such that P does not contain any of the head atoms of Q
" Q above P "
- A set M is a stable model of $P \cup Q$ iff there is a stable model N of P such that M is a stable model of $Q \cup N$

Splitting Theorem

Proof: (\Rightarrow) Let $M \in S t M(P \cup Q)$

- $N:=M \cap A t(P)$
- $P^{N}=P^{M} \quad($ as $(M \backslash N) \cap A t(P)=\emptyset)$
- $M \models P \quad \Rightarrow \quad M \models P^{M} \quad \Rightarrow \quad M \models P^{N}$
- $\Rightarrow \quad N \vDash P^{N} \quad$ (as $\left.(M \backslash N) \cap A t(P)=\emptyset\right)$
- Let $N^{\prime} \subseteq N$ be st: $N^{\prime} \models P^{N}$
$\Rightarrow \quad N^{\prime} \models P^{M} \quad \Rightarrow \quad N^{\prime} \cup(M \backslash N) \models P^{M}$
- Let $r \in Q^{M}$ be st: $\quad N^{\prime} \cup(M \backslash N) \models b d(r)$
- $\Rightarrow M \models b d(r) \quad \Rightarrow \quad M \models h d(r) \quad$ (as $M \models Q$ and $s o, M \models Q^{M}$)
$\Rightarrow \quad h d(r) \in M \quad \Rightarrow \quad h d(r) \in M \backslash N \quad \Rightarrow \quad h d(r) \in N^{\prime} \cup(M \backslash N)$
- $\Rightarrow \quad N^{\prime} \cup(M \backslash N) \models Q^{M} \quad \Rightarrow \quad N^{\prime} \cup(M \backslash N) \models(P \cup Q)^{M}$
$\Rightarrow \quad N^{\prime} \cup(M \backslash N)=M \quad \Rightarrow \quad N^{\prime}=N \quad \Rightarrow \quad N=L M\left(P^{N}\right)$
- $\Rightarrow \quad N \in \operatorname{StM}(P)$

Splitting Theorem

Next, we show that $M \in S t M(Q \cup N)$

- Recall: $N=M \cap \operatorname{At}(P) \quad \Rightarrow \quad N \subseteq M$
- Also: $M \models Q \Rightarrow M \models Q^{M} \cup N=(Q \cup N)^{M}$
- Let $M^{\prime} \subseteq M$ be st: $M^{\prime} \models(Q \cup N)^{M}$
- $\Rightarrow N \subseteq M^{\prime} \quad M^{\prime} \models Q^{M}$
- Recall: $N \models P^{N}$ and so $N \models P^{M} \quad$ (as $P^{M}=P^{N}$)
- $\Rightarrow M^{\prime} \models P^{M} \quad \Rightarrow \quad M^{\prime} \models(P \cup Q)^{M}$
- Recall: $M=L M\left((P \cup Q)^{M}\right) \Rightarrow M=M^{\prime}$
$\Rightarrow \quad M=L M\left((P \cup Q)^{M}\right) \quad \Rightarrow \quad M \in \operatorname{StM}(Q \cup N)$

Splitting Theorem

Conversely: $M \in S t M(Q \cup N)$ and $\quad N \in \operatorname{StM}(P)$

- $\Rightarrow \quad M \models Q, \quad N \subseteq M, \quad M \subseteq h d(Q) \cup N$
- $\Rightarrow M \cap A t(P)=N \quad \Rightarrow \quad M \models P$
- $\Rightarrow M \models P \cup Q \quad \Rightarrow \quad M \models(P \cup Q)^{M}$
- Let $M^{\prime} \subseteq M$ be st: $\quad M^{\prime} \models(P \cup Q)^{M}$
- $N^{\prime}:=M^{\prime} \cap A t(P)$
$\Rightarrow \quad M^{\prime} \models P^{M} \quad \Rightarrow \quad N^{\prime} \models P^{M} \quad \Rightarrow \quad N^{\prime} \models P^{N}$
$\Rightarrow N^{\prime}=N \quad \Rightarrow \quad N \subseteq M^{\prime} \quad \Rightarrow \quad M^{\prime} \models Q^{M} \cup N=(Q \cup N)^{M}$
- $\Rightarrow M^{\prime}=M \quad \Rightarrow \quad M=L M\left((Q \cup N)^{M} \quad \Rightarrow M \in S t M(P \cup Q)\right.$

Stratification

Equivalent definition in the finite case

- P stratified if
- $h d(P) \cap b d^{-}(P)=\emptyset$, or
- $P=P_{1} \cup P_{2}$, where P_{2} stratified, $h d\left(P_{1}\right) \cap\left(b d^{-}\left(P_{1}\right) \cup A t\left(P_{2}\right)\right)=\emptyset$

Finite stratified programs have a unique stable model

- Induction
- Basis: exident
- Inductive step: P_{2} has a unique stable model, say N
- Clearly, $P_{1} \cup N$ has a unique stable model, too
- Apply splitting theorem

Equivalence - logics behind nonmonotonic logics

What do I mean?

- Logic allows us to manipulate theories
- Tautologies can be added or removed without changing the meaning
- Consequences of formulas in theories can be added or removed without changing the meaning
- $\{p, p \rightarrow q\}$ the same as $\{p, p \rightarrow q, q\}$
- one can always be replaced with another (within any larger context)
- Equivalence for replacement - logical equivalence necessary and sufficient
- Is there a logic which captures such manipulation with theories in nonmonotonic systems?

Is it important?

