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Introduction
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Logic programming

What is it?

◮ Declarative programming formalizm
◮ Knowledge representation formalizm

Two facets

◮ Prolog
◮ Answer-set programming
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My goal

To present foundations of LP

◮ Focus on negation and its semantics
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Overview

Roughly ...

◮ Basic syntax and semantics
◮ Horn logic programming — basis for Prolog (briefly)
◮ The need for negation
◮ Semantics of negation (supported, stable, Kripke-Kleene,

well-founded)
◮ Properties of semantica (completion, Fages Lemma, loop

theorem, equivalence)
◮ More general settings (logic HT, algebra)
◮ (Some) proofs
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Some logic terminology

Language

◮ Constant, variable, function and predicate symbols
◮ Terms: strings built recursively from constant, variable and

function symbols
◮ c, X , f (c,X ), f (f (c,X ), f (X , f (X , c)))

◮ Atoms: built of predicate symbols and terms
◮ p(X , c, f (a,Y ))
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Horn logic programming

Horn clause

◮ p ← q1, . . . ,qk

◮ where p, qi are atoms

◮ Clauses are universally quantified
◮ special sentences

◮ Intuitive reading: if q1, . . . ,qk then p

Horn program

◮ A collection of Horn clauses
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More terminology

Herbrand model

◮ Ground terms: no variable symbols
◮ Herbrand universe: collection of all ground terms
◮ Ground atoms: atoms built of predicate symbols and ground terms
◮ p(a, c, f (a,a))

◮ Herbrand base: collection of all ground atoms
◮ Herbrand model: subset of an Herbrand base
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Horn logic programming

Semantics

◮ Given by Herbrand models
◮ grnd(P): the set of all ground instances of clauses in P
◮ Thus, no difference between P and grnd(P)

◮ Key question:
which ground facts hold in every Herbrand model of P?

◮ Sufficient to restrict to Herbrand models contained in HB(P)
◮ Herbrand universe of P, HU(P)

(if no constant symbols in P, a single constant symbol introduced)
◮ Herbrand base of P, HB(P)
◮ Ground atoms not in HB(P) are not true in all Herbrand models
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We can say more

Least Herbrand model

◮ Every Horn program P has a least Herbrand model LM(P)
◮ the intersection of a set of Herbrand models of a Horn program is a

Herbrand model of the program
◮ HB(P) is an Herbrand model of P
◮ the intersection of all models is a least Herbrand model (and it is

contained in HB(P))

◮ Single intended Herbrand model
◮ For a ground t , P |= p(t) if and only if p(t) ∈ LM(P)

◮ For ground t , if P 6|= p(t), defeasibly conclude ¬p(t)
◮ Closed World Assumption (CWA)
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Computing with Horn programs

What do they specify, what can they express?

◮ A Horn program P specifies a subset X of the Herbrand universe
for P, HU(P), if for some predicate symbol p occurring in P we
have:

X = {t ∈ HU(P) : p(t) ∈ LM(P)}

◮ Finite Horn programs specify precisely the r.e. sets and relations
Smullyan, 1968, Andreka and Nemeti, 1978
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Reachability — an example

Program P

arc(a,b).
arc(b, c).
arc(d , c).

reach(X ,X ).
reach(X ,Y )← arc(X ,Z ), reach(Z ,Y ).
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Reachability — an example

HU(P), HB(P), ground (P)

◮ HU(P) = {a,b, c,d}
◮ HB(P) = {arc(a,a),arc(a,b), . . . , reach(a,a), . . .}

◮ ground(P):

arc(a,b). arc(b, c). arc(d , c).
reach(a,a). reach(b,b). reach(c, c). reach(d ,d).
reach(a,a). ← arc(a,a), reach(a,a).
reach(a,b). ← arc(a,b), reach(b,a).
. . .
reach(c,b). ← arc(c,d), reach(d ,b).
. . .
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Reachability — an example

Least model

◮ arc(a,b), arc(a, c), arc(d , c)

◮ reach(a,a), reach(b,b), reach(c, c), reach(d ,d)

◮ reach(a,b), reach(a, c), reach(d , c), reach(a, c)

What’s computed?

