
Theoretical Foundations of Logic Programming

Mirosław Truszczyński

Department of Computer Science
University of Kentucky

July 24-27, 2008

Summer School on LP and CL 2008 (University of Kentucky)Foundations of Logic Programming July 24-27, 2008 1 / 139

Introduction

Summer School on LP and CL 2008 (University of Kentucky)Foundations of Logic Programming July 24-27, 2008 2 / 139

Logic programming

What is it?

◮ Declarative programming formalizm
◮ Knowledge representation formalizm

Two facets

◮ Prolog
◮ Answer-set programming

Summer School on LP and CL 2008 (University of Kentucky)Foundations of Logic Programming July 24-27, 2008 3 / 139

Logic programming

What is it?

◮ Declarative programming formalizm
◮ Knowledge representation formalizm

Two facets

◮ Prolog
◮ Answer-set programming

Summer School on LP and CL 2008 (University of Kentucky)Foundations of Logic Programming July 24-27, 2008 3 / 139

My goal

To present foundations of LP

◮ Focus on negation and its semantics

Summer School on LP and CL 2008 (University of Kentucky)Foundations of Logic Programming July 24-27, 2008 4 / 139

Overview

Roughly ...

◮ Basic syntax and semantics
◮ Horn logic programming — basis for Prolog (briefly)
◮ The need for negation
◮ Semantics of negation (supported, stable, Kripke-Kleene,

well-founded)
◮ Properties of semantica (completion, Fages Lemma, loop

theorem, equivalence)
◮ More general settings (logic HT, algebra)
◮ (Some) proofs

Summer School on LP and CL 2008 (University of Kentucky)Foundations of Logic Programming July 24-27, 2008 5 / 139

Some logic terminology

Language

◮ Constant, variable, function and predicate symbols
◮ Terms: strings built recursively from constant, variable and

function symbols
◮ c, X , f (c,X), f (f (c,X), f (X , f (X , c)))

◮ Atoms: built of predicate symbols and terms
◮ p(X , c, f (a,Y))

Summer School on LP and CL 2008 (University of Kentucky)Foundations of Logic Programming July 24-27, 2008 6 / 139

Horn logic programming

Horn clause

◮ p ← q1, . . . ,qk

◮ where p, qi are atoms

◮ Clauses are universally quantified
◮ special sentences

◮ Intuitive reading: if q1, . . . ,qk then p

Horn program

◮ A collection of Horn clauses

Summer School on LP and CL 2008 (University of Kentucky)Foundations of Logic Programming July 24-27, 2008 7 / 139

Horn logic programming

Horn clause

◮ p ← q1, . . . ,qk

◮ where p, qi are atoms

◮ Clauses are universally quantified
◮ special sentences

◮ Intuitive reading: if q1, . . . ,qk then p

Horn program

◮ A collection of Horn clauses

Summer School on LP and CL 2008 (University of Kentucky)Foundations of Logic Programming July 24-27, 2008 7 / 139

More terminology

Herbrand model

◮ Ground terms: no variable symbols
◮ Herbrand universe: collection of all ground terms
◮ Ground atoms: atoms built of predicate symbols and ground terms
◮ p(a, c, f (a,a))

◮ Herbrand base: collection of all ground atoms
◮ Herbrand model: subset of an Herbrand base

Summer School on LP and CL 2008 (University of Kentucky)Foundations of Logic Programming July 24-27, 2008 8 / 139

Horn logic programming

Semantics

◮ Given by Herbrand models
◮ grnd(P): the set of all ground instances of clauses in P
◮ Thus, no difference between P and grnd(P)

◮ Key question:
which ground facts hold in every Herbrand model of P?

◮ Sufficient to restrict to Herbrand models contained in HB(P)
◮ Herbrand universe of P, HU(P)

(if no constant symbols in P, a single constant symbol introduced)
◮ Herbrand base of P, HB(P)
◮ Ground atoms not in HB(P) are not true in all Herbrand models

Summer School on LP and CL 2008 (University of Kentucky)Foundations of Logic Programming July 24-27, 2008 9 / 139

We can say more

Least Herbrand model

◮ Every Horn program P has a least Herbrand model LM(P)
◮ the intersection of a set of Herbrand models of a Horn program is a

Herbrand model of the program
◮ HB(P) is an Herbrand model of P
◮ the intersection of all models is a least Herbrand model (and it is

contained in HB(P))

◮ Single intended Herbrand model
◮ For a ground t , P |= p(t) if and only if p(t) ∈ LM(P)

◮ For ground t , if P 6|= p(t), defeasibly conclude ¬p(t)
◮ Closed World Assumption (CWA)

Summer School on LP and CL 2008 (University of Kentucky)Foundations of Logic Programming July 24-27, 2008 10 / 139

Computing with Horn programs

What do they specify, what can they express?

◮ A Horn program P specifies a subset X of the Herbrand universe
for P, HU(P), if for some predicate symbol p occurring in P we
have:

X = {t ∈ HU(P) : p(t) ∈ LM(P)}

◮ Finite Horn programs specify precisely the r.e. sets and relations
Smullyan, 1968, Andreka and Nemeti, 1978

Summer School on LP and CL 2008 (University of Kentucky)Foundations of Logic Programming July 24-27, 2008 11 / 139

Reachability — an example

Program P

arc(a,b).
arc(b, c).
arc(d , c).

reach(X ,X).
reach(X ,Y)← arc(X ,Z), reach(Z ,Y).

Summer School on LP and CL 2008 (University of Kentucky)Foundations of Logic Programming July 24-27, 2008 12 / 139

Reachability — an example

HU(P), HB(P), ground (P)

◮ HU(P) = {a,b, c,d}
◮ HB(P) = {arc(a,a),arc(a,b), . . . , reach(a,a), . . .}

◮ ground(P):

arc(a,b). arc(b, c). arc(d , c).
reach(a,a). reach(b,b). reach(c, c). reach(d ,d).
reach(a,a). ← arc(a,a), reach(a,a).
reach(a,b). ← arc(a,b), reach(b,a).
. . .
reach(c,b). ← arc(c,d), reach(d ,b).
. . .

Summer School on LP and CL 2008 (University of Kentucky)Foundations of Logic Programming July 24-27, 2008 13 / 139

Reachability — an example

Least model

◮ arc(a,b), arc(a, c), arc(d , c)

◮ reach(a,a), reach(b,b), reach(c, c), reach(d ,d)

◮ reach(a,b), reach(a, c), reach(d , c), reach(a, c)

What’s computed?

◮ Assume reach is the distinguished “solution” predicate
◮ {(a,a), (b,b), (c, c), (d ,d), (a,b), (a, c), (d , c), (a, c)}

Summer School on LP and CL 2008 (University of Kentucky)Foundations of Logic Programming July 24-27, 2008 14 / 139

Reachability — an example

Least model

◮ arc(a,b), arc(a, c), arc(d , c)

◮ reach(a,a), reach(b,b), reach(c, c), reach(d ,d)

◮ reach(a,b), reach(a, c), reach(d , c), reach(a, c)

What’s computed?

◮ Assume reach is the distinguished “solution” predicate
◮ {(a,a), (b,b), (c, c), (d ,d), (a,b), (a, c), (d , c), (a, c)}

Summer School on LP and CL 2008 (University of Kentucky)Foundations of Logic Programming July 24-27, 2008 14 / 139

Computing with Horn programs

Possible issues?

◮ Function symbols necessary!
◮ List constructor [·|·] used to define higher-order objects
◮ Terms - basic data structures
◮ Queries (goals):

◮ ?p(t) - is p(t) entailed?
◮ ?p(X) - for what ground t , is p(t) entailed?

◮ Proofs provide answers
◮ SLD-resolution
◮ Unification - basic mechanism to manipulate data structures
◮ Extensive use of recursion
◮ Leads to Prolog

Summer School on LP and CL 2008 (University of Kentucky)Foundations of Logic Programming July 24-27, 2008 15 / 139

Example

Manipulating lists: append and reverse

append([],X ,X).
append([X |Y],Z , [X |T]) ← append(Y ,Z ,T).

reverse([], []).
reverse([X |Y],Z)← append(U, [X],Z), reverse(Y ,U).

◮ both relations defined recursively
◮ terms represent complex objects: lists, sets, ...

Summer School on LP and CL 2008 (University of Kentucky)Foundations of Logic Programming July 24-27, 2008 16 / 139

Example, cont’d

Playing with reverse

◮ Problem: reverse list [a,b, c]
◮ Ask query ?− reverse([a, b, c],X).
◮ A proof of the query yields a substitution: X = [c, b, a]
◮ The substitution constitutes an answer

◮ Query ?− reverse([a|X], [b, c,d ,a]) returns X = [d , c,b]

◮ Query ?− reverse([a|X], [b, c,d ,b]) returns no substitutions
(there is no answer)

Summer School on LP and CL 2008 (University of Kentucky)Foundations of Logic Programming July 24-27, 2008 17 / 139

Example, cont’d

Observations

◮ Techniques to search for proofs — the key
◮ Understanding of the resolution mechanism is important
◮ It may make a difference which logically equivalent form is used:

◮ reverse([X |Y],Z)← append(U, [X],Z), reverse(Y ,U).
◮ reverse([X |Y],Z)← reverse(Y ,U), append(U, [X],Z).
◮ termination vs. non-termination for query:

?− reverse([a|X], [b, c, d , b])

◮ Is it truly knowledge representation?
◮ is it truly declarative?
◮ implementations are not!

◮ Nonmonotonicity quite restricted

Summer School on LP and CL 2008 (University of Kentucky)Foundations of Logic Programming July 24-27, 2008 18 / 139

Negation in the body

Why negation?

◮ Natural linguistic concept
◮ Facilitates knowledge representation (declarative descriptions and

definitions
◮ Needed for modeling convenience
◮ Clauses of the form:

p(~X)← q1(~X1), . . . ,qk (~Xk),not r1(~Y1), . . . ,not rl(~Yl)

◮ Things get more complex!

Summer School on LP and CL 2008 (University of Kentucky)Foundations of Logic Programming July 24-27, 2008 19 / 139

Semantics of programs with negation

Observations

◮ Still Herbrand models
◮ Still restricted to HB(P)

◮ But — usually no least Herbrand model!
◮ Program

a← not b
b ← not a

has two minimal Herbrand models: M1 = {a} and M2 = {b}.
◮ Identifying a single intended model a major issue

Summer School on LP and CL 2008 (University of Kentucky)Foundations of Logic Programming July 24-27, 2008 20 / 139

Semantics of programs with negation

Great Logic Programming Schism

◮ Single intended model approach
◮ continue along the lines of Prolog

◮ Multiple intended model approach
◮ branch into answer-set programming

Summer School on LP and CL 2008 (University of Kentucky)Foundations of Logic Programming July 24-27, 2008 21 / 139

Single intended model approach

“Better” Prolog

◮ Extensions of Horn logic programming
◮ Perfect semantics of stratified programs
◮ 3-val well-founded semantics for (arbitrary) programs

◮ Top-down computing based on unification and resolution
◮ XSB – David Warren at SUNY Stony Brook
◮ Will come back to it

Summer School on LP and CL 2008 (University of Kentucky)Foundations of Logic Programming July 24-27, 2008 22 / 139

Multiple intended models

Answer-set programming

◮ Semantics assigns to a program not one but many intended
models!