Query optimization

- Compute answers to a query Q (program) from a knowledge base $K B$ (another program) reason from $Q \cup K B$
- Rewrite Q into an equivalent query Q^{\prime}, which can be processed more efficiently
reasoning from $Q^{\prime} \cup K B$ easier
- When are two queries equivalent?
- If $Q \cup K B$ and $Q^{\prime} \cup K B$ have the same meaning not quite what we want - knowledge-base dependent
- If $Q \cup K B$ and $Q^{\prime} \cup K B$ have the same meaning for every knowledge base $K B$
better - knowledge-base independent

Towards modular logic programming

Equivalence of programs

- P and Q are equivalent if they have the same models
- P and Q are stable-equivalent if they have the same stable models

Towards modular logic programming

Equivalence of programs

- P and Q are equivalent if they have the same models

Nonmonotonic equivalence of programs

- P and Q are stable-equivalent if they have the same stable models

Towards modular logic programming

Equivalence for replacement

- Equivalence for replacement - for every program R, programs $P \cup R$ and $Q \cup R$ have the same stable models
- Commonly known as strong equivalence

Lifschitz, Pearce, Valverde 2001; Lin 2002; Turner 2003; Eiter, Fink 2003; Eiter, Fink,
Tompits, Woltran, 2005; T_ 2006; Woltran 2008

- Different than equivalence
- $\{p \leftarrow \operatorname{not} q\}$ and $\{q \leftarrow \operatorname{not} p\}$
- The same models but different meaning
- Different than stable-equivalence
- $P=\{p\}$ and $Q=\{p \leftarrow n o t q\}$
- The same stable models; $\{p\}$ is the only stable model in each case
- But, $P \cup\{q\}$ and $Q \cup\{q\}$ have different stable models! ($\{p, q\}$ and $\{q\}$, respectively)

When are two programs strongly equivalent?

Se-model characterization

- A pair (X, Y) of sets of atoms is an se-model of a program P if
- $X \subseteq Y$
- $Y \models P$
- $X \models P^{Y}$
- SE(P) set of se-models of P
- Logic programs P and Q are strongly equivalent iff they have the same se-models $(S E(P)=S E(Q))$
- A similar concept characterizes strong equivalence of default theories
Turner 2003

When are two programs strongly equivalent?

Lemma 1: $\operatorname{SE}(P)=\operatorname{SE}(Q) \quad \Rightarrow \quad \operatorname{StM}(P)=\operatorname{StM}(Q)$

- $Y \in \operatorname{StM}(P) \quad \Rightarrow \quad Y \models P$ and $Y \models P^{Y}$
$\Rightarrow \quad(Y, Y) \in S E(P) \quad \Rightarrow \quad(Y, Y) \in S E(Q)$
- $\Rightarrow \quad Y \models Q^{Y}$
- If $Z \subseteq Y$ and $Z \models Q^{Y} \quad \Rightarrow \quad(Z, Y) \in S E(Q)$
- $\Rightarrow \quad(Z, Y) \in S E(P)$
- $\Rightarrow \quad Z \models P^{Y} \quad \Rightarrow \quad Z=Y\left(\right.$ as $\left.Y=L M\left(P^{Y}\right)\right)$
- $\Rightarrow \quad Y=L M\left(Q^{Y}\right) \quad \Rightarrow \quad Y \in \operatorname{StM}(Q)$

When are two programs strongly equivalent?

Lemma 2: $S E(P \cup R)=S E(P) \cap S E(R)$

- $(X, Y) \in S E(P \cup R)$ iff
- $X \subseteq Y$ and $Y \models P \cup R$ and $X \models(P \cup R)^{Y}=P^{Y} \cup R^{Y}$ iff
- $X \subseteq Y$ and ($Y \models P$ and $Y \models R$) and ($X \models P^{Y}$ and $X \models R^{Y}$) iff
- $\left(X \subseteq Y, Y \models P, X \models P^{Y}\right)$, and $\left(X \subseteq Y, Y \models R, X \models R^{Y}\right)$ iff
- $(X, Y) \in S E(P)$ and $(X, Y) \in S E(R)$ iff
- $(X, Y) \in S E(P) \cap S E(R)$

When are two programs strongly equivalent?

$S E(P)=S E(Q) \quad \Rightarrow \quad P$ and Q are strongly equivalent

- By Lemma 2, for every R : $S E(P \cup R)=S E(P) \cap S E(R)=S E(Q) \cap S E(R)=S E(Q \cup R)$
- By Lemma 1, $S t M(P \cup R)=S t M(Q \cup R)$

When are two programs strongly equivalent?

$S E(P)=S E(Q) \quad \Rightarrow \quad P$ and Q are strongly equivalent

- By Lemma 2, for every R : $S E(P \cup R)=S E(P) \cap S E(R)=S E(Q) \cap S E(R)=S E(Q \cup R)$
- By Lemma 1, $S t M(P \cup R)=S t M(Q \cup R)$
P and Q are strongly equivalent $\quad \Rightarrow \quad S E(P)=S E(Q)$
- Let $(X, Y) \in S E(P) \backslash S E(Q): \quad(X, Y) \in S E(P)$ and $(X, Y) \notin S E(Q)$
- $\Rightarrow \quad Y \models P^{Y} \quad \Rightarrow \quad Y=L M\left(P^{Y} \cup Y\right)$
- Since $P^{Y} \cup Y=(P \cup Y)^{Y}, \quad Y=L M\left((P \cup Y)^{Y}\right) \quad \Rightarrow$ $Y \in S t M(P \cup Y)$
- $\Rightarrow \quad Y \in S t M(Q \cup Y) \quad \Rightarrow \quad Y \vDash Q$
- $\Rightarrow \quad X \notin Q^{Y}$

When are two programs strongly equivalent?

$(X, Y) \in S E(P),(X, Y) \notin S E(Q), Y \models Q, X \not \models Q^{Y}$

- Define $R=X \cup\left\{y \leftarrow y^{\prime} \mid y, y^{\prime} \in Y \backslash X\right\}$
- $\Rightarrow \quad Y \models Q \cup R$ and $Y \models(Q \cup R)^{Y}$
- Let $Z \subseteq Y$ st: $Z \models(Q \cup R)^{Y} \quad \Rightarrow \quad Z \models Q^{Y} \cup R$
- $\Rightarrow \quad Z \models Q^{Y} \quad \Rightarrow \quad X \neq Z$
- Since $Z \models R, \quad X \subseteq Z \quad \Rightarrow \quad \exists y \in Y \backslash X$ st: $\quad y \in Z$
- Since $Z \models R, \quad Y \backslash X \subseteq Z$
$\Rightarrow \quad Y \subseteq Z \quad \Rightarrow \quad Z=Y$
- $\Rightarrow \quad Y \in S t M(Q \cup R) \quad \Rightarrow \quad Y \in \operatorname{StM}(P \cup R)$
$\Rightarrow \quad Y=L M\left((P \cup R)^{Y}\right)$
- Since $X \equiv P^{Y} \cup R=(P \cup R)^{Y}, \quad X=Y$
- $\Rightarrow Y \notin Q^{Y} \Rightarrow Y \not \vDash Q$, a contradiction

An interesting variant

Uniform equivalence

- Programs P and Q are uniformly equivalent if for every set D of facts (rules with empty body) $P \cup D$ and $Q \cup D$ have the same stable models
- Relevant for DB query optimization
- Different than other types of equivalence discussed here

When are two programs uniformly equivalent?