◮ Assume reach is the distinguished “solution” predicate
◮ {(a,a), (b,b), (c, c), (d ,d), (a,b), (a, c), (d , c), (a, c)}
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Computing with Horn programs

Possible issues?

◮ Function symbols necessary!
◮ List constructor [·|·] used to define higher-order objects
◮ Terms - basic data structures
◮ Queries (goals):

◮ ?p(t) - is p(t) entailed?
◮ ?p(X) - for what ground t , is p(t) entailed?

◮ Proofs provide answers
◮ SLD-resolution
◮ Unification - basic mechanism to manipulate data structures
◮ Extensive use of recursion
◮ Leads to Prolog
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Example

Manipulating lists: append and reverse

append([ ],X ,X ).
append([X |Y ],Z , [X |T ]) ← append(Y ,Z ,T ).

reverse([ ], [ ]).
reverse([X |Y ],Z )← append(U, [X ],Z ), reverse(Y ,U).

◮ both relations defined recursively
◮ terms represent complex objects: lists, sets, ...

Summer School on LP and CL 2008 (University of Kentucky)Foundations of Logic Programming July 24-27, 2008 16 / 139



Example, cont’d

Playing with reverse

◮ Problem: reverse list [a,b, c]
◮ Ask query ?− reverse([a, b, c],X).
◮ A proof of the query yields a substitution: X = [c, b, a]
◮ The substitution constitutes an answer

◮ Query ?− reverse([a|X ], [b, c,d ,a]) returns X = [d , c,b]

◮ Query ?− reverse([a|X ], [b, c,d ,b]) returns no substitutions
(there is no answer)
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Example, cont’d

Observations

◮ Techniques to search for proofs — the key
◮ Understanding of the resolution mechanism is important
◮ It may make a difference which logically equivalent form is used:

◮ reverse([X |Y ],Z )← append(U, [X ],Z ), reverse(Y ,U).
◮ reverse([X |Y ],Z )← reverse(Y ,U), append(U, [X ],Z ).
◮ termination vs. non-termination for query:

?− reverse([a|X ], [b, c, d , b])

◮ Is it truly knowledge representation?
◮ is it truly declarative?
◮ implementations are not!

◮ Nonmonotonicity quite restricted
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Negation in the body

Why negation?

◮ Natural linguistic concept
◮ Facilitates knowledge representation (declarative descriptions and

definitions
◮ Needed for modeling convenience
◮ Clauses of the form:

p(~X)← q1( ~X1), . . . ,qk ( ~Xk ),not r1( ~Y1), . . . ,not rl(~Yl)

◮ Things get more complex!

Summer School on LP and CL 2008 (University of Kentucky)Foundations of Logic Programming July 24-27, 2008 19 / 139



Semantics of programs with negation

Observations

◮ Still Herbrand models
◮ Still restricted to HB(P)

◮ But — usually no least Herbrand model!
◮ Program

a← not b
b ← not a

has two minimal Herbrand models: M1 = {a} and M2 = {b}.
◮ Identifying a single intended model a major issue
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Semantics of programs with negation

Great Logic Programming Schism

◮ Single intended model approach
◮ continue along the lines of Prolog

◮ Multiple intended model approach
◮ branch into answer-set programming
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Single intended model approach

“Better” Prolog

◮ Extensions of Horn logic programming
◮ Perfect semantics of stratified programs
◮ 3-val well-founded semantics for (arbitrary) programs

◮ Top-down computing based on unification and resolution
◮ XSB – David Warren at SUNY Stony Brook
◮ Will come back to it
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Multiple intended models

Answer-set programming

◮ Semantics assigns to a program not one but many intended
models!

◮ for instance, all stable or supported models (to be introduced soon)
◮ How to interpret these semantics?