◮ for instance, all stable or supported models (to be introduced soon)
◮ How to interpret these semantics?

◮ skeptical reasoning: a ground atom is cautiously entailed if it
belongs to all intended models

◮ intended models represent different possible states of the world,
belief sets, solutions to a problem

◮ Nonmonotonicity shows itself in an essential way
◮ as in default logic

Summer School on LP and CL 2008 (University of Kentucky)Foundations of Logic Programming July 24-27, 2008 23 / 139

Normal logic programming

Preliminary observations and comments

◮ Logic programs with negation
◮ Still interested only in Herbrand models
◮ Thus, enough to consider propositional case
◮ Supported model semantics
◮ Stable model semantics
◮ Connection to propositional logic (Clark’s completion, tightness,

loop formulas)
◮ Kripke-Kleene and well-founded semantics
◮ Strong and uniform equivalence

Summer School on LP and CL 2008 (University of Kentucky)Foundations of Logic Programming July 24-27, 2008 24 / 139

Normal logic programming — propositional case

Syntax

◮ Propositional language over a set of atoms At (possibly infinite)
◮ Clause r

a← b1, . . . ,bm,not c1, . . . ,not cn

◮ a, bi , cj are atoms
◮ a is the head of the clause: hd(r)
◮ literals bi , not cj form the body of the rule: bd(r)
◮ {b1, . . . ,bm} - positive body bd+(r)
◮ {c1, . . . , cn} - negative body bd−(r)

Summer School on LP and CL 2008 (University of Kentucky)Foundations of Logic Programming July 24-27, 2008 25 / 139

One-step provability operator

Basic tool in LP van Emden, Kowalski 1976

◮ Operator on interpretations (sets of atoms)
◮ TP(I) = {hd(r) : I |= bd(r)}
◮ If P is Horn, TP is monotone

◮ Let I ⊆ J
◮ Let bd(r) = b1, . . . ,bm (no negation!)
◮ If I |= bd(r) than J |= bd(r)
◮ Thus, TP(I) ⊆ TP(J)
◮ Least fixpoint of TP exists and coincides with the least Herbrand

model of P
◮ In general, not the case (due to negation)

◮ ∅ |= not a
◮ but {a} 6|= not a

Summer School on LP and CL 2008 (University of Kentucky)Foundations of Logic Programming July 24-27, 2008 26 / 139

Supported-model semantics

Definition and some observations

◮ M ⊆ At is a supported model of P if TP(M) = M
◮ Supported models are indeed models

◮ let M |= bd(r)
◮ then hd(r) ∈ TP(M)
◮ and so, hd(r) ∈ M

◮ Supported models are subsets of At(P) (the Herbrand base of P)
◮ Thus, they are Herbrand models

Summer School on LP and CL 2008 (University of Kentucky)Foundations of Logic Programming July 24-27, 2008 27 / 139

Supported models - example

Program p ← not q

◮ One supported model: M1 = {p}
◮ M2 = {q} - not supported (but model)
◮ p “follows”
◮ If q included in the program (more exactly: a rule q ←)

◮ Just one supported model: M1 = {q}.
◮ p does not ‘follow”
◮ nonmonotonicity

Summer School on LP and CL 2008 (University of Kentucky)Foundations of Logic Programming July 24-27, 2008 28 / 139

Supported models - example

Program p ← p

◮ Two supported models: M1 = ∅ and M2 = {p}
◮ The second one is self-supported (circular justification)
◮ A problem for KR

Summer School on LP and CL 2008 (University of Kentucky)Foundations of Logic Programming July 24-27, 2008 29 / 139

Clark’s completion

Rules as implications

◮ bd∧(r) the conjunction of all literals in the body of r
with all not c replaced with ¬c

◮ cmpl←(P) = {bd∧(r)→ hd(r) : r ∈ P}

Summer School on LP and CL 2008 (University of Kentucky)Foundations of Logic Programming July 24-27, 2008 30 / 139

Clark’s completion

Rules as definitions

◮ Notation: defP(a) =
∨
{bd∧(r) : hd(r) = a}

◮ Note: if a not the head of any rule in P, defP(a) = ⊥

◮ cmpl→(P) = {a→ defP(a) : a ∈ At}

◮ cmpl(P) = cmpl←(P) ∪ cmpl→(P)

◮ Note: if a /∈ At(P), cmpl(P) |= ¬a

Summer School on LP and CL 2008 (University of Kentucky)Foundations of Logic Programming July 24-27, 2008 31 / 139

Clark’s completion

Example

a ← b,not c
a ← d
b ← a

◮ def (a) = (b ∧ ¬c) ∨ d
◮ def (b) = a
◮ def (c) = ⊥

◮ cmpl← = {b∧¬c → a; d → a; a→ b} = {(b∧¬c)∨d → a; a→ b}
◮ cmpl← = {def (a)→ a; def (b)→ b; def (c)→ c}
◮ cmpl→ = {a→ def (a); b → def (b); c → def (c)}

◮ cmpl = {a↔ def (a); b ↔ def (b); c ↔ def (c)}}

◮ cmpl has two models: ∅ and {a,b}

Summer School on LP and CL 2008 (University of Kentucky)Foundations of Logic Programming July 24-27, 2008 32 / 139

Clark’s completion

Connection to supported models

◮ A set M ⊆ At is a supported model of a program P if and only if M
is a model (in a standard sense) of cmpl(P)

◮ Connection to SAT
◮ Allows us to use SAT solvers to compute supported models of P

Summer School on LP and CL 2008 (University of Kentucky)Foundations of Logic Programming July 24-27, 2008 33 / 139

Connection to supported models — proof

M — supported model of P: M = TP(M)

◮ Let a ∈ M ⇒ ∃r ∈ P st: hd(r) = a and M |= bd(r)
◮ ⇒ M |= bd∧(r), M |= def (a) and M |= a↔ def (a)

◮ Let a /∈ M ⇒ ∀r ∈ P st: hd(r) = a, M 6|= bd(r)
◮ ⇒ M 6|= def (a) and M |= a↔ def (a)

Conversely: let M |= cmpl(P)

◮ ⇒ M |= P and so, TP(M) ⊆ M
◮ Let a ∈ M ⇒ M |= def (a)

◮ ⇒ ∃r ∈ P st: M |= bd∧(r)
◮ ⇒ M |= bd(r) and a ∈ TP(M) ⇒ M ⊆ TP(M)

◮ Thus, M = TP(M) and M supported

Summer School on LP and CL 2008 (University of Kentucky)Foundations of Logic Programming July 24-27, 2008 34 / 139

Connection to supported models — proof

M — supported model of P: M = TP(M)

◮ Let a ∈ M ⇒ ∃r ∈ P st: hd(r) = a and M |= bd(r)
◮ ⇒ M |= bd∧(r), M |= def (a) and M |= a↔ def (a)

◮ Let a /∈ M ⇒ ∀r ∈ P st: hd(r) = a, M 6|= bd(r)
◮ ⇒ M 6|= def (a) and M |= a↔ def (a)

Conversely: let M |= cmpl(P)

◮ ⇒ M |= P and so, TP(M) ⊆ M
◮ Let a ∈ M ⇒ M |= def (a)

◮ ⇒ ∃r ∈ P st: M |= bd∧(r)
◮ ⇒ M |= bd(r) and a ∈ TP(M) ⇒ M ⊆ TP(M)

◮ Thus, M = TP(M) and M supported

Summer School on LP and CL 2008 (University of Kentucky)Foundations of Logic Programming July 24-27, 2008 34 / 139

Stable model semantics

Supported models of interest, but ...

◮ Some supported models based on circular arguments
◮ p← p
◮ {p} is supported model (circular argument)

◮ Some more stringent bases for selecting intended models needed

Summer School on LP and CL 2008 (University of Kentucky)Foundations of Logic Programming July 24-27, 2008 35 / 139

Stable model semantics

Gelfond-Lifschitz reduct

◮ P — logic program
◮ M — set of atoms
◮ Reduct PM

◮ for each a ∈ M remove rules with not a in the body
◮ remove literals not a from all other rules

Summer School on LP and CL 2008 (University of Kentucky)Foundations of Logic Programming July 24-27, 2008 36 / 139

Stable model semantics

Definition through reduct

◮ Reduct PM is a Horn program
◮ It has the least model LM(PM)

◮ M is a stable model of P if

M = LM(PM)

Summer School on LP and CL 2008 (University of Kentucky)Foundations of Logic Programming July 24-27, 2008 37 / 139

Stable model semantics

And now through Gelfond-Lifschitz operator

◮ GLP(M) = LM(PM)

◮ M is a stable model if and only if

M = GLP(M)

◮ GLP is antimonotone
◮ For M ⊆ N:

GLP(N) ⊆ GLP(M)

Summer School on LP and CL 2008 (University of Kentucky)Foundations of Logic Programming July 24-27, 2008 38 / 139

Stable models — examples

Multiple stable models

p ← q,not s
r ← p,not q,not s
s ← not q
q ← not s

◮ Two stable models: M1 = {p,q} and M2 = {s}

No stable models

p ← not p

◮ No stable models!!

Summer School on LP and CL 2008 (University of Kentucky)Foundations of Logic Programming July 24-27, 2008 39 / 139

Stable models — examples

Multiple stable models

p ← q,not s
r ← p,not q,not s
s ← not q
q ← not s

◮ Two stable models: M1 = {p,q} and M2 = {s}

No stable models

p ← not p

◮ No stable models!!

Summer School on LP and CL 2008 (University of Kentucky)Foundations of Logic Programming July 24-27, 2008 39 / 139

Stable models — properties

Stable models are models!

◮ Let M be a stable model
◮ M is a model of all rules that are removed from the program when

forming the reduct
◮ M is a model of every rule that contributes to the reduct
◮ Indeed, each such rule is subsumed by a rule in the reduct and M

satisfies all rules in the reduct

Summer School on LP and CL 2008 (University of Kentucky)Foundations of Logic Programming July 24-27, 2008 40 / 139

Stable models — properties

Stable models are minimal models!

◮ Let N be a stable model and M a model s.t. M ⊆ N
◮ Then

N = GLP(N) ⊆ GLP(M) ⊆ M

◮ Thus, N ⊆ M and so N = M
◮ The minimality of N follows
◮ Stable models form an antichain!

Summer School on LP and CL 2008 (University of Kentucky)Foundations of Logic Programming July 24-27, 2008 41 / 139

Stable models — properties

Lemma: If M model of P, GLP(M) ⊆ M

◮ Since M model of P, then M is a model of PM

◮ a← b1, . . . ,bm - a rule in reduct
◮ a← b1, . . . ,bm,not c1, . . . ,not cn - the original rule in P
◮ M satisfies the latter, and it satisfies every not ci (as ci 6∈ M)
◮ Thus, M satisfies the reduct rule

Summer School on LP and CL 2008 (University of Kentucky)Foundations of Logic Programming July 24-27, 2008 42 / 139

Stable models — properties

Connection to supported models

◮ If M is a stable model of P then it is a supported model of P
◮ Let M be a stable model of P
◮ Then M model of P and so, TP(M) ⊆ M
◮ r = a← b1, . . . ,bm,not c1, . . . ,not cn - a rule in P such that

M |= bd(r)
◮ Then r ′ = a← b1, . . . ,bm belongs to the reduct PM

◮ And M |= bd(r ′)
◮ Since M is a model of PM , a ∈ M
◮ Hence, TP(M) ⊆ M and so, M = TP(M)

◮ That is, M is supported!!