Se-model characterization

- Programs P and Q are uniformly equivalent iff
- for every $Y \subseteq A t, Y$ is a model of P if and only if Y is a model of Q
- for every $(X, Y) \in S E(P)$ such that $X \subset Y$, there is $U \subseteq A t$ such that $X \subseteq U \subset Y$ and $(U, Y) \in S E(Q)$
- for every $(X, Y) \in S E(Q)$ such that $X \subset Y$, there is $U \subseteq$ At such that $X \subseteq U \subset Y$ and $(U, Y) \in S E(P)$

When are two programs uniformly equivalent?

Ue-model characterization

- A pair (X, Y) of sets of atoms is a ue-model of a program P if it is an se-model of P and
- For every se-model $\left(X^{\prime}, Y\right)$ such that $X \subseteq X^{\prime}, X^{\prime}=X$ or $X^{\prime}=Y$
- Finite logic programs P and Q are uniformly equivalent iff they have the same ue-models
Eiter and Fink, 2003

General logic programs

Formulas

- Base: atoms and the symbol \perp ("false")
- Connectives \wedge, \vee and \rightarrow
- Shortcuts
- $\neg F::=F \rightarrow \perp$
- $\top::=\perp \rightarrow \perp$
- $F \leftrightarrow G::=(F \rightarrow G) \wedge(G \rightarrow F)$

General logic programs

Positive and negative occurrences of atoms in formulas

- An occurrence of a in F is positive, if the \# of implications with this occurrence of a in antecedent is even
- Otherwise, it is negative
- An occurrence of a in F is strictly positive if no implication contains this occurrence of a in the antecedent
- $\neg F$ (that is, $F \rightarrow \perp$) has no strictly positive occurrences of any atom.
- A head atom (of a formula)
an atom with at least one strictly positive occurrence
- $\ln (\neg p \rightarrow q) \rightarrow(p \vee \neg q)$:
- the first occurrence of p is negative
- the second occurrence of p is strictly positive
- both occurrences of q are negative

Stable-model semantics

Reduct of a formula F with respect to a set X of atoms

- The formula F^{X} obtained by replacing in F each maximal subformula of F that is not satisfied by X with \perp
- Thus, q is a maximal subformula not satisfied by X
- Thus: $F^{X}=(\perp \rightarrow q) \wedge((\perp \rightarrow \perp) \rightarrow p)$
- Classically equivalent to p

Stable-model semantics

Reduct of a formula F with respect to a set X of atoms

- The formula F^{X} obtained by replacing in F each maximal subformula of F that is not satisfied by X with \perp

Example: $F=(\neg p \rightarrow q) \wedge(\neg q \rightarrow p)$ and $X=\{p\}$

- $\neg p=p \rightarrow \perp$, and $X \vDash \neg p \rightarrow q$
- Thus: $\neg p$ is a maximal subformula not satisfied by X
- $\neg q=q \rightarrow \perp, X \nLeftarrow q, X \models \neg q$
- Thus, q is a maximal subformula not satisfied by X
- Thus: $F^{X}=(\perp \rightarrow q) \wedge((\perp \rightarrow \perp) \rightarrow p)$
- Classically equivalent to p

Stable-model semantics

To facilitate computation of the reduct

- $\perp^{X}=\perp$
- For a an atom, if $a \in X, a^{X}=a$; otherwise, $a^{X}=\perp$
- If $X \models F \circ G,(F \circ G)^{X}=F^{X} \circ G^{X}$; otherwise, $(F \circ G)^{X}=\perp(\circ$ stands for any of $\wedge, \vee, \rightarrow$)
- If $X \models F,(\neg F)^{X}=\perp$; otherwise,
$(\neg F)^{X}=(F \rightarrow \perp)^{X}=F^{X} \rightarrow \perp^{X}=\perp \rightarrow \perp=\top$

Stable-model semantics

Definition

- A set X of atoms is a stable model of a formula F if X is a minimal model of F

- X is not a minimal model of F^{X}, so not a stable model

Stable-model semantics

Definition

- A set X of atoms is a stable model of a formula F if X is a minimal model of F

Example: $F=(\neg p \rightarrow q) \wedge(\neg q \rightarrow p), X=\{p\}$

- $F^{X}=(\perp \rightarrow q) \wedge((\perp \rightarrow \perp) \rightarrow p)$ (which is equivalent to p)
- X is a minimal model of F^{X}, so a stable model
${ }^{-X}=(\perp \rightarrow q) \wedge(\perp \rightarrow p)$ (which is equivalent to \top)
- X is not a minimal model of F^{X}, so not a stable model

Stable-model semantics

Definition

- A set X of atoms is a stable model of a formula F if X is a minimal model of F

Example: $F=(\neg p \rightarrow q) \wedge(\neg q \rightarrow p), X=\{p\}$

- $F^{X}=(\perp \rightarrow q) \wedge((\perp \rightarrow \perp) \rightarrow p)$ (which is equivalent to p)
- X is a minimal model of F^{X}, so a stable model

Example: $F=(\neg p \rightarrow q) \wedge(\neg q \rightarrow p), X=\{p, q\}$

- $F^{X}=(\perp \rightarrow q) \wedge(\perp \rightarrow p)$ (which is equivalent to T)
- X is not a minimal model of F^{X}, so not a stable model