◮ skeptical reasoning: a ground atom is cautiously entailed if it
belongs to all intended models

◮ intended models represent different possible states of the world,
belief sets, solutions to a problem

◮ Nonmonotonicity shows itself in an essential way
◮ as in default logic
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Normal logic programming

Preliminary observations and comments

◮ Logic programs with negation
◮ Still interested only in Herbrand models
◮ Thus, enough to consider propositional case
◮ Supported model semantics
◮ Stable model semantics
◮ Connection to propositional logic (Clark’s completion, tightness,

loop formulas)
◮ Kripke-Kleene and well-founded semantics
◮ Strong and uniform equivalence
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Normal logic programming — propositional case

Syntax

◮ Propositional language over a set of atoms At (possibly infinite)
◮ Clause r

a← b1, . . . ,bm,not c1, . . . ,not cn

◮ a, bi , cj are atoms
◮ a is the head of the clause: hd(r)
◮ literals bi , not cj form the body of the rule: bd(r)
◮ {b1, . . . ,bm} - positive body bd+(r)
◮ {c1, . . . , cn} - negative body bd−(r)
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One-step provability operator

Basic tool in LP van Emden, Kowalski 1976

◮ Operator on interpretations (sets of atoms)
◮ TP(I) = {hd(r) : I |= bd(r)}
◮ If P is Horn, TP is monotone

◮ Let I ⊆ J
◮ Let bd(r) = b1, . . . ,bm (no negation!)
◮ If I |= bd(r) than J |= bd(r)
◮ Thus, TP(I) ⊆ TP(J)
◮ Least fixpoint of TP exists and coincides with the least Herbrand

model of P
◮ In general, not the case (due to negation)

◮ ∅ |= not a
◮ but {a} 6|= not a
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Supported-model semantics

Definition and some observations

◮ M ⊆ At is a supported model of P if TP(M) = M
◮ Supported models are indeed models

◮ let M |= bd(r)
◮ then hd(r) ∈ TP(M)
◮ and so, hd(r) ∈ M

◮ Supported models are subsets of At(P) (the Herbrand base of P)
◮ Thus, they are Herbrand models
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Supported models - example

Program p ← not q

◮ One supported model: M1 = {p}
◮ M2 = {q} - not supported (but model)
◮ p “follows”
◮ If q included in the program (more exactly: a rule q ←)

◮ Just one supported model: M1 = {q}.
◮ p does not ‘follow”
◮ nonmonotonicity
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Supported models - example

Program p ← p

◮ Two supported models: M1 = ∅ and M2 = {p}
◮ The second one is self-supported (circular justification)
◮ A problem for KR
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Clark’s completion

Rules as implications

◮ bd∧(r) the conjunction of all literals in the body of r
with all not c replaced with ¬c

◮ cmpl←(P) = {bd∧(r)→ hd(r) : r ∈ P}
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Clark’s completion

Rules as definitions

◮ Notation: defP(a) =
∨
{bd∧(r) : hd(r) = a}

◮ Note: if a not the head of any rule in P, defP(a) = ⊥

◮ cmpl→(P) = {a→ defP(a) : a ∈ At}

◮ cmpl(P) = cmpl←(P) ∪ cmpl→(P)

◮ Note: if a /∈ At(P), cmpl(P) |= ¬a
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Clark’s completion

Example

a ← b,not c
a ← d
b ← a

◮ def (a) = (b ∧ ¬c) ∨ d
◮ def (b) = a
◮ def (c) = ⊥

◮ cmpl← = {b∧¬c → a; d → a; a→ b} = {(b∧¬c)∨d → a; a→ b}
◮ cmpl← = {def (a)→ a; def (b)→ b; def (c)→ c}
◮ cmpl→ = {a→ def (a); b → def (b); c → def (c)}

◮ cmpl = {a↔ def (a); b ↔ def (b); c ↔ def (c)}}

◮ cmpl has two models: ∅ and {a,b}
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Clark’s completion

Connection to supported models

◮ A set M ⊆ At is a supported model of a program P if and only if M
is a model (in a standard sense) of cmpl(P)

◮ Connection to SAT
◮ Allows us to use SAT solvers to compute supported models of P
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Connection to supported models — proof

M — supported model of P: M = TP(M)