Summer School on LP and CL 2008 (University of Kentucky)Foundations of Logic Programming July 24-27, 2008 43 / 139

Fages Lemma Fages 1994

But ...

◮ The converse not true, in general (as it should not be)

Counterexample

◮ p ← p
◮ {p} is supported but not stable
◮ Positive dependency of p on itself is a problem

Summer School on LP and CL 2008 (University of Kentucky)Foundations of Logic Programming July 24-27, 2008 44 / 139

Fages Lemma Fages 1994

But ...

◮ The converse not true, in general (as it should not be)

Counterexample

◮ p ← p
◮ {p} is supported but not stable
◮ Positive dependency of p on itself is a problem

Summer School on LP and CL 2008 (University of Kentucky)Foundations of Logic Programming July 24-27, 2008 44 / 139

Fages Lemma

Positive dependency graph G+(P)

◮ Atoms of P are vertices
◮ (a,b) is an edge in G+(P) if for some r ∈ P: hd(r) = a,

b ∈ bd+(r)

Tight programs

◮ P is tight if G+(P) is acyclic
◮ Alternatively, if there is a labeling of atoms with non-negative

integers (a 7→ λ(a)) s.t.
◮ for every rule r ∈ P

λ(hd(r)) > max{λ(b) : b ∈ bd+(r)}

◮ Connection to topological ordering of positive dependency graphs

Summer School on LP and CL 2008 (University of Kentucky)Foundations of Logic Programming July 24-27, 2008 45 / 139

Fages Lemma

Positive dependency graph G+(P)

◮ Atoms of P are vertices
◮ (a,b) is an edge in G+(P) if for some r ∈ P: hd(r) = a,

b ∈ bd+(r)

Tight programs

◮ P is tight if G+(P) is acyclic
◮ Alternatively, if there is a labeling of atoms with non-negative

integers (a 7→ λ(a)) s.t.
◮ for every rule r ∈ P

λ(hd(r)) > max{λ(b) : b ∈ bd+(r)}

◮ Connection to topological ordering of positive dependency graphs

Summer School on LP and CL 2008 (University of Kentucky)Foundations of Logic Programming July 24-27, 2008 45 / 139

Fages Lemma

The statement — finally

◮ If P is tight then every supported model is stable
◮ Intuitively, circular support not possible

Summer School on LP and CL 2008 (University of Kentucky)Foundations of Logic Programming July 24-27, 2008 46 / 139

Fages Lemma — example

Program P

p ← q,not s
r ← p,not q,not s
s ← not q
q ← not s

Graph G+(P)

P is tight

◮ {p,q} and {s} are supported models of P
◮ TP({p, q}) = {p, q}
◮ TP({s}) = {s}

◮ Thus, they are stable (which we verified directly earlier)

Summer School on LP and CL 2008 (University of Kentucky)Foundations of Logic Programming July 24-27, 2008 47 / 139

Fages Lemma — example

Program P

p ← q,not s
r ← p,not q,not s
s ← not q
q ← not s

Graph G+(P)

p qr

P is tight

◮ {p,q} and {s} are supported models of P
◮ TP({p, q}) = {p, q}
◮ TP({s}) = {s}

◮ Thus, they are stable (which we verified directly earlier)

Summer School on LP and CL 2008 (University of Kentucky)Foundations of Logic Programming July 24-27, 2008 47 / 139

Fages Lemma — example

Program P

p ← q,not s
r ← p,not q,not s
s ← not q
q ← not s

Graph G+(P)

p qr

P is tight

◮ {p,q} and {s} are supported models of P
◮ TP({p, q}) = {p, q}
◮ TP({s}) = {s}

◮ Thus, they are stable (which we verified directly earlier)

Summer School on LP and CL 2008 (University of Kentucky)Foundations of Logic Programming July 24-27, 2008 47 / 139

Fages Lemma

Proof

◮ Let P be tight and M be its supported model
◮ Then M is a model of PM

◮ Let N be a model of PM

◮ Claim: for every k , if a ∈ M and λ(a) < k , then a ∈ N
◮ Holds for k = 0 (trivially)
◮ Let a ∈ M and λ(a) = k
◮ Since M supported, there is r ∈ P such that a = hd(r) and

M |= bd(r)
◮ In particular, bd+(r) ⊆ M and so, bd+(r) ⊆ N (by I.H.)
◮ Since M |= bd(r), M contributes to the reduct
◮ Since N is a model of PM , a ∈ N
◮ It follows that M = LM(PM)

Summer School on LP and CL 2008 (University of Kentucky)Foundations of Logic Programming July 24-27, 2008 48 / 139

A generalization Erdem and Lifschitz, 2000

Relativized tightness

◮ Let X ⊆ At(P)

◮ P is tight on X if the program consisting of rules r such that
bd+(r) ⊆ X is tight

Generalization

◮ If P is tight on X and M is a supported model of P such that
M ⊆ X , then M is stable

Summer School on LP and CL 2008 (University of Kentucky)Foundations of Logic Programming July 24-27, 2008 49 / 139

A generalization Erdem and Lifschitz, 2000

Relativized tightness

◮ Let X ⊆ At(P)

◮ P is tight on X if the program consisting of rules r such that
bd+(r) ⊆ X is tight

Generalization

◮ If P is tight on X and M is a supported model of P such that
M ⊆ X , then M is stable

Summer School on LP and CL 2008 (University of Kentucky)Foundations of Logic Programming July 24-27, 2008 49 / 139

Generalized Fages Lemma — example

Program P

p ← q,not s
r ← p,not q,not s
s ← not q
q ← not s
p ← r

Graph G+(P)

P is not tight

◮ {p,q} and {s} are still supported models of P
◮ TP({p, q}) = {p, q}
◮ TP({s}) = {s}

◮ Since P is tight on each of them, they are stable

Summer School on LP and CL 2008 (University of Kentucky)Foundations of Logic Programming July 24-27, 2008 50 / 139

Generalized Fages Lemma — example

Program P

p ← q,not s
r ← p,not q,not s
s ← not q
q ← not s
p ← r

Graph G+(P)

p qr

P is not tight

◮ {p,q} and {s} are still supported models of P
◮ TP({p, q}) = {p, q}
◮ TP({s}) = {s}

◮ Since P is tight on each of them, they are stable

Summer School on LP and CL 2008 (University of Kentucky)Foundations of Logic Programming July 24-27, 2008 50 / 139

Generalized Fages Lemma — example

Program P

p ← q,not s
r ← p,not q,not s
s ← not q
q ← not s
p ← r

Graph G+(P)

p qr

P is not tight

◮ {p,q} and {s} are still supported models of P
◮ TP({p, q}) = {p, q}
◮ TP({s}) = {s}

◮ Since P is tight on each of them, they are stable

Summer School on LP and CL 2008 (University of Kentucky)Foundations of Logic Programming July 24-27, 2008 50 / 139

Loops and loop formulas Lin and Zhao, 2002

External support formula for Y ⊆ At(P)

◮ For a rule r :
◮ bd∧(r) the conjunction of all literals in the body of r

with all not c replaced with ¬c

◮ For Y 6= ∅:
◮ ESP(Y) the disjunction of bd∧(r) for all r ∈ P st:
◮ hd(r) ∈ Y
◮ bd+(r) ∩ Y = ∅

◮ For finite programs: well-formed formulas
◮ Hence, will assume finiteness

Observations

◮ ESP({a}) = defP(a)
cf. Clark’s completion

Summer School on LP and CL 2008 (University of Kentucky)Foundations of Logic Programming July 24-27, 2008 51 / 139

Loops and loop formulas Lin and Zhao, 2002

External support formula for Y ⊆ At(P)

◮ For a rule r :
◮ bd∧(r) the conjunction of all literals in the body of r

with all not c replaced with ¬c

◮ For Y 6= ∅:
◮ ESP(Y) the disjunction of bd∧(r) for all r ∈ P st:
◮ hd(r) ∈ Y
◮ bd+(r) ∩ Y = ∅

◮ For finite programs: well-formed formulas
◮ Hence, will assume finiteness

Observations

◮ ESP({a}) = defP(a)
cf. Clark’s completion

Summer School on LP and CL 2008 (University of Kentucky)Foundations of Logic Programming July 24-27, 2008 51 / 139

A characterization of stable models

for finite programs, the following conditions are equivalent

◮ X is a stable model of P
◮ X is a model of cmpl←(P) ∪ {Y∧ → ESP(Y) : Y ⊆ At(P), Y 6= ∅}
◮ X is a model of cmpl←(P) ∪ {Y∨ → ESP(Y) : Y ⊆ At(P), Y 6= ∅}

◮ OK to replace cmpl←(P) with cmpl(P)
◮ cmpl→(P) ⊆ {Y∧ → ESP(Y) : Y ⊆ At(P)}
◮ cmpl→(P) ⊆ {Y∨ → ESP(Y) : Y ⊆ At(P)}

Summer School on LP and CL 2008 (University of Kentucky)Foundations of Logic Programming July 24-27, 2008 52 / 139

Loops

Definition

◮ A loop is a non-empty set Y ⊆ At(P) that induces in G+(P) a
strongly connected subgraph

◮ In particular, all singleton sets are loops

Summer School on LP and CL 2008 (University of Kentucky)Foundations of Logic Programming July 24-27, 2008 53 / 139

Loops — example

Program P

p ← q,not r
q ← p
r ← not p

Graph G+(P)

◮ {p}, {q}, {r}, {p,q}
are loops

◮ {p,q, r} is not!

Summer School on LP and CL 2008 (University of Kentucky)Foundations of Logic Programming July 24-27, 2008 54 / 139

Loops — example

Program P

p ← q,not r
q ← p
r ← not p

Graph G+(P)

rp q

◮ {p}, {q}, {r}, {p,q}
are loops

◮ {p,q, r} is not!

Summer School on LP and CL 2008 (University of Kentucky)Foundations of Logic Programming July 24-27, 2008 54 / 139

Loop Theorem

For finite programs, the following conditions are equivalent

◮ X is a stable model of P
◮ X is a model of cmpl←(P) ∪ {Y∧ → ESP(Y) : Y – a loop}
◮ X is a model of cmpl←(P) ∪ {Y∨ → ESP(Y) : Y – a loop}

◮ OK to replace cmpl←(P) with cmpl(P)
◮ Singleton sets are loops!