Stable-model semantics

Properties

- If X is a stable model of a formula F then X consists of head atoms of F
- A least model of a Horn formula (conjunction of definite Horn clauses given as implications) is a unique stable model of the theory
- A set X is a stable model of a formula $F \wedge \neg G$ if and only if X is a stable model of F and $X \models \neg G$

Stable-model semantics

Strong equivalence

- Formulas F and F^{\prime} are strongly equivalent if for every formula G, $F \wedge G$ and $F^{\prime} \wedge G$ have the same stable models
- (X, Y) is an se-model of F if $Y \subseteq A t, X \subseteq Y, Y \models F$ and $X \models F^{Y}$.
- The following conditions are equivalent:
- Formulas F and G are strongly equivalent
- For every set X of atoms, F^{X} and G^{X} are equivalent in classical logic
- F and G have the same se-models
- F and G are equivalent in the logic here-and-there (details later)

Stable-model semantics

Splitting

- Let F and G be formulas such that F does not contain any of the head atoms of G
- A set X is a stable model of $F \wedge G$ iff there is a stable model Y of F such that X is a stable model of $G \wedge \wedge Y$

Multivalued semantics

2-input one-step operator Φ_{P}

- Given two interpretations / and J

$$
\Phi_{P}(I, J)=\left\{h d(r): r \in P, b d^{+}(r) \subseteq I, b d^{-}(r) \cap J=\emptyset\right\}
$$

- $\Phi_{P}(\cdot, J)$ monotone
$-I \subseteq I^{\prime} \quad \Rightarrow \quad \Phi_{P}(I, J) \subseteq \Phi_{P}\left(I^{\prime}, J\right)$
- $\Phi_{P}(I, \cdot)$ antimonotone
- $J \subseteq J^{\prime} \Rightarrow \Phi_{P}\left(I, J^{\prime}\right) \subseteq \Phi_{P}(I, J)$
- $\Phi_{P}(I, I)=T_{P}(I)$

Multivalued semantics: 4-val interpretations

Pairs (I, J) of 2-val interpretations

- Atoms in I are known and atoms in J are possible
- Give rise to 4 truth values
- If $a \in I \cap J, a$ is true
- If $a \notin I \cup J, a$ is false
- If $a \in J \backslash I$, a is unknown
- If $a \in I \backslash J$, a is overdefined (inconsistent)
- (I, J) consistent if $I \subseteq J$

Multivalued semantics: 4-val interpretations

Pairs (I, J) of 2-val interpretations

- Atoms in I are known and atoms in J are possible
- Give rise to 4 truth values
- If $a \in I \cap J, a$ is true
- If $a \notin I \cup J, a$ is false
- If $a \in J \backslash I$, a is unknown
- If $a \in I \backslash J$, a is overdefined (inconsistent)
- (I, J) consistent if $I \subseteq J$

Alternatively

- Functions val from $A t$ to $\{\mathbf{t}, \mathbf{f}, \mathbf{u}, \mathbf{i}\}$
- $I:=\{a \mid \operatorname{val}(a)=\mathbf{t}$ or $\operatorname{val}(a)=\mathbf{i}\}$
- $J:=\{a \mid \operatorname{val}(a)=\mathbf{t}$ or $\operatorname{val}(a)=\mathbf{u}\}$

Multivalued semantics

4-val one-step provability operator

- $\mathcal{T}_{P}(I, J)=\left(\Phi_{P}(I, J), \Phi_{P}(J, I)\right)$
- Precision (information) ordering:
$(I, J) \leq_{i}\left(I^{\prime}, J^{\prime}\right) \quad$ - if $I \subseteq I^{\prime}$ and $J^{\prime} \subseteq J$
- \mathcal{T}_{P} monotone wrt \leq_{i}
- $(I, J) \leq_{i}\left(I^{\prime} J^{\prime}\right) \quad \Rightarrow \quad \mathcal{T}_{P}(I, J) \leq_{i} \mathcal{T}_{P}\left(I^{\prime}, J^{\prime}\right)$
- We have: $I \subseteq I^{\prime}$ and $J^{\prime} \subseteq J$
- $\Phi_{P}(I, J) \subseteq \Phi_{P}\left(I^{\prime}, J\right) \quad\left(\right.$ monotonicity of $\left.\Phi_{P}(\cdot, J)\right)$
- $\Phi_{P}\left(I, J^{\prime}\right) \subseteq \Phi_{P}(I, J) \quad$ (antimonotonicity of $\left.\Phi_{P}(I, \cdot)\right)$

Multivalued semantics

4-val one-step provability operator

- $\mathcal{T}_{P}(I, J)=\left(\Phi_{P}(I, J), \Phi_{P}(J, I)\right)$
- Precision (information) ordering:

$$
(I, J) \leq_{i}\left(I^{\prime}, J^{\prime}\right) \quad-\text { if } I \subseteq I^{\prime} \text { and } J^{\prime} \subseteq J
$$

- \mathcal{T}_{P} monotone wrt \leq_{i}
- $(I, J) \leq_{i}\left(I^{\prime} J^{\prime}\right) \quad \Rightarrow \quad \mathcal{T}_{P}(I, J) \leq_{i} \mathcal{T}_{P}\left(I^{\prime}, J^{\prime}\right)$
- We have: $I \subseteq I^{\prime}$ and $J^{\prime} \subseteq J$
- $\Phi_{P}(I, J) \subseteq \Phi_{P}\left(I^{\prime}, J\right) \quad\left(\right.$ monotonicity of $\left.\Phi_{P}(\cdot, J)\right)$
- $\Phi_{P}\left(I, J^{\prime}\right) \subseteq \Phi_{P}(I, J) \quad$ (antimonotonicity of $\left.\Phi_{P}(I, \cdot)\right)$
(I, J) consistent $\Rightarrow \mathcal{T}_{P}(I, J)$ consistent
- Let $I \subseteq J$
- $\Rightarrow \Phi_{P}(I, J) \subseteq \Phi_{P}(I, I) \subseteq \Phi_{P}(J, I)$