◮ Let a ∈ M ⇒ ∃r ∈ P st: hd(r) = a and M |= bd(r)
◮ ⇒ M |= bd∧(r), M |= def (a) and M |= a↔ def (a)

◮ Let a /∈ M ⇒ ∀r ∈ P st: hd(r) = a, M 6|= bd(r)
◮ ⇒ M 6|= def (a) and M |= a↔ def (a)

Conversely: let M |= cmpl(P)

◮ ⇒ M |= P and so, TP(M) ⊆ M
◮ Let a ∈ M ⇒ M |= def (a)

◮ ⇒ ∃r ∈ P st: M |= bd∧(r)
◮ ⇒ M |= bd(r) and a ∈ TP(M) ⇒ M ⊆ TP(M)

◮ Thus, M = TP(M) and M supported
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Stable model semantics

Supported models of interest, but ...

◮ Some supported models based on circular arguments
◮ p← p
◮ {p} is supported model (circular argument)

◮ Some more stringent bases for selecting intended models needed
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Stable model semantics

Gelfond-Lifschitz reduct

◮ P — logic program
◮ M — set of atoms
◮ Reduct PM

◮ for each a ∈ M remove rules with not a in the body
◮ remove literals not a from all other rules
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Stable model semantics

Definition through reduct

◮ Reduct PM is a Horn program
◮ It has the least model LM(PM)

◮ M is a stable model of P if

M = LM(PM)
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Stable model semantics

And now through Gelfond-Lifschitz operator

◮ GLP(M) = LM(PM)

◮ M is a stable model if and only if

M = GLP(M)

◮ GLP is antimonotone
◮ For M ⊆ N:

GLP(N) ⊆ GLP(M)
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Stable models — examples

Multiple stable models

p ← q,not s
r ← p,not q,not s
s ← not q
q ← not s

◮ Two stable models: M1 = {p,q} and M2 = {s}

No stable models

p ← not p

◮ No stable models!!
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Stable models — properties

Stable models are models!

◮ Let M be a stable model
◮ M is a model of all rules that are removed from the program when

forming the reduct
◮ M is a model of every rule that contributes to the reduct
◮ Indeed, each such rule is subsumed by a rule in the reduct and M

satisfies all rules in the reduct
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Stable models — properties

Stable models are minimal models!

◮ Let N be a stable model and M a model s.t. M ⊆ N
◮ Then

N = GLP(N) ⊆ GLP(M) ⊆ M

◮ Thus, N ⊆ M and so N = M
◮ The minimality of N follows
◮ Stable models form an antichain!
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Stable models — properties

Lemma: If M model of P, GLP(M) ⊆ M

◮ Since M model of P, then M is a model of PM

◮ a← b1, . . . ,bm - a rule in reduct
◮ a← b1, . . . ,bm,not c1, . . . ,not cn - the original rule in P
◮ M satisfies the latter, and it satisfies every not ci (as ci 6∈ M)
◮ Thus, M satisfies the reduct rule
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Stable models — properties

Connection to supported models

◮ If M is a stable model of P then it is a supported model of P
◮ Let M be a stable model of P
◮ Then M model of P and so, TP(M) ⊆ M
◮ r = a← b1, . . . ,bm,not c1, . . . ,not cn - a rule in P such that

M |= bd(r)
◮ Then r ′ = a← b1, . . . ,bm belongs to the reduct PM

◮ And M |= bd(r ′)
◮ Since M is a model of PM , a ∈ M
◮ Hence, TP(M) ⊆ M and so, M = TP(M)

◮ That is, M is supported!!
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Fages Lemma Fages 1994

But ...