Summer School on LP and CL 2008 (University of Kentucky)Foundations of Logic Programming July 24-27, 2008 55 / 139

Loop Theorem

Let X be a stable model of P

◮ ⇒ X |= P ⇒ X |= PX

◮ X |= P ⇒ X |= cmpl←(P)

◮ Let Y be a loop st: X |= Y∧ ⇒ X ∩ Y 6= ∅
◮ Let a ∈ Y be the “first” element of Y in X

recall that X = LM(PX)

◮ ⇒ ∃r ∈ P st: a = hd(r), bd+(r) ∩ Y = ∅

◮ ⇒ bd∧(r) is a disjunct of ESP(Y)

◮ Also: bd+(r) ⊆ X and bd−(r) ∩ X = ∅ ⇒ X |= bd∧(r)
◮ ⇒ X |= ESP(Y) ⇒ X |= Y∧ → ESP(Y)

◮ No difference if Y∧ replaced with Y∨

Summer School on LP and CL 2008 (University of Kentucky)Foundations of Logic Programming July 24-27, 2008 56 / 139

Loop Theorem

Let X |= cmpl←(P) ∪ {Y∧ → ESP(Y) : Y – a loop}

◮ ⇒ X |= P ⇒ X |= PX

◮ Let X ′ = LM(PX) ⇒ X ′ ⊆ X
◮ Let X \ X ′ 6= ∅
◮ Consider subgraph H of G(P)

induced by X \ X ′

◮ Let Y be a “terminal” strongly
connected component of H
no edge in H starts in Y and ends outside of Y

Summer School on LP and CL 2008 (University of Kentucky)Foundations of Logic Programming July 24-27, 2008 57 / 139

Loop Theorem

Let X |= cmpl←(P) ∪ {Y∧ → ESP(Y) : Y – a loop}

◮ ⇒ X |= P ⇒ X |= PX

◮ Let X ′ = LM(PX) ⇒ X ′ ⊆ X
◮ Let X \ X ′ 6= ∅
◮ Consider subgraph H of G(P)

induced by X \ X ′

◮ Let Y be a “terminal” strongly
connected component of H
no edge in H starts in Y and ends outside of Y

terminal terminal

G (P)

H

X\X’

X’

X

Y

+

Summer School on LP and CL 2008 (University of Kentucky)Foundations of Logic Programming July 24-27, 2008 57 / 139

Loop Theorem

Proof, cont’d

◮ X |= Y∧ → ESP(Y) (also: X |= Y∨ → ESP(Y))
◮ Since Y ⊆ X : ⇒ X |= ESP(Y)

◮ ⇒ ∃r ∈ P st: hd(r) ∈ Y , bd+(r) ∩ Y = ∅, X |= bd∧(r)
◮ ⇒ bd+(r) ⊆ X and rX ∈ PX

◮ Since Y terminal and bd+(r) ∩ Y = ∅: ⇒ bd+(r) ⊆ X ′

◮ if a ∈ bd+(r): a ∈ X
◮ (hd(r), a) edge in G+(P)
◮ if a ∈ X \ X ′: (hd(r), a) edge in H
◮ ⇒ a ∈ Y , contradiction
◮ ⇒ a ∈ X ′

◮ Since X ′ |= PX : ⇒ X ′ |= rX

◮ ⇒ hd(r) ∈ X ′

◮ Since X ′ ∩ Y = ∅: ⇒ contradiction

Summer School on LP and CL 2008 (University of Kentucky)Foundations of Logic Programming July 24-27, 2008 58 / 139

Program inconsistency

Some programs have no stable nor supported models

◮ Sufficient conditions for the existence of stable models
◮ 4-val supported and stable models

Summer School on LP and CL 2008 (University of Kentucky)Foundations of Logic Programming July 24-27, 2008 59 / 139

Sufficient conditions

General dependency graph G(P)

◮ Atoms of P are vertices
◮ (a,b) is an edge in P if for some r ∈ P: hd(r) = a, b ∈ bd(r)
◮ If b ∈ bd+(r) — edge is positive
◮ If b ∈ bd−(r) — edge is negative

A propositional program P is

◮ Call-consistent: if G(P) has no odd cycles (cycles with an odd
number of negative edges)

◮ Stratified: if G(P) has no paths with infinitely many negative
edges

◮ in particular, no cycles with a negative edge (for finite programs
both conditions are equivalent)

Summer School on LP and CL 2008 (University of Kentucky)Foundations of Logic Programming July 24-27, 2008 60 / 139

Sufficient conditions

General dependency graph G(P)

◮ Atoms of P are vertices
◮ (a,b) is an edge in P if for some r ∈ P: hd(r) = a, b ∈ bd(r)
◮ If b ∈ bd+(r) — edge is positive
◮ If b ∈ bd−(r) — edge is negative

A propositional program P is

◮ Call-consistent: if G(P) has no odd cycles (cycles with an odd
number of negative edges)

◮ Stratified: if G(P) has no paths with infinitely many negative
edges

◮ in particular, no cycles with a negative edge (for finite programs
both conditions are equivalent)

Summer School on LP and CL 2008 (University of Kentucky)Foundations of Logic Programming July 24-27, 2008 60 / 139

Sufficient conditions

Results

◮ If a finite logic program is call-consistent, it has a stable model
◮ If a program is stratified it has a unique stable model

Summer School on LP and CL 2008 (University of Kentucky)Foundations of Logic Programming July 24-27, 2008 61 / 139

Stratification through splitting

Splitting

◮ Let P and Q be programs such that P does not contain any of the
head atoms of Q
“Q above P”

◮ A set M is a stable model of P ∪Q iff there is a stable model N of
P such that M is a stable model of Q ∪ N

Summer School on LP and CL 2008 (University of Kentucky)Foundations of Logic Programming July 24-27, 2008 62 / 139

Splitting Theorem

Proof: (⇒) Let M ∈ StM(P ∪Q)

◮ N := M ∩ At(P)

◮ PN = PM (as (M \ N) ∩ At(P) = ∅)
◮ M |= P ⇒ M |= PM ⇒ M |= PN

◮ ⇒ N |= PN (as (M \N) ∩ At(P) = ∅)
◮ Let N ′ ⊆ N be st: N ′ |= PN

◮ ⇒ N ′ |= PM ⇒ N ′ ∪ (M \ N) |= PM

◮ Let r ∈ QM be st: N ′ ∪ (M \ N) |= bd(r)
◮ ⇒ M |= bd(r) ⇒ M |= hd(r) (as M |= Q and so, M |= QM)
◮ ⇒ hd(r) ∈ M ⇒ hd(r) ∈ M \ N ⇒ hd(r) ∈ N ′ ∪ (M \ N)

◮ ⇒ N ′ ∪ (M \ N) |= QM ⇒ N ′ ∪ (M \N) |= (P ∪Q)M

◮ ⇒ N ′ ∪ (M \ N) = M ⇒ N ′ = N ⇒ N = LM(PN)

◮ ⇒ N ∈ StM(P)

Summer School on LP and CL 2008 (University of Kentucky)Foundations of Logic Programming July 24-27, 2008 63 / 139

Splitting Theorem

Next, we show that M ∈ StM(Q ∪ N)

◮ Recall: N = M ∩ At(P) ⇒ N ⊆ M
◮ Also: M |= Q ⇒ M |= QM ∪ N = (Q ∪N)M

◮ Let M ′ ⊆ M be st: M ′ |= (Q ∪ N)M

◮ ⇒ N ⊆ M ′ M ′ |= QM

◮ Recall: N |= PN and so N |= PM (as PM = PN)
◮ ⇒ M ′ |= PM ⇒ M ′ |= (P ∪Q)M

◮ Recall: M = LM((P ∪Q)M) ⇒ M = M ′

◮ ⇒ M = LM((P ∪Q)M) ⇒ M ∈ StM(Q ∪ N)

Summer School on LP and CL 2008 (University of Kentucky)Foundations of Logic Programming July 24-27, 2008 64 / 139

Splitting Theorem

Conversely: M ∈ StM(Q ∪ N) and N ∈ StM(P)

◮ ⇒ M |= Q, N ⊆ M, M ⊆ hd(Q) ∪ N
◮ ⇒ M ∩ At(P) = N ⇒ M |= P
◮ ⇒ M |= P ∪Q ⇒ M |= (P ∪Q)M

◮ Let M ′ ⊆ M be st: M ′ |= (P ∪Q)M

◮ N ′ := M ′ ∩ At(P)

◮ ⇒ M ′ |= PM ⇒ N ′ |= PM ⇒ N ′ |= PN

◮ ⇒ N ′ = N ⇒ N ⊆ M ′ ⇒ M ′ |= QM ∪N = (Q ∪ N)M

◮ ⇒ M ′ = M ⇒ M = LM((Q ∪ N)M ⇒ M ∈ StM(P ∪Q)

Summer School on LP and CL 2008 (University of Kentucky)Foundations of Logic Programming July 24-27, 2008 65 / 139

Stratification

Equivalent definition in the finite case

◮ P stratified if
◮ hd(P) ∩ bd−(P) = ∅ , or
◮ P = P1 ∪ P2, where P2 stratified, hd(P1) ∩ (bd−(P1) ∪ At(P2)) = ∅

Finite stratified programs have a unique stable model

◮ Induction
◮ Basis: exident
◮ Inductive step: P2 has a unique stable model, say N
◮ Clearly, P1 ∪ N has a unique stable model, too
◮ Apply splitting theorem

Summer School on LP and CL 2008 (University of Kentucky)Foundations of Logic Programming July 24-27, 2008 66 / 139

Equivalence — logics behind nonmonotonic logics

What do I mean?

◮ Logic allows us to manipulate theories
◮ Tautologies can be added or removed without changing the

meaning
◮ Consequences of formulas in theories can be added or removed

without changing the meaning
◮ {p, p→ q} the same as {p, p → q, q}
◮ one can always be replaced with another (within any larger context)

◮ Equivalence for replacement — logical equivalence necessary
and sufficient

◮ Is there a logic which captures such manipulation with theories in
nonmonotonic systems?

Summer School on LP and CL 2008 (University of Kentucky)Foundations of Logic Programming July 24-27, 2008 67 / 139

Is it important?

Query optimization

◮ Compute answers to a query Q (program) from a knowledge base
KB (another program)
reason from Q ∪ KB

◮ Rewrite Q into an equivalent query Q′, which can be processed
more efficiently
reasoning from Q′ ∪ KB easier

◮ When are two queries equivalent?
◮ If Q ∪ KB and Q′ ∪ KB have the same meaning

not quite what we want — knowledge-base dependent
◮ If Q ∪ KB and Q′ ∪KB have the same meaning for every knowledge

base KB
better — knowledge-base independent

Summer School on LP and CL 2008 (University of Kentucky)Foundations of Logic Programming July 24-27, 2008 68 / 139

Towards modular logic programming

Equivalence of programs

◮ P and Q are equivalent if they have the same models

Nonmonotonic equivalence of programs

◮ P and Q are stable-equivalent if they have the same stable models

Summer School on LP and CL 2008 (University of Kentucky)Foundations of Logic Programming July 24-27, 2008 69 / 139

Towards modular logic programming

Equivalence of programs

◮ P and Q are equivalent if they have the same models

Nonmonotonic equivalence of programs

◮ P and Q are stable-equivalent if they have the same stable models

Summer School on LP and CL 2008 (University of Kentucky)Foundations of Logic Programming July 24-27, 2008 69 / 139

Towards modular logic programming

Equivalence for replacement

◮ Equivalence for replacement — for every program R, programs
P ∪ R and Q ∪ R have the same stable models

◮ Commonly known as strong equivalence
Lifschitz, Pearce, Valverde 2001; Lin 2002; Turner 2003; Eiter, Fink 2003; Eiter, Fink,

Tompits, Woltran, 2005; T_ 2006; Woltran 2008

◮ Different than equivalence
◮ {p← not q} and {q ← not p}
◮ The same models but different meaning

◮ Different than stable-equivalence
◮ P = {p} and Q = {p← not q}
◮ The same stable models; {p} is the only stable model in each case
◮ But, P ∪ {q} and Q ∪ {q} have different stable models!