4-val supported models

Recall: $\mathcal{T}_{P}(I, J)=\left(\Phi_{P}(I, J), \Phi_{P}(J, I)\right)$ and $T_{P}(I)=\Phi_{P}(I, I)$

- (I, J) is a 4 -val supported model of P if $(I, J)=\mathcal{T}_{P}(I, J)$
- (I, I) is a 4 -val supported model iff I is a supported model
- $(I, I)=\tau_{P}(I, I)$ iff $(I, I)=\left(\Phi_{P}(I, I), \Phi_{P}(I, I)\right)=\left(T_{P}(I), T_{P}(I)\right)$
- The least 4 -val supported model exists!
- \mathcal{T}_{P} is monotone and so has the least (wrt \leq_{i}) fixpoint
- Moreover, it is consistent!
- Kripke-Kleene (Fitting) fixpoint or semantics: $\left(K K^{t}(P), K K^{P}(P)\right)$

Well-founded semantics

- 4-val Gelfond-Lifschitz operator
- $\mathcal{G} \mathcal{L}_{P}(I, J)=\left(G L_{P}(J), G L(I)\right)$
- Also monotone wrt \leq_{i}
- (I, J) is a 4-val stable model if $\mathcal{G} \mathcal{L}_{P}(I, J)=(I, J)$
- M is a stable model of P if and only if (M, M) is a 4-val stable model of P
- The least fixpoint of $\mathcal{G L}$ exists!! (by monotonicity)
- And is consistent
- if $I \subseteq J$ then: $G L_{P}(J) \subseteq G L(I)$ (antimonotonicity)
- Well-founded fixpoint (semantics): $\left(W F^{t}(P), W^{p}(P)\right)$
- For every stable model M of P

$$
W F^{t}(P) \subseteq M \subseteq W F^{p}(P)
$$

Logic here-and-there

Logic here-and-there, Heyting 1930

Syntax

- Connectives: $\perp, \vee, \wedge, \rightarrow$
- Formulas - standard extension of atoms by means of connectives
- $\neg \varphi$ - shorthand for $\varphi \rightarrow \perp$
- $\varphi \leftrightarrow \psi \quad$ - shorthand for $(\varphi \rightarrow \psi) \wedge(\psi \rightarrow \varphi)$
- Language $\mathcal{L}_{h t}$

Logic here-and-there

Why important?

- Disjunctive logic programs - special theories in $\mathcal{L}_{h t}$
- $a_{1}|\ldots| a_{k} \leftarrow b_{1}, \ldots, b_{m}$, not c_{1}, \ldots not c_{n}
- $b_{1} \wedge \ldots \wedge b_{m} \wedge \neg c_{1} \wedge \ldots \wedge \neg c_{n} \rightarrow c_{1} \vee \ldots \vee c_{n}$
- General logic programs (Ferraris, Lifschitz) $=$ theories in $\mathcal{L}_{h t}$
- answer-set semantics extends to general logic programs
- equilibrium models in logic ht
- the two coincide!

Entailment in logic here-and-there

Ht-interpretations

- Pairs $\langle H, T\rangle$, where $H \subseteq T$ are sets of atoms
- Kripke interpretations with two worlds "here" and "there"
- H determines the valuation for "here"
- T determines the valuation for "there"

Entailment in logic here-and-there

Ht-interpretations

- Pairs $\langle H, T\rangle$, where $H \subseteq T$ are sets of atoms
- Kripke interpretations with two worlds "here" and "there"
- H determines the valuation for "here"
- T determines the valuation for "there"

Kripke-model satisfiability in the world "here" $=_{h t}$

- $\langle H, T\rangle \not \models_{h t} \perp$
- $\langle H, T\rangle \models_{h t} p \quad$ if $p \in H \quad$ (for atoms only)
- $\langle H, T\rangle \models_{h t} \varphi \wedge \psi$ and $\langle H, T\rangle \models_{h t} \varphi \vee \psi$ - standard recursion
- $\langle H, T\rangle=_{h t} \varphi \rightarrow \psi$ if
- $\langle H, T\rangle \not \models_{h t} \varphi$ or $\langle H, T\rangle \models_{h t} \psi$
- $T \models \varphi \rightarrow \psi$ (in standard propositional logic).

Entailment in logic here-and-there

$h t$-model, $h t$-validity, $h t$-equivalence

- If $\langle H, T\rangle \models_{h t} \varphi \quad-\langle H, T\rangle$ is an $h t$-model of φ
- φ is ht-valid if for every ht-model $\langle H, T\rangle,\langle H, T\rangle \models \varphi$
- φ and ψ are ht-equivalent if they have the same $h t$-models
- φ and ψ are ht-equivalent iff $\varphi \leftrightarrow \psi$ is $h t$-valid

Proof theory

Natural deduction - sequents and rules

- Sequents $\Gamma \Rightarrow \varphi$ - " φ under the assumptions 「"
- Introduction rules for $\wedge, \vee, \rightarrow$

$$
\frac{\Gamma \Rightarrow \varphi \quad \Delta \Rightarrow \psi}{\Gamma, \Delta \Rightarrow \varphi \wedge \psi}
$$

- Elimination rules for $\wedge, \vee, \rightarrow$

$$
\frac{\Gamma \Rightarrow \varphi \quad \Delta \Rightarrow \varphi \rightarrow \psi}{\Gamma, \Delta \Rightarrow \psi}
$$

- Contradiction

$$
\frac{\Gamma \Rightarrow \perp}{\Gamma \Rightarrow \varphi}
$$

- Weakening

$$
\frac{\Gamma \Rightarrow \varphi}{\Gamma^{\prime} \Rightarrow \varphi} \quad \text { for all } \Gamma^{\prime}, \Gamma \text { s.t. } \Gamma^{\prime} \subseteq \Gamma
$$