◮ The converse not true, in general (as it should not be)

Counterexample

◮ p ← p
◮ {p} is supported but not stable
◮ Positive dependency of p on itself is a problem
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Fages Lemma

Positive dependency graph G+(P)

◮ Atoms of P are vertices
◮ (a,b) is an edge in G+(P) if for some r ∈ P: hd(r) = a,

b ∈ bd+(r)

Tight programs

◮ P is tight if G+(P) is acyclic
◮ Alternatively, if there is a labeling of atoms with non-negative

integers (a 7→ λ(a)) s.t.
◮ for every rule r ∈ P

λ(hd(r)) > max{λ(b) : b ∈ bd+(r)}

◮ Connection to topological ordering of positive dependency graphs
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Fages Lemma

The statement — finally

◮ If P is tight then every supported model is stable
◮ Intuitively, circular support not possible
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Fages Lemma — example

Program P

p ← q,not s
r ← p,not q,not s
s ← not q
q ← not s

Graph G+(P)

P is tight

◮ {p,q} and {s} are supported models of P
◮ TP({p, q}) = {p, q}
◮ TP({s}) = {s}

◮ Thus, they are stable (which we verified directly earlier)
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Fages Lemma

Proof

◮ Let P be tight and M be its supported model
◮ Then M is a model of PM

◮ Let N be a model of PM

◮ Claim: for every k , if a ∈ M and λ(a) < k , then a ∈ N
◮ Holds for k = 0 (trivially)
◮ Let a ∈ M and λ(a) = k
◮ Since M supported, there is r ∈ P such that a = hd(r) and

M |= bd(r)
◮ In particular, bd+(r) ⊆ M and so, bd+(r) ⊆ N (by I.H.)
◮ Since M |= bd(r), M contributes to the reduct
◮ Since N is a model of PM , a ∈ N
◮ It follows that M = LM(PM)
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A generalization Erdem and Lifschitz, 2000

Relativized tightness

◮ Let X ⊆ At(P)

◮ P is tight on X if the program consisting of rules r such that
bd+(r) ⊆ X is tight

Generalization

◮ If P is tight on X and M is a supported model of P such that
M ⊆ X , then M is stable
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Generalized Fages Lemma — example

Program P

p ← q,not s
r ← p,not q,not s
s ← not q
q ← not s
p ← r

Graph G+(P)

P is not tight

◮ {p,q} and {s} are still supported models of P
◮ TP({p, q}) = {p, q}
◮ TP({s}) = {s}

◮ Since P is tight on each of them, they are stable
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Loops and loop formulas Lin and Zhao, 2002

External support formula for Y ⊆ At(P)

◮ For a rule r :
◮ bd∧(r) the conjunction of all literals in the body of r

with all not c replaced with ¬c

◮ For Y 6= ∅:
◮ ESP(Y ) the disjunction of bd∧(r) for all r ∈ P st:
◮ hd(r) ∈ Y
◮ bd+(r) ∩ Y = ∅

◮ For finite programs: well-formed formulas
◮ Hence, will assume finiteness

Observations

◮ ESP({a}) = defP(a)
cf. Clark’s completion
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A characterization of stable models

for finite programs, the following conditions are equivalent

◮ X is a stable model of P
◮ X is a model of cmpl←(P) ∪ {Y∧ → ESP(Y ) : Y ⊆ At(P), Y 6= ∅}
◮ X is a model of cmpl←(P) ∪ {Y∨ → ESP(Y ) : Y ⊆ At(P), Y 6= ∅}

◮ OK to replace cmpl←(P) with cmpl(P)
◮ cmpl→(P) ⊆ {Y∧ → ESP(Y ) : Y ⊆ At(P)}
◮ cmpl→(P) ⊆ {Y∨ → ESP(Y ) : Y ⊆ At(P)}
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Loops

Definition

◮ A loop is a non-empty set Y ⊆ At(P) that induces in G+(P) a
strongly connected subgraph

◮ In particular, all singleton sets are loops
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Loops — example

Program P

p ← q,not r
q ← p
r ← not p

Graph G+(P)

◮ {p}, {q}, {r}, {p,q}
are loops

◮ {p,q, r} is not!
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Loop Theorem

For finite programs, the following conditions are equivalent

◮ X is a stable model of P
◮ X is a model of cmpl←(P) ∪ {Y∧ → ESP(Y ) : Y – a loop}
◮ X is a model of cmpl←(P) ∪ {Y∨ → ESP(Y ) : Y – a loop}