({p, q} and {q}, respectively)

Summer School on LP and CL 2008 (University of Kentucky)Foundations of Logic Programming July 24-27, 2008 70 / 139

When are two programs strongly equivalent?

Se-model characterization

◮ A pair (X ,Y) of sets of atoms is an se-model of a program P if
◮ X ⊆ Y
◮ Y |= P
◮ X |= PY

◮ SE(P) set of se-models of P
◮ Logic programs P and Q are strongly equivalent iff they have the

same se-models (SE(P) = SE(Q))
◮ A similar concept characterizes strong equivalence of default

theories
Turner 2003

Summer School on LP and CL 2008 (University of Kentucky)Foundations of Logic Programming July 24-27, 2008 71 / 139

When are two programs strongly equivalent?

Lemma 1: SE(P) = SE(Q) ⇒ StM(P) = StM(Q)

◮ Y ∈ StM(P) ⇒ Y |= P and Y |= PY

◮ ⇒ (Y ,Y) ∈ SE(P) ⇒ (Y ,Y) ∈ SE(Q)

◮ ⇒ Y |= QY

◮ If Z ⊆ Y and Z |= QY ⇒ (Z ,Y) ∈ SE(Q)

◮ ⇒ (Z ,Y) ∈ SE(P)

◮ ⇒ Z |= PY ⇒ Z = Y (as Y = LM(PY))
◮ ⇒ Y = LM(QY) ⇒ Y ∈ StM(Q)

Summer School on LP and CL 2008 (University of Kentucky)Foundations of Logic Programming July 24-27, 2008 72 / 139

When are two programs strongly equivalent?

Lemma 2: SE(P ∪R) = SE(P) ∩ SE(R)

◮ (X ,Y) ∈ SE(P ∪ R) iff
◮ X ⊆ Y and Y |= P ∪ R and X |= (P ∪ R)Y = PY ∪ RY iff
◮ X ⊆ Y and (Y |= P and Y |= R) and (X |= PY and X |= RY) iff
◮ (X ⊆ Y , Y |= P, X |= PY), and

(X ⊆ Y , Y |= R, X |= RY) iff
◮ (X ,Y) ∈ SE(P) and (X ,Y) ∈ SE(R) iff
◮ (X ,Y) ∈ SE(P) ∩ SE(R)

Summer School on LP and CL 2008 (University of Kentucky)Foundations of Logic Programming July 24-27, 2008 73 / 139

When are two programs strongly equivalent?

SE(P) = SE(Q) ⇒ P and Q are strongly equivalent

◮ By Lemma 2, for every R:
SE(P ∪ R) = SE(P) ∩ SE(R) = SE(Q) ∩ SE(R) = SE(Q ∪R)

◮ By Lemma 1, StM(P ∪ R) = StM(Q ∪ R)

P and Q are strongly equivalent ⇒ SE(P) = SE(Q)

◮ Let (X ,Y) ∈ SE(P) \ SE(Q): (X ,Y) ∈ SE(P) and
(X ,Y) /∈ SE(Q)

◮ ⇒ Y |= PY ⇒ Y = LM(PY ∪ Y)

◮ Since PY ∪ Y = (P ∪ Y)Y , Y = LM((P ∪ Y)Y) ⇒
Y ∈ StM(P ∪ Y)

◮ ⇒ Y ∈ StM(Q ∪ Y) ⇒ Y |= Q
◮ ⇒ X 6|= QY

Summer School on LP and CL 2008 (University of Kentucky)Foundations of Logic Programming July 24-27, 2008 74 / 139

When are two programs strongly equivalent?

SE(P) = SE(Q) ⇒ P and Q are strongly equivalent

◮ By Lemma 2, for every R:
SE(P ∪ R) = SE(P) ∩ SE(R) = SE(Q) ∩ SE(R) = SE(Q ∪R)

◮ By Lemma 1, StM(P ∪ R) = StM(Q ∪ R)

P and Q are strongly equivalent ⇒ SE(P) = SE(Q)

◮ Let (X ,Y) ∈ SE(P) \ SE(Q): (X ,Y) ∈ SE(P) and
(X ,Y) /∈ SE(Q)

◮ ⇒ Y |= PY ⇒ Y = LM(PY ∪ Y)

◮ Since PY ∪ Y = (P ∪ Y)Y , Y = LM((P ∪ Y)Y) ⇒
Y ∈ StM(P ∪ Y)

◮ ⇒ Y ∈ StM(Q ∪ Y) ⇒ Y |= Q
◮ ⇒ X 6|= QY

Summer School on LP and CL 2008 (University of Kentucky)Foundations of Logic Programming July 24-27, 2008 74 / 139

When are two programs strongly equivalent?

(X , Y) ∈ SE(P), (X , Y) /∈ SE(Q), Y |= Q, X 6|= QY

◮ Define R = X ∪ {y ← y ′ | y , y ′ ∈ Y \ X}
◮ ⇒ Y |= Q ∪ R and Y |= (Q ∪ R)Y

◮ Let Z ⊆ Y st: Z |= (Q ∪ R)Y ⇒ Z |= QY ∪R
◮ ⇒ Z |= QY ⇒ X 6= Z
◮ Since Z |= R, X ⊆ Z ⇒ ∃y ∈ Y \ X st: y ∈ Z
◮ Since Z |= R, Y \ X ⊆ Z
◮ ⇒ Y ⊆ Z ⇒ Z = Y
◮ ⇒ Y ∈ StM(Q ∪R) ⇒ Y ∈ StM(P ∪ R)

◮ ⇒ Y = LM((P ∪R)Y)

◮ Since X |= PY ∪ R = (P ∪ R)Y , X = Y
◮ ⇒ Y 6|= QY ⇒ Y 6|= Q, a contradiction

Summer School on LP and CL 2008 (University of Kentucky)Foundations of Logic Programming July 24-27, 2008 75 / 139

An interesting variant

Uniform equivalence

◮ Programs P and Q are uniformly equivalent if for every set D of
facts (rules with empty body) P ∪D and Q ∪ D have the same
stable models

◮ Relevant for DB query optimization
◮ Different than other types of equivalence discussed here

Summer School on LP and CL 2008 (University of Kentucky)Foundations of Logic Programming July 24-27, 2008 76 / 139

When are two programs uniformly equivalent?

Se-model characterization

◮ Programs P and Q are uniformly equivalent iff
◮ for every Y ⊆ At , Y is a model of P if and only if Y is a model of Q
◮ for every (X ,Y) ∈ SE(P) such that X ⊂ Y , there is U ⊆ At such

that X ⊆ U ⊂ Y and (U,Y) ∈ SE(Q)
◮ for every (X ,Y) ∈ SE(Q) such that X ⊂ Y , there is U ⊆ At such

that X ⊆ U ⊂ Y and (U,Y) ∈ SE(P)

Summer School on LP and CL 2008 (University of Kentucky)Foundations of Logic Programming July 24-27, 2008 77 / 139

When are two programs uniformly equivalent?

Ue-model characterization

◮ A pair (X ,Y) of sets of atoms is a ue-model of a program P if it is
an se-model of P and

◮ For every se-model (X ′,Y) such that X ⊆ X ′, X ′ = X or X ′ = Y
◮ Finite logic programs P and Q are uniformly equivalent iff they

have the same ue-models
Eiter and Fink, 2003

Summer School on LP and CL 2008 (University of Kentucky)Foundations of Logic Programming July 24-27, 2008 78 / 139

General logic programs Ferraris and Lifschitz, 2005

Formulas

◮ Base: atoms and the symbol ⊥ (“false”)
◮ Connectives ∧, ∨ and→
◮ Shortcuts

◮ ¬F ::= F → ⊥
◮ ⊤ ::= ⊥ → ⊥
◮ F ↔ G ::= (F → G) ∧ (G → F)

Summer School on LP and CL 2008 (University of Kentucky)Foundations of Logic Programming July 24-27, 2008 79 / 139

General logic programs

Positive and negative occurrences of atoms in formulas

◮ An occurrence of a in F is positive, if the # of implications with this
occurrence of a in antecedent is even

◮ Otherwise, it is negative
◮ An occurrence of a in F is strictly positive if no implication

contains this occurrence of a in the antecedent
◮ ¬F (that is, F → ⊥) has no strictly positive occurrences of any

atom.

◮ A head atom (of a formula) an atom with at least one strictly
positive occurrence

◮ In (¬p → q)→ (p ∨ ¬q):
◮ the first occurrence of p is negative
◮ the second occurrence of p is strictly positive
◮ both occurrences of q are negative

Summer School on LP and CL 2008 (University of Kentucky)Foundations of Logic Programming July 24-27, 2008 80 / 139

Stable-model semantics

Reduct of a formula F with respect to a set X of atoms

◮ The formula F X obtained by replacing in F each maximal
subformula of F that is not satisfied by X with ⊥

Example: F = (¬p → q) ∧ (¬q → p) and X = {p}

◮ ¬p = p → ⊥, and X |= ¬p → q
◮ Thus: ¬p is a maximal subformula not satisfied by X
◮ ¬q = q → ⊥, X 6|= q, X |= ¬q
◮ Thus, q is a maximal subformula not satisfied by X
◮ Thus: F X = (⊥ → q) ∧ ((⊥ → ⊥)→ p)

◮ Classically equivalent to p

Summer School on LP and CL 2008 (University of Kentucky)Foundations of Logic Programming July 24-27, 2008 81 / 139

Stable-model semantics

Reduct of a formula F with respect to a set X of atoms

◮ The formula F X obtained by replacing in F each maximal
subformula of F that is not satisfied by X with ⊥

Example: F = (¬p → q) ∧ (¬q → p) and X = {p}

◮ ¬p = p → ⊥, and X |= ¬p → q
◮ Thus: ¬p is a maximal subformula not satisfied by X
◮ ¬q = q → ⊥, X 6|= q, X |= ¬q
◮ Thus, q is a maximal subformula not satisfied by X
◮ Thus: F X = (⊥ → q) ∧ ((⊥ → ⊥)→ p)

◮ Classically equivalent to p

Summer School on LP and CL 2008 (University of Kentucky)Foundations of Logic Programming July 24-27, 2008 81 / 139

Stable-model semantics

To facilitate computation of the reduct

◮ ⊥X = ⊥

◮ For a an atom, if a ∈ X , aX = a; otherwise, aX = ⊥

◮ If X |= F ◦G, (F ◦G)X = F X ◦GX ; otherwise, (F ◦G)X = ⊥ (◦
stands for any of ∧, ∨,→)

◮ If X |= F , (¬F)X = ⊥; otherwise,
(¬F)X = (F → ⊥)X = F X → ⊥X = ⊥ → ⊥ = ⊤

Summer School on LP and CL 2008 (University of Kentucky)Foundations of Logic Programming July 24-27, 2008 82 / 139