Proof theory

Axiom schemas

(AS1) $\varphi \Rightarrow \varphi$
(AS2) $\Rightarrow \varphi \vee \neg \varphi$
(AS2') $\Rightarrow \neg \varphi \vee \neg \neg \varphi$
$\left(\mathrm{AS2}^{\prime \prime}\right) \Rightarrow \varphi \vee(\varphi \rightarrow \psi) \vee \neg \psi$
(Excluded Middle) (Weak EM)
(in between (AS2) and (AS2')

Propositional logic
Intuitionistic logic
Logic here-and-there
> (AS1), (AS2)
> (AS1)
> (AS1),(AS2")

Proof theory

Axiom schemas

(AS1) $\varphi \Rightarrow \varphi$
(AS2) $\Rightarrow \varphi \vee \neg \varphi$
(AS2') $\Rightarrow \neg \varphi \vee \neg \neg \varphi$
$\left(\mathrm{AS}^{\prime \prime}\right) \Rightarrow \varphi \vee(\varphi \rightarrow \psi) \vee \neg \psi$
(Excluded Middle)
(Weak EM)
(in between (AS2) and (AS2')

Logics through natural deduction

Propositional logic Intuitionistic logic
Logic here-and-there
(AS1), (AS2)
(AS1)
(AS1),(AS2 ${ }^{\prime \prime}$)

Bringing the two together

Soundness and completeness

- A formula is a theorem of $h t$ if and only if it is $h t$-valid
- φ and ψ are $h t$-equivalent iff $\Rightarrow \varphi \leftrightarrow \psi$ is a theorem of $h t$

Bringing the two together

Soundness and completeness

- A formula is a theorem of $h t$ if and only if it is $h t$-valid

In particular

- φ and ψ are ht-equivalent iff $\Rightarrow \varphi \leftrightarrow \psi$ is a theorem of $h t$

Logic here-and-there and ASP

Equilibrium models, Pearce 1997

- $\langle T, T\rangle$ is an equilibrium model of a set A of formulas if
- $\langle T, T\rangle \models_{h t} A$, and
- for every $H \subseteq T$ such that $\langle H, T\rangle \models_{h t} A, H=T$
- A set M of atoms is an answer set of a disjunctive logic program P (general logic program P) if and only if $\langle M, M\rangle$ is an equlibrium model for P

Logic here-and-there and ASP

Equilibrium models, Pearce 1997

- $\langle T, T\rangle$ is an equilibrium model of a set A of formulas if
- $\langle T, T\rangle \models_{h t} A$, and
- for every $H \subseteq T$ such that $\langle H, T\rangle \models_{h t} A, H=T$

Key connection

- A set M of atoms is an answer set of a disjunctive logic program P (general logic program P) if and only if $\langle M, M\rangle$ is an equlibrium model for P

Key application

Strong equivalence

- Let P and Q be two (general) programs. The following conditions are equivalent:
- P and Q are strongly equivalent
- P and Q are ht-equivalent
- P and Q have the same $h t$-models
- $P \leftrightarrow Q$ is $h t$-valid
- $\Rightarrow P \leftrightarrow Q$ is a theorem of $h t$

Algebraic approach

The problem

Complex landscape of nonmonotonicity

- Multitude of formalisms
- Different intuitions
- Different languages
- Different semantics
- Complexity
- Unifying abstract foundation

The problem

Complex landscape of nonmonotonicity

- Multitude of formalisms
- Different intuitions
- Different languages
- Different semantics
- Complexity

Needed!

- Unifying abstract foundation

A triumph of universal algebra

Basic lesson for this segment

- Major nonmonotonic systems
- logic programming
- default logic
- autoepistemic logics
can be given a unified algebraic treatment
- Each system can be assigned the same family of semantics
- Key concepts: lattices and bilattices, operators and fixpoints
- Key ideas: approximating operators and stable operators
- Key tool: Knaster-Tarski Theorem

Overview of approach

Generalize Fitting's work on logic programming

- Central role of 4-valued van Emden-Kowalski operator \mathcal{T}_{P}
- Derived stable operator, Ψ_{P}^{\prime}
- 2-valued and 3 -valued supported models and Kripke-Kleene semantics described by fixpoints of \mathcal{T}_{P}
- 2-valued and 3 -valued stable models and well-founded semantics described by fixpoints of Ψ_{P}^{\prime}

Lattices

Key definitions, some notation

- $\langle L, \leq\rangle$
- L is a nonempty set
- \leq is a partial order such that every two lattice elements have lub (join) and glb (meet)
- Elements of L express
- degree of truth
- measure of knowledge
- \leq - order of increased truth or knowledge
- Complete lattices (both bounds defined for all sets)
- \perp, \top

Lattices - examples

Lattice $\mathcal{T} \mathcal{W O}$

- $\{\mathbf{f}, \mathbf{t}\}$
- $\mathbf{f} \leq \mathbf{t}$

- set of all 2-valued interpretations
- componentwise extension of the ordering from TWO

- family of sets of 2-valued interpretations
- $W_{1} \sqsubseteq W_{2}$ if $W_{2} \subseteq W_{1}$

Lattices - examples

Lattice $\mathcal{T} \mathcal{W O}$

- $\{\mathbf{f}, \mathbf{t}\}$
- $\mathbf{f} \leq \mathbf{t}$

Lattice \mathcal{A}_{2}

- set of all 2-valued interpretations
- componentwise extension of the ordering from $\mathcal{T} \mathcal{W O}$

- family of sets of 2-valued interpretations

- $W_{1} \sqsubset W_{2}$ if $W_{2} \subset W_{1}$

Lattices - examples

Lattice $\mathcal{T W O}$

- $\{\mathbf{f}, \mathbf{t}\}$
- $\mathbf{f} \leq \mathbf{t}$

Lattice \mathcal{A}_{2}

- set of all 2-valued interpretations
- componentwise extension of the ordering from $\mathcal{T} \mathcal{W O}$

Lattice \mathcal{W}

- family of sets of 2-valued interpretations
- $W_{1} \sqsubseteq W_{2}$ if $W_{2} \subseteq W_{1}$

Operators

That's what it's all about!