Stable-model semantics

Definition

◮ A set X of atoms is a stable model of a formula F if X is a minimal
model of F

Example: F = (¬p → q) ∧ (¬q → p), X = {p}

◮ F X = (⊥ → q) ∧ ((⊥ → ⊥)→ p) (which is equivalent to p)
◮ X is a minimal model of F X , so a stable model

Example: F = (¬p → q) ∧ (¬q → p), X = {p, q}

◮ F X = (⊥ → q) ∧ (⊥ → p) (which is equivalent to ⊤)
◮ X is not a minimal model of F X , so not a stable model

Summer School on LP and CL 2008 (University of Kentucky)Foundations of Logic Programming July 24-27, 2008 83 / 139

Stable-model semantics

Definition

◮ A set X of atoms is a stable model of a formula F if X is a minimal
model of F

Example: F = (¬p → q) ∧ (¬q → p), X = {p}

◮ F X = (⊥ → q) ∧ ((⊥ → ⊥)→ p) (which is equivalent to p)
◮ X is a minimal model of F X , so a stable model

Example: F = (¬p → q) ∧ (¬q → p), X = {p, q}

◮ F X = (⊥ → q) ∧ (⊥ → p) (which is equivalent to ⊤)
◮ X is not a minimal model of F X , so not a stable model

Summer School on LP and CL 2008 (University of Kentucky)Foundations of Logic Programming July 24-27, 2008 83 / 139

Stable-model semantics

Definition

◮ A set X of atoms is a stable model of a formula F if X is a minimal
model of F

Example: F = (¬p → q) ∧ (¬q → p), X = {p}

◮ F X = (⊥ → q) ∧ ((⊥ → ⊥)→ p) (which is equivalent to p)
◮ X is a minimal model of F X , so a stable model

Example: F = (¬p → q) ∧ (¬q → p), X = {p, q}

◮ F X = (⊥ → q) ∧ (⊥ → p) (which is equivalent to ⊤)
◮ X is not a minimal model of F X , so not a stable model

Summer School on LP and CL 2008 (University of Kentucky)Foundations of Logic Programming July 24-27, 2008 83 / 139

Stable-model semantics

Properties

◮ If X is a stable model of a formula F then X consists of head
atoms of F

◮ A least model of a Horn formula (conjunction of definite Horn
clauses given as implications) is a unique stable model of the
theory

◮ A set X is a stable model of a formula F ∧ ¬G if and only if X is a
stable model of F and X |= ¬G

Summer School on LP and CL 2008 (University of Kentucky)Foundations of Logic Programming July 24-27, 2008 84 / 139

Stable-model semantics

Strong equivalence

◮ Formulas F and F ′ are strongly equivalent if for every formula G,
F ∧G and F ′ ∧G have the same stable models

◮ (X ,Y) is an se-model of F if Y ⊆ At , X ⊆ Y , Y |= F and X |= F Y .
◮ The following conditions are equivalent:

◮ Formulas F and G are strongly equivalent
◮ For every set X of atoms, F X and GX are equivalent in classical

logic
◮ F and G have the same se-models
◮ F and G are equivalent in the logic here-and-there (details later)

Summer School on LP and CL 2008 (University of Kentucky)Foundations of Logic Programming July 24-27, 2008 85 / 139

Stable-model semantics

Splitting

◮ Let F and G be formulas such that F does not contain any of the
head atoms of G

◮ A set X is a stable model of F ∧G iff there is a stable model Y of
F such that X is a stable model of G ∧

∧
Y

Summer School on LP and CL 2008 (University of Kentucky)Foundations of Logic Programming July 24-27, 2008 86 / 139

Multivalued semantics

2-input one-step operator ΦP

◮ Given two interpretations I and J

ΦP(I, J) = {hd(r) : r ∈ P, bd+(r) ⊆ I, bd−(r) ∩ J = ∅}

◮ ΦP(·, J) monotone
◮ I ⊆ I′ ⇒ ΦP(I, J) ⊆ ΦP(I′, J)

◮ ΦP(I, ·) antimonotone
◮ J ⊆ J ′ ⇒ ΦP(I, J ′) ⊆ ΦP(I, J)

◮ ΦP(I, I) = TP(I)

Summer School on LP and CL 2008 (University of Kentucky)Foundations of Logic Programming July 24-27, 2008 87 / 139

Multivalued semantics: 4-val interpretations

Pairs (I, J) of 2-val interpretations

◮ Atoms in I are known and atoms in J are possible
◮ Give rise to 4 truth values

◮ If a ∈ I ∩ J , a is true
◮ If a /∈ I ∪ J , a is false
◮ If a ∈ J \ I, a is unknown
◮ If a ∈ I \ J , a is overdefined (inconsistent)

◮ (I, J) consistent if I ⊆ J

Alternatively

◮ Functions val from At to {t, f,u, i}
◮ I := {a | val(a) = t or val(a) = i}
◮ J := {a | val(a) = t or val(a) = u}

Summer School on LP and CL 2008 (University of Kentucky)Foundations of Logic Programming July 24-27, 2008 88 / 139

Multivalued semantics: 4-val interpretations

Pairs (I, J) of 2-val interpretations

◮ Atoms in I are known and atoms in J are possible
◮ Give rise to 4 truth values

◮ If a ∈ I ∩ J , a is true
◮ If a /∈ I ∪ J , a is false
◮ If a ∈ J \ I, a is unknown
◮ If a ∈ I \ J , a is overdefined (inconsistent)

◮ (I, J) consistent if I ⊆ J

Alternatively

◮ Functions val from At to {t, f,u, i}
◮ I := {a | val(a) = t or val(a) = i}
◮ J := {a | val(a) = t or val(a) = u}

Summer School on LP and CL 2008 (University of Kentucky)Foundations of Logic Programming July 24-27, 2008 88 / 139

Multivalued semantics

4-val one-step provability operator

◮ TP(I, J) = (ΦP(I, J),ΦP (J, I))
◮ Precision (information) ordering:

(I, J)≤i (I ′, J ′) - if I ⊆ I ′ and J ′ ⊆ J
◮ TP monotone wrt ≤i

◮ (I, J)≤i (I ′J ′) ⇒ TP(I, J)≤iTP(I ′, J ′)
◮ We have: I ⊆ I′ and J ′ ⊆ J
◮ ΦP(I, J) ⊆ ΦP(I′, J) (monotonicity of ΦP(·, J))
◮ ΦP(I, J ′) ⊆ ΦP(I, J) (antimonotonicity of ΦP(I, ·))

(I, J) consistent ⇒ TP(I, J) consistent

◮ Let I ⊆ J
◮ ⇒ ΦP(I, J) ⊆ ΦP(I, I) ⊆ ΦP(J, I)

Summer School on LP and CL 2008 (University of Kentucky)Foundations of Logic Programming July 24-27, 2008 89 / 139

Multivalued semantics

4-val one-step provability operator

◮ TP(I, J) = (ΦP(I, J),ΦP (J, I))
◮ Precision (information) ordering:

(I, J)≤i (I ′, J ′) - if I ⊆ I ′ and J ′ ⊆ J
◮ TP monotone wrt ≤i

◮ (I, J)≤i (I ′J ′) ⇒ TP(I, J)≤iTP(I ′, J ′)
◮ We have: I ⊆ I′ and J ′ ⊆ J
◮ ΦP(I, J) ⊆ ΦP(I′, J) (monotonicity of ΦP(·, J))
◮ ΦP(I, J ′) ⊆ ΦP(I, J) (antimonotonicity of ΦP(I, ·))

(I, J) consistent ⇒ TP(I, J) consistent

◮ Let I ⊆ J
◮ ⇒ ΦP(I, J) ⊆ ΦP(I, I) ⊆ ΦP(J, I)

Summer School on LP and CL 2008 (University of Kentucky)Foundations of Logic Programming July 24-27, 2008 89 / 139

4-val supported models

Recall: TP(I, J) = (ΦP(I, J), ΦP(J , I)) and TP(I) = ΦP(I, I)

◮ (I, J) is a 4-val supported model of P if (I, J) = TP(I, J)

◮ (I, I) is a 4-val supported model iff I is a supported model
◮ (I, I) = TP(I, I) iff (I, I) = (ΦP(I, I),ΦP(I, I)) = (TP(I),TP(I))

◮ The least 4-val supported model exists!
◮ TP is monotone and so has the least (wrt ≤i) fixpoint
◮ Moreover, it is consistent!

◮ Kripke-Kleene (Fitting) fixpoint or semantics: (KK t(P),KK p(P))

Summer School on LP and CL 2008 (University of Kentucky)Foundations of Logic Programming July 24-27, 2008 90 / 139

Well-founded semantics van Gelder, Ross, Schlipf, 1991

◮ 4-val Gelfond-Lifschitz operator
◮ GLP(I, J) = (GLP(J),GL(I))
◮ Also monotone wrt ≤i

◮ (I, J) is a 4-val stable model if GLP(I, J) = (I, J)

◮ M is a stable model of P if and only if (M,M) is a 4-val stable
model of P

◮ The least fixpoint of GL exists!! (by monotonicity)
◮ And is consistent

◮ if I ⊆ J then: GLP(J) ⊆ GL(I) (antimonotonicity)

◮ Well-founded fixpoint (semantics): (WF t(P),WF p(P))

◮ For every stable model M of P

WF t(P) ⊆ M ⊆WF p(P)

Summer School on LP and CL 2008 (University of Kentucky)Foundations of Logic Programming July 24-27, 2008 91 / 139

Logic here-and-there

Summer School on LP and CL 2008 (University of Kentucky)Foundations of Logic Programming July 24-27, 2008 92 / 139

Logic here-and-there, Heyting 1930

Syntax

◮ Connectives: ⊥, ∨, ∧,→
◮ Formulas - standard extension of atoms by means of

connectives
◮ ¬ϕ - shorthand for ϕ→ ⊥
◮ ϕ↔ ψ - shorthand for (ϕ→ ψ) ∧ (ψ → ϕ)

◮ Language Lht

Summer School on LP and CL 2008 (University of Kentucky)Foundations of Logic Programming July 24-27, 2008 93 / 139

Logic here-and-there

Why important?

◮ Disjunctive logic programs — special theories in Lht
◮ a1| . . . |ak ← b1, . . . ,bm, not c1, . . .not cn
◮ b1 ∧ . . . ∧ bm ∧ ¬c1 ∧ . . . ∧ ¬cn → c1 ∨ . . . ∨ cn

◮ General logic programs (Ferraris, Lifschitz) = theories in Lht
◮ answer-set semantics extends to general logic programs
◮ equilibrium models in logic ht
◮ the two coincide!

Summer School on LP and CL 2008 (University of Kentucky)Foundations of Logic Programming July 24-27, 2008 94 / 139

Entailment in logic here-and-there

Ht-interpretations

◮ Pairs 〈H,T 〉, where H ⊆ T are sets of atoms
◮ Kripke interpretations with two worlds “here” and “there”

◮ H determines the valuation for “here”
◮ T determines the valuation for “there”

Kripke-model satisfiability in the world “here” |=ht

◮ 〈H,T 〉 6|=ht ⊥

◮ 〈H,T 〉 |=ht p if p ∈ H (for atoms only)
◮ 〈H,T 〉 |=ht ϕ ∧ ψ and 〈H,T 〉 |=ht ϕ ∨ ψ — standard recursion
◮ 〈H,T 〉 |=ht ϕ→ ψ if

◮ 〈H,T 〉 6|=ht ϕ or 〈H,T 〉 |=ht ψ
◮ T |= ϕ→ ψ (in standard propositional logic).

Summer School on LP and CL 2008 (University of Kentucky)Foundations of Logic Programming July 24-27, 2008 95 / 139

Entailment in logic here-and-there

Ht-interpretations

◮ Pairs 〈H,T 〉, where H ⊆ T are sets of atoms
◮ Kripke interpretations with two worlds “here” and “there”

◮ H determines the valuation for “here”
◮ T determines the valuation for “there”

Kripke-model satisfiability in the world “here” |=ht

◮ 〈H,T 〉 6|=ht ⊥

◮ 〈H,T 〉 |=ht p if p ∈ H (for atoms only)
◮ 〈H,T 〉 |=ht ϕ ∧ ψ and 〈H,T 〉 |=ht ϕ ∨ ψ — standard recursion
◮ 〈H,T 〉 |=ht ϕ→ ψ if

◮ 〈H,T 〉 6|=ht ϕ or 〈H,T 〉 |=ht ψ
◮ T |= ϕ→ ψ (in standard propositional logic).

Summer School on LP and CL 2008 (University of Kentucky)Foundations of Logic Programming July 24-27, 2008 95 / 139

Entailment in logic here-and-there

ht-model, ht-validity, ht-equivalence

◮ If 〈H,T 〉 |=ht ϕ - 〈H,T 〉 is an ht-model of ϕ
◮ ϕ is ht-valid if for every ht-model 〈H,T 〉, 〈H,T 〉 |= ϕ

◮ ϕ and ψ are ht-equivalent if they have the same ht−models

◮ ϕ and ψ are ht-equivalent iff ϕ↔ ψ is ht-valid

Summer School on LP and CL 2008 (University of Kentucky)Foundations of Logic Programming July 24-27, 2008 96 / 139

Proof theory

Natural deduction — sequents and rules

◮ Sequents Γ⇒ ϕ — “ϕ under the assumptions Γ”
◮ Introduction rules for ∧, ∨,→

Γ ⇒ ϕ ∆ ⇒ ψ

Γ,∆ ⇒ ϕ ∧ ψ

◮ Elimination rules for ∧, ∨,→

Γ ⇒ ϕ ∆ ⇒ ϕ→ ψ

Γ,∆ ⇒ ψ

◮ Contradiction
Γ ⇒ ⊥

Γ ⇒ ϕ

◮ Weakening
Γ ⇒ ϕ

Γ′ ⇒ ϕ
for all Γ′, Γ s.t. Γ

′
⊆ Γ

Summer School on LP and CL 2008 (University of Kentucky)Foundations of Logic Programming July 24-27, 2008 97 / 139

Proof theory

Axiom schemas

(AS1) ϕ⇒ ϕ
(AS2) ⇒ ϕ ∨ ¬ϕ (Excluded Middle)
(AS2′) ⇒ ¬ϕ ∨ ¬¬ϕ (Weak EM)
(AS2′′) ⇒ ϕ ∨ (ϕ→ ψ) ∨ ¬ψ (in between (AS2) and (AS2′)

Logics through natural deduction

Propositional logic (AS1), (AS2)
Intuitionistic logic (AS1)
Logic here-and-there (AS1),(AS2′′)

Summer School on LP and CL 2008 (University of Kentucky)Foundations of Logic Programming July 24-27, 2008 98 / 139

Proof theory

Axiom schemas

(AS1) ϕ⇒ ϕ
(AS2) ⇒ ϕ ∨ ¬ϕ (Excluded Middle)
(AS2′) ⇒ ¬ϕ ∨ ¬¬ϕ (Weak EM)
(AS2′′) ⇒ ϕ ∨ (ϕ→ ψ) ∨ ¬ψ (in between (AS2) and (AS2′)

Logics through natural deduction

Propositional logic (AS1), (AS2)
Intuitionistic logic (AS1)
Logic here-and-there (AS1),(AS2′′)

Summer School on LP and CL 2008 (University of Kentucky)Foundations of Logic Programming July 24-27, 2008 98 / 139

Bringing the two together

Soundness and completeness

◮ A formula is a theorem of ht if and only if it is ht-valid

In particular

◮ ϕ and ψ are ht-equivalent iff⇒ ϕ↔ ψ is a theorem of ht

Summer School on LP and CL 2008 (University of Kentucky)Foundations of Logic Programming July 24-27, 2008 99 / 139

Bringing the two together

Soundness and completeness

◮ A formula is a theorem of ht if and only if it is ht-valid

In particular

◮ ϕ and ψ are ht-equivalent iff⇒ ϕ↔ ψ is a theorem of ht

Summer School on LP and CL 2008 (University of Kentucky)Foundations of Logic Programming July 24-27, 2008 99 / 139

Logic here-and-there and ASP

Equilibrium models, Pearce 1997

◮ 〈T ,T 〉 is an equilibrium model of a set A of formulas if
◮ 〈T ,T 〉 |=ht A, and
◮ for every H ⊆ T such that 〈H,T 〉 |=ht A, H = T

Key connection

◮ A set M of atoms is an answer set of a disjunctive logic program P
(general logic program P) if and only if 〈M,M〉 is an equlibrium
model for P

Summer School on LP and CL 2008 (University of Kentucky)Foundations of Logic Programming July 24-27, 2008 100 / 139

Logic here-and-there and ASP

Equilibrium models, Pearce 1997

◮ 〈T ,T 〉 is an equilibrium model of a set A of formulas if
◮ 〈T ,T 〉 |=ht A, and
◮ for every H ⊆ T such that 〈H,T 〉 |=ht A, H = T

Key connection

◮ A set M of atoms is an answer set of a disjunctive logic program P
(general logic program P) if and only if 〈M,M〉 is an equlibrium
model for P

Summer School on LP and CL 2008 (University of Kentucky)Foundations of Logic Programming July 24-27, 2008 100 / 139

Key application

Strong equivalence

◮ Let P and Q be two (general) programs. The following conditions
are equivalent:

◮ P and Q are strongly equivalent
◮ P and Q are ht-equivalent
◮ P and Q have the same ht-models
◮ P ↔ Q is ht-valid
◮ ⇒ P ↔ Q is a theorem of ht

Summer School on LP and CL 2008 (University of Kentucky)Foundations of Logic Programming July 24-27, 2008 101 / 139

Algebraic approach

Summer School on LP and CL 2008 (University of Kentucky)Foundations of Logic Programming July 24-27, 2008 102 / 139

The problem

Complex landscape of nonmonotonicity

◮ Multitude of formalisms
◮ Different intuitions
◮ Different languages
◮ Different semantics
◮ Complexity

Needed!

◮ Unifying abstract foundation

Summer School on LP and CL 2008 (University of Kentucky)Foundations of Logic Programming July 24-27, 2008 103 / 139

The problem

Complex landscape of nonmonotonicity

◮ Multitude of formalisms
◮ Different intuitions
◮ Different languages
◮ Different semantics
◮ Complexity

Needed!

◮ Unifying abstract foundation

Summer School on LP and CL 2008 (University of Kentucky)Foundations of Logic Programming July 24-27, 2008 103 / 139

A triumph of universal algebra

Basic lesson for this segment

◮ Major nonmonotonic systems
◮ logic programming
◮ default logic
◮ autoepistemic logics

can be given a unified algebraic treatment
◮ Each system can be assigned the same family of semantics
◮ Key concepts: lattices and bilattices, operators and fixpoints
◮ Key ideas: approximating operators and stable operators
◮ Key tool: Knaster-Tarski Theorem

Summer School on LP and CL 2008 (University of Kentucky)Foundations of Logic Programming July 24-27, 2008 104 / 139

Overview of approach

Generalize Fitting’s work on logic programming

◮ Central role of 4-valued van Emden-Kowalski operator TP

◮ Derived stable operator, Ψ′P
◮ 2-valued and 3-valued supported models and Kripke-Kleene

semantics described by fixpoints of TP

◮ 2-valued and 3-valued stable models and well-founded semantics
described by fixpoints of Ψ′P

Summer School on LP and CL 2008 (University of Kentucky)Foundations of Logic Programming July 24-27, 2008 105 / 139

Lattices

Key definitions, some notation

◮ 〈L,≤〉
◮ L is a nonempty set
◮ ≤ is a partial order such that every two lattice elements have lub

(join) and glb (meet)
◮ Elements of L express

◮ degree of truth
◮ measure of knowledge

◮ ≤ - order of increased truth or knowledge
◮ Complete lattices (both bounds defined for all sets)
◮ ⊥, ⊤

Summer School on LP and CL 2008 (University of Kentucky)Foundations of Logic Programming July 24-27, 2008 106 / 139

Lattices - examples

Lattice T WO

◮ {f, t}
◮ f ≤ t

Lattice A2

◮ set of all 2-valued interpretations
◮ componentwise extension of the ordering from T WO

LatticeW

◮ family of sets of 2-valued interpretations
◮ W1 ⊑W2 if W2 ⊆W1

Summer School on LP and CL 2008 (University of Kentucky)Foundations of Logic Programming July 24-27, 2008 107 / 139

Lattices - examples

Lattice T WO

◮ {f, t}
◮ f ≤ t

Lattice A2

◮ set of all 2-valued interpretations
◮ componentwise extension of the ordering from T WO

LatticeW

◮ family of sets of 2-valued interpretations
◮ W1 ⊑W2 if W2 ⊆W1

Summer School on LP and CL 2008 (University of Kentucky)Foundations of Logic Programming July 24-27, 2008 107 / 139

Lattices - examples

Lattice T WO

◮ {f, t}
◮ f ≤ t

Lattice A2

◮ set of all 2-valued interpretations
◮ componentwise extension of the ordering from T WO

LatticeW

◮ family of sets of 2-valued interpretations
◮ W1 ⊑W2 if W2 ⊆W1

Summer School on LP and CL 2008 (University of Kentucky)Foundations of Logic Programming July 24-27, 2008 107 / 139

Operators

That’s what it’s all about!