- Truth or knowledge can be revised
- Revisions are described by operators on lattices
- Fixpoints - states of truth or knowledge that cannot be revised

Operators

Monotone operators

- An operator O is monotone if $x \leq y$ implies $O(x) \leq O(y)$
- Knaster-Tarski Theorem: a monotone operator on a complete lattice has a least fixpoint

Operators, cont'd

Antimonotone operators

- An operator O is antimonotone if $x \leq y$ implies $O(y) \leq O(x)$
- If O is antimonotone then O^{2} is monotone:

$$
x \leq y \Rightarrow O(y) \leq O(x) \Rightarrow O^{2}(x) \leq O^{2}(y)
$$

- Oscillating pair: (x, y) is an oscillating pair for an operator O if $O(x)=y$ and $O^{2}(x)=x$
- Antimonotone operator O has an extreme oscillating pair $\left(I f p\left(O^{2}\right), g f p\left(O^{2}\right)\right)$

Approximations and bilattices

Key definitions, some notation

- A pair (x, y) approximates an element z if $x \leq z \leq y$
- Orderings of approximations:
- information (or precision) ordering: $\left(x_{1}, y_{1}\right) \leq_{i}\left(x_{2}, y_{2}\right)$ iff $x_{1} \leq x_{2}$ and

$$
y_{2} \leq y_{1}
$$

- truth ordering: $\left(x_{1}, y_{1}\right) \leq_{t}\left(x_{2}, y_{2}\right)$ iff $x_{1} \leq x_{2}$ and $y_{1} \leq y_{2}$
- Bilattice $\left\langle L^{2}, \leq_{i}, \leq_{t}\right\rangle$
- A pair (x, y) is consistent if $x \leq y$, and inconsistent, otherwise
- An element (x, y) is complete if $x=y$

Bilattices - examples

Bilattice $\mathcal{F O U R}$

- set of all pairs of 2-valued interpretations (identified with 4-valued interpretations)
- componentwise extension of the orderings from $\mathcal{F O U R}$

Bilattices - examples

Bilattice $\mathcal{F O U R}$

Bilattice \mathcal{A}_{4}

- set of all pairs of 2-valued interpretations (identified with 4-valued interpretations)
- componentwise extension of the orderings from $\mathcal{F O U R}$

Bilattices - examples, cont'd

Bilattice \mathcal{B}

- Family of pairs of sets of 2-valued interpretations
- Belief pairs
- $\left(P_{1}, S_{1}\right) \sqsubseteq_{i}\left(P_{2}, S_{2}\right)$ if $P_{2} \subseteq P_{1}$ and $S_{1} \subseteq S_{2}$
- $\left(P_{1}, S_{1}\right) \sqsubseteq_{t}\left(P_{2}, S_{2}\right)$ if $P_{2} \subseteq P_{1}$ and $S_{2} \subseteq S_{1}$

Approximating operators

Key definitions, some notation

- $A: L^{2} \rightarrow L^{2}$ approximates $O: L \rightarrow L$ if
- $A(x, x)=(O(x), O(x))$
- A is \leq_{i}-monotone
- A is symmetric: $A^{1}(x, y)=A^{2}(y, x)$, where

$$
A(x, y)=\left(A^{1}(x, y), A^{2}(x, y)\right)
$$

- Approximating operators are consistent
- Complete fixpoints of A correspond to fixpoints of O
- Every fixpoint of A is approximated by the least fixpoint of A : Kripke-Kleene fixpoint of A
- Kripke-Kleene fixpoint of an approximating operator is consistent

Approximating operators

Key definitions, some notation

- $A: L^{2} \rightarrow L^{2}$ approximates $O: L \rightarrow L$ if
- $A(x, x)=(O(x), O(x))$
- A is \leq_{i}-monotone
- A is symmetric: $A^{1}(x, y)=A^{2}(y, x)$, where

$$
A(x, y)=\left(A^{1}(x, y), A^{2}(x, y)\right)
$$

Properties

- Approximating operators are consistent
- Complete fixpoints of A correspond to fixpoints of O
- Every fixpoint of A is approximated by the least fixpoint of A : Kripke-Kleene fixpoint of A
- Kripke-Kleene fixpoint of an approximating operator is consistent

Getting down to business!

Stable operators

- If $A: L^{2} \rightarrow L^{2}$ is \leq_{i}-monotone then $A^{1}(\cdot, y)$ and $A^{2}(x, \cdot)$ are monotone
- For \leq_{i}-monotone operator $A: L^{2} \rightarrow L^{2}$ define:

$$
C_{A}^{\prime}(y)=\operatorname{lfp}\left(A^{1}(\cdot, y)\right) \quad \text { and } \quad C_{A}^{u}(x)=\operatorname{lfp}\left(A^{2}(x, \cdot)\right)
$$

- Since A is symmetric, $C_{A}^{\prime}=C_{A}^{U}=C_{A}$
- Stable operator for A :

$$
\mathcal{C}_{A}(x, y)=\left(C_{A}(y), C_{A}(x)\right)
$$

- Stable fixpoints (relative to \mathcal{C}_{A})
- \leq_{i}-least fixpoint of \mathcal{C}_{A} - well-founded (WF) fixpoint of A

Properties of stable operators

All quite easy to prove, in fact

- C_{A} is antimonotone
- \mathcal{C}_{A} is \leq_{i}-monotone and \leq_{t}-antimonotone
- Fixpoints of \mathcal{C}_{A} are \leq_{t}-minimal fixpoints of A
- Complete fixpoints of \mathcal{C}_{A} correspond to fixpoints of C_{A}
- Complete fixpoints of \mathcal{C}_{A} are fixpoints of O
- K-K fixpoint of $A \leq_{i}$ WF fixpoint of A