◮ Truth or knowledge can be revised
◮ Revisions are described by operators on lattices
◮ Fixpoints — states of truth or knowledge that cannot be revised

Summer School on LP and CL 2008 (University of Kentucky)Foundations of Logic Programming July 24-27, 2008 108 / 139

Operators

Monotone operators

◮ An operator O is monotone if x ≤ y implies O(x) ≤ O(y)

◮ Knaster-Tarski Theorem: a monotone operator on a complete
lattice has a least fixpoint

Summer School on LP and CL 2008 (University of Kentucky)Foundations of Logic Programming July 24-27, 2008 109 / 139

Operators, cont’d

Antimonotone operators

◮ An operator O is antimonotone if x ≤ y implies O(y) ≤ O(x)

◮ If O is antimonotone then O2 is monotone:

x ≤ y ⇒ O(y) ≤ O(x) ⇒ O2(x) ≤ O2(y)

◮ Oscillating pair: (x , y) is an oscillating pair for an operator O if
O(x) = y and O2(x) = x

◮ Antimonotone operator O has an extreme oscillating pair

(lfp(O2),gfp(O2))

Summer School on LP and CL 2008 (University of Kentucky)Foundations of Logic Programming July 24-27, 2008 110 / 139

Approximations and bilattices

Key definitions, some notation

◮ A pair (x , y) approximates an element z if x ≤ z ≤ y
◮ Orderings of approximations:

◮ information (or precision) ordering: (x1, y1)≤i(x2, y2) iff x1 ≤ x2 and
y2 ≤ y1

◮ truth ordering: (x1, y1) ≤t (x2, y2) iff x1 ≤ x2 and y1 ≤ y2

◮ Bilattice 〈L2,≤i ,≤t〉

◮ A pair (x , y) is consistent if x ≤ y , and inconsistent, otherwise
◮ An element (x , y) is complete if x = y

Summer School on LP and CL 2008 (University of Kentucky)Foundations of Logic Programming July 24-27, 2008 111 / 139

Bilattices - examples

Bilattice FOUR

-
≤t

6≤i
(t, f)

(f, f) (t, t)

(f, t)
�@

� @

Bilattice A4

◮ set of all pairs of 2-valued interpretations (identified with 4-valued
interpretations)

◮ componentwise extension of the orderings from FOUR

Summer School on LP and CL 2008 (University of Kentucky)Foundations of Logic Programming July 24-27, 2008 112 / 139

Bilattices - examples

Bilattice FOUR

-
≤t

6≤i
(t, f)

(f, f) (t, t)

(f, t)
�@

� @

Bilattice A4

◮ set of all pairs of 2-valued interpretations (identified with 4-valued
interpretations)

◮ componentwise extension of the orderings from FOUR

Summer School on LP and CL 2008 (University of Kentucky)Foundations of Logic Programming July 24-27, 2008 112 / 139

Bilattices - examples, cont’d

Bilattice B

◮ Family of pairs of sets of 2-valued interpretations
◮ Belief pairs
◮ (P1,S1) ⊑i (P2,S2) if P2 ⊆ P1 and S1 ⊆ S2

◮ (P1,S1) ⊑t (P2,S2) if P2 ⊆ P1 and S2 ⊆ S1

Summer School on LP and CL 2008 (University of Kentucky)Foundations of Logic Programming July 24-27, 2008 113 / 139

Approximating operators

Key definitions, some notation

◮ A : L2 → L2 approximates O : L→ L if
◮ A(x , x) = (O(x),O(x))
◮ A is ≤i -monotone
◮ A is symmetric: A1(x , y) = A2(y , x), where

A(x , y) = (A1(x , y),A2(x , y))

Properties

◮ Approximating operators are consistent
◮ Complete fixpoints of A correspond to fixpoints of O
◮ Every fixpoint of A is approximated by the least fixpoint of A:

Kripke-Kleene fixpoint of A
◮ Kripke-Kleene fixpoint of an approximating operator is consistent

Summer School on LP and CL 2008 (University of Kentucky)Foundations of Logic Programming July 24-27, 2008 114 / 139

Approximating operators

Key definitions, some notation

◮ A : L2 → L2 approximates O : L→ L if
◮ A(x , x) = (O(x),O(x))
◮ A is ≤i -monotone
◮ A is symmetric: A1(x , y) = A2(y , x), where

A(x , y) = (A1(x , y),A2(x , y))

Properties

◮ Approximating operators are consistent
◮ Complete fixpoints of A correspond to fixpoints of O
◮ Every fixpoint of A is approximated by the least fixpoint of A:

Kripke-Kleene fixpoint of A
◮ Kripke-Kleene fixpoint of an approximating operator is consistent

Summer School on LP and CL 2008 (University of Kentucky)Foundations of Logic Programming July 24-27, 2008 114 / 139

Getting down to business!

Stable operators

◮ If A : L2 → L2 is ≤i -monotone then A1(·, y) and A2(x , ·) are
monotone

◮ For ≤i -monotone operator A : L2 → L2 define:

C l
A(y) = lfp(A1(·, y)) and Cu

A(x) = lfp(A2(x , ·))

◮ Since A is symmetric, C l
A = Cu

A = CA

◮ Stable operator for A:

CA(x , y) = (CA(y),CA(x))

◮ Stable fixpoints (relative to CA)
◮ ≤i -least fixpoint of CA — well-founded (WF) fixpoint of A

Summer School on LP and CL 2008 (University of Kentucky)Foundations of Logic Programming July 24-27, 2008 115 / 139

Properties of stable operators

All quite easy to prove, in fact

◮ CA is antimonotone
◮ CA is ≤i -monotone and ≤t -antimonotone
◮ Fixpoints of CA are ≤t -minimal fixpoints of A
◮ Complete fixpoints of CA correspond to fixpoints of CA

◮ Complete fixpoints of CA are fixpoints of O
◮ K-K fixpoint of A ≤i WF fixpoint of A

Summer School on LP and CL 2008 (University of Kentucky)Foundations of Logic Programming July 24-27, 2008 116 / 139

Logic programming — case study 1

Fitting

◮ Lattice A2, bilattice A4

◮ Operators associated with program P
◮ 2-valued van Emden-Kowalski operator TP
◮ Its approximation: 4-valued van Emden-Kowalski operator TP
◮ 2-valued stable operator (Gelfond-Lifschitz operator GLP)
◮ Stable operator CP of TP (operator Ψ′

P of Przymusinski)
◮ Semantics

◮ Supported models: fixpoints of the operator TP (TP)
◮ Kripke-Kleene semantics: least fixpoint of TP
◮ Stable models: fixpoints of the operator CP (CP)
◮ Well-founded semantics: least fixpoint of CP

Summer School on LP and CL 2008 (University of Kentucky)Foundations of Logic Programming July 24-27, 2008 117 / 139

Logic programming explained

Central role of TP

TP

TP CP

CP

�
�	

��
�	

@
@R

Summer School on LP and CL 2008 (University of Kentucky)Foundations of Logic Programming July 24-27, 2008 118 / 139

Autoepistemic Logic — case study 2

Truth assignment function HV ,I

◮ For atom p: HV ,I(p) = I(p)

◮ The boolean connectives — standard way
◮ HV ,I(KF) = t, if for every J ∈ V , HV ,J(F) = t
◮ HV ,I(KF) = f, otherwise

AE models, expansions

◮ Moore’s operator DT : W →W

DT (V) = {I : HV ,I(T) = t}

◮ Fixpoints of DT — autoepistemic models of T
◮ Autoepistemic models generate expansions

Summer School on LP and CL 2008 (University of Kentucky)Foundations of Logic Programming July 24-27, 2008 119 / 139

Autoepistemic Logic — case study 2

Truth assignment function HV ,I

◮ For atom p: HV ,I(p) = I(p)

◮ The boolean connectives — standard way
◮ HV ,I(KF) = t, if for every J ∈ V , HV ,J(F) = t
◮ HV ,I(KF) = f, otherwise

AE models, expansions

◮ Moore’s operator DT : W →W

DT (V) = {I : HV ,I(T) = t}

◮ Fixpoints of DT — autoepistemic models of T
◮ Autoepistemic models generate expansions

Summer School on LP and CL 2008 (University of Kentucky)Foundations of Logic Programming July 24-27, 2008 119 / 139

AEL — approximating operators

The setting

◮ LatticeW, bilattice B
◮ H4

(V ,V ′),I

◮ Approximating operator for DT — DT (DMT 98)

DT (V ,V ′) = ({I : H4
(V ,V ′),I(T) ≥t (f, t)}, {I : H4

(V ,V ′),I(T) ≥t (t, f)})

◮ Complete fixpoints of DT — autoepistemic models of T
◮ The least fixpoint of DT — Kripke-Kleene fixpoint

◮ approximates all autoepistemic models of T

◮ The stable operator for DT : CT (V ,V ′) = (CT (V ′),CT (V))

◮ What are the fixpoints of CT ?

Summer School on LP and CL 2008 (University of Kentucky)Foundations of Logic Programming July 24-27, 2008 120 / 139

Autoepistemic logic explained

Central role of DT

DT

DT CT

CT

�
�	

��
�	

@
@R

Summer School on LP and CL 2008 (University of Kentucky)Foundations of Logic Programming July 24-27, 2008 121 / 139

Default Logic — case study 3

Same setting as for AEL

◮ LatticeW, bilattice B
◮ HV ,I(ϕ) = I(ϕ), for every formula ϕ

◮ d = α : β1,...,βk
γ

◮ HV ,I(d) = t iff
◮ there is J ∈ V such that J(α) = f, or
◮ there is i, 1 ≤ i ≤ k such that for every J ∈ V , J(βi) = f, or
◮ I(γ) = t

◮ Weak-extension operator E∆ (∆ — default theory):

E∆(V) = {I ∈ A2 : HV ,I(∆) = t}

◮ Fixpoints of E∆(V) — default models of weak extensions of ∆

Summer School on LP and CL 2008 (University of Kentucky)Foundations of Logic Programming July 24-27, 2008 122 / 139

DL

4-valued truth assignment, approximating operator

◮ H4
(V ,V ′),I

◮ Approximating operator for E∆ — E∆

E∆(V ,V ′) = ({I : H4
(V ,V ′),I(∆) ≥t (f, t)}, {I : H4

(V ,V ′),I(∆) ≥t (t, f)})

◮ Complete fixpoints of E∆ — models of weak extensions of ∆

◮ The least fixpoint of E∆ — Kripke-Kleene fixpoint
◮ approximates all default models of weak extensions of ∆

Summer School on LP and CL 2008 (University of Kentucky)Foundations of Logic Programming July 24-27, 2008 123 / 139

DL

Stable operator

◮ The stable operator for E∆:

C∆(V ,V ′) = (C∆(V ′),C∆(V))

◮ C∆ — Guerreiro-Casanova operator Σ∆

◮ Fixpoints of C∆ — default models of Reiter’s extensions
◮ Consistent fixpoints of C∆ — stationary extensions by

Przymusinski
◮ Well-founded fixpoint of E∆ (least fixpoint of C∆ — well-founded

semantics of default logic by Baral and Subrahmanian)

Summer School on LP and CL 2008 (University of Kentucky)Foundations of Logic Programming July 24-27, 2008 124 / 139

DL explained

Central role of E∆

E∆

E∆ C∆

C∆

�
�	

��
�	

@
@R

Summer School on LP and CL 2008 (University of Kentucky)Foundations of Logic Programming July 24-27, 2008 125 / 139

Connections

Strong parallels!

TP

TP CP

CP

�
�	

��
�	

@
@R

E∆

E∆ C∆

C∆

�
�	

��
�	

@
@R

-

c ← a, not b ⇒ a:¬b
c

Summer School on LP and CL 2008 (University of Kentucky)Foundations of Logic Programming July 24-27, 2008 126 / 139

Connections

Strong parallels!

TP

TP CP

CP

�
�	

��
�	

@
@R

E∆

E∆ C∆

C∆

�
�	

��
�	

@
@R

DT

DT CT

CT

�
�	

��
�	

@
@R

- -

c ← a, not b ⇒ a:¬b
c

α:β
γ
⇒ Kα ∧ ¬K¬β ⊃ γ

Summer School on LP and CL 2008 (University of Kentucky)Foundations of Logic Programming July 24-27, 2008 126 / 139

Thank you!

Summer School on LP and CL 2008 (University of Kentucky)Foundations of Logic Programming July 24-27, 2008 127 / 139