Logic programming - case study 1

Fitting

- Lattice \mathcal{A}_{2}, bilattice \mathcal{A}_{4}
- Operators associated with program P
- 2-valued van Emden-Kowalski operator T_{P}
- Its approximation: 4-valued van Emden-Kowalski operator \mathcal{T}_{P}
- 2-valued stable operator (Gelfond-Lifschitz operator $G L_{P}$)
- Stable operator \mathcal{C}_{P} of \mathcal{T}_{P} (operator Ψ_{P}^{\prime} of Przymusinski)
- Semantics
- Supported models: fixpoints of the operator $\mathcal{T}_{P}\left(T_{P}\right)$
- Kripke-Kleene semantics: least fixpoint of \mathcal{T}_{P}
- Stable models: fixpoints of the operator $\mathcal{C}_{P}\left(C_{P}\right)$
- Well-founded semantics: least fixpoint of \mathcal{C}_{P}

Logic programming explained

Central role of \mathcal{T}_{P}

Autoepistemic Logic - case study 2

Truth assignment function $\mathcal{H}_{V, l}$

- For atom $p: \mathcal{H}_{V, I}(p)=I(p)$
- The boolean connectives - standard way
- $\mathcal{H}_{V, I}(K F)=\mathbf{t}$, if for every $J \in V, \mathcal{H}_{V, J}(F)=\mathbf{t}$
- $\mathcal{H}_{V, I}(K F)=\mathbf{f}$, otherwise
- Moore's operator $D_{T}: \mathcal{W} \rightarrow \mathcal{W}$

- Fixpoints of D_{T} - autoepistemic models of T
- Autoepistemic models generate expansions

Autoepistemic Logic - case study 2

Truth assignment function $\mathcal{H}_{V, l}$

- For atom $p: \mathcal{H}_{V, I}(p)=I(p)$
- The boolean connectives - standard way
- $\mathcal{H}_{V, I}(K F)=\mathbf{t}$, if for every $J \in V, \mathcal{H}_{V, J}(F)=\mathbf{t}$
- $\mathcal{H}_{V, I}(K F)=\mathbf{f}$, otherwise

AE models, expansions

- Moore's operator $D_{T}: \mathcal{W} \rightarrow \mathcal{W}$

$$
D_{T}(V)=\left\{I: \mathcal{H}_{V, I}(T)=\mathbf{t}\right\}
$$

- Fixpoints of D_{T} - autoepistemic models of T
- Autoepistemic models generate expansions

AEL - approximating operators

The setting

- Lattice \mathcal{W}, bilattice \mathcal{B}
- $\mathcal{H}_{\left(V, V^{\prime}\right), l}^{4}$
- Approximating operator for $D_{T}-\mathcal{D}_{T}$ (DMT 98)

$$
\mathcal{D}_{T}\left(V, V^{\prime}\right)=\left(\left\{I: \mathcal{H}_{\left(V, V^{\prime}\right), I}^{4}(T) \geq_{t}(\mathbf{f}, \mathbf{t})\right\},\left\{I: \mathcal{H}_{\left(V, V^{\prime}\right), I}^{4}(T) \geq_{t}(\mathbf{t}, \mathbf{f})\right\}\right)
$$

- Complete fixpoints of \mathcal{D}_{T} - autoepistemic models of T
- The least fixpoint of \mathcal{D}_{T} - Kripke-Kleene fixpoint
- approximates all autoepistemic models of T
- The stable operator for $\mathcal{D}_{T}: \mathcal{C}_{T}\left(V, V^{\prime}\right)=\left(C_{T}\left(V^{\prime}\right), C_{T}(V)\right)$
- What are the fixpoints of C_{T} ?

Autoepistemic logic explained

Central role of \mathcal{D}_{T}

Default Logic - case study 3

Same setting as for AEL

- Lattice \mathcal{W}, bilattice \mathcal{B}
- $\mathcal{H}_{V, I}(\varphi)=I(\varphi)$, for every formula φ
- $d=\frac{\alpha: \beta_{1}, \ldots, \beta_{k}}{\gamma}$
- $\mathcal{H}_{V, I}(d)=\mathbf{t}$ iff
- there is $J \in V$ such that $J(\alpha)=\mathbf{f}$, or
- there is $i, 1 \leq i \leq k$ such that for every $J \in V, J\left(\beta_{i}\right)=\mathbf{f}$, or
- $I(\gamma)=\mathbf{t}$
- Weak-extension operator E_{Δ} (Δ - default theory):

$$
E_{\Delta}(V)=\left\{I \in \mathcal{A}_{2}: \mathcal{H}_{V, I}(\Delta)=\mathbf{t}\right\}
$$

- Fixpoints of $E_{\Delta}(V)$ - default models of weak extensions of Δ

DL

4-valued truth assignment, approximating operator

- $\mathcal{H}_{\left(V, V^{\prime}\right), l}^{4}$
- Approximating operator for $E_{\Delta}-\mathcal{E}_{\Delta}$

$$
\mathcal{E}_{\Delta}\left(V, V^{\prime}\right)=\left(\left\{I: \mathcal{H}_{\left(V, V^{\prime}\right), I}^{4}(\Delta) \geq_{t}(\mathbf{f}, \mathbf{t})\right\},\left\{I: \mathcal{H}_{\left(V, V^{\prime}\right), I}^{4}(\Delta) \geq_{t}(\mathbf{t}, \mathbf{f})\right\}\right)
$$

- Complete fixpoints of \mathcal{E}_{Δ} - models of weak extensions of Δ
- The least fixpoint of \mathcal{E}_{Δ} - Kripke-Kleene fixpoint
- approximates all default models of weak extensions of Δ

DL

Stable operator

- The stable operator for \mathcal{E}_{Δ} :

$$
\mathcal{C}_{\Delta}\left(V, V^{\prime}\right)=\left(C_{\Delta}\left(V^{\prime}\right), C_{\Delta}(V)\right)
$$

- C_{Δ} - Guerreiro-Casanova operator Σ_{Δ}
- Fixpoints of C_{Δ} - default models of Reiter's extensions
- Consistent fixpoints of \mathcal{C}_{Δ} - stationary extensions by Przymusinski
- Well-founded fixpoint of \mathcal{E}_{Δ} (least fixpoint of \mathcal{C}_{Δ} — well-founded semantics of default logic by Baral and Subrahmanian)

DL explained

Central role of \mathcal{E}_{Δ}

Connections

Strong parallels!

Connections

Strong parallels!

Thank you!