◮ OK to replace cmpl←(P) with cmpl(P)
◮ Singleton sets are loops!
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Loop Theorem

Let X be a stable model of P

◮ ⇒ X |= P ⇒ X |= PX

◮ X |= P ⇒ X |= cmpl←(P)

◮ Let Y be a loop st: X |= Y∧ ⇒ X ∩ Y 6= ∅
◮ Let a ∈ Y be the “first” element of Y in X

recall that X = LM(PX )

◮ ⇒ ∃r ∈ P st: a = hd(r), bd+(r) ∩ Y = ∅

◮ ⇒ bd∧(r) is a disjunct of ESP(Y )

◮ Also: bd+(r) ⊆ X and bd−(r) ∩ X = ∅ ⇒ X |= bd∧(r)
◮ ⇒ X |= ESP(Y ) ⇒ X |= Y∧ → ESP(Y )

◮ No difference if Y∧ replaced with Y∨

Summer School on LP and CL 2008 (University of Kentucky)Foundations of Logic Programming July 24-27, 2008 56 / 139



Loop Theorem

Let X |= cmpl←(P) ∪ {Y∧ → ESP(Y ) : Y – a loop}

◮ ⇒ X |= P ⇒ X |= PX

◮ Let X ′ = LM(PX ) ⇒ X ′ ⊆ X
◮ Let X \ X ′ 6= ∅
◮ Consider subgraph H of G(P)

induced by X \ X ′

◮ Let Y be a “terminal” strongly
connected component of H
no edge in H starts in Y and ends outside of Y
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Loop Theorem

Proof, cont’d

◮ X |= Y∧ → ESP(Y ) (also: X |= Y∨ → ESP(Y ))
◮ Since Y ⊆ X : ⇒ X |= ESP(Y )

◮ ⇒ ∃r ∈ P st: hd(r) ∈ Y , bd+(r) ∩ Y = ∅, X |= bd∧(r)
◮ ⇒ bd+(r) ⊆ X and rX ∈ PX

◮ Since Y terminal and bd+(r) ∩ Y = ∅: ⇒ bd+(r) ⊆ X ′

◮ if a ∈ bd+(r): a ∈ X
◮ (hd(r), a) edge in G+(P)
◮ if a ∈ X \ X ′: (hd(r), a) edge in H
◮ ⇒ a ∈ Y , contradiction
◮ ⇒ a ∈ X ′

◮ Since X ′ |= PX : ⇒ X ′ |= rX

◮ ⇒ hd(r) ∈ X ′

◮ Since X ′ ∩ Y = ∅: ⇒ contradiction
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Program inconsistency

Some programs have no stable nor supported models

◮ Sufficient conditions for the existence of stable models
◮ 4-val supported and stable models
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Sufficient conditions

General dependency graph G(P)

◮ Atoms of P are vertices
◮ (a,b) is an edge in P if for some r ∈ P: hd(r) = a, b ∈ bd(r)
◮ If b ∈ bd+(r) — edge is positive
◮ If b ∈ bd−(r) — edge is negative

A propositional program P is

◮ Call-consistent: if G(P) has no odd cycles (cycles with an odd
number of negative edges)

◮ Stratified: if G(P) has no paths with infinitely many negative
edges

◮ in particular, no cycles with a negative edge (for finite programs
both conditions are equivalent)
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Sufficient conditions

Results

◮ If a finite logic program is call-consistent, it has a stable model
◮ If a program is stratified it has a unique stable model
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Stratification through splitting

Splitting

◮ Let P and Q be programs such that P does not contain any of the
head atoms of Q
“Q above P”

◮ A set M is a stable model of P ∪Q iff there is a stable model N of
P such that M is a stable model of Q ∪ N
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Splitting Theorem

Proof: (⇒) Let M ∈ StM(P ∪Q)

◮ N := M ∩ At(P)

◮ PN = PM (as (M \ N) ∩ At(P) = ∅)
◮ M |= P ⇒ M |= PM ⇒ M |= PN

◮ ⇒ N |= PN (as (M \N) ∩ At(P) = ∅)
◮ Let N ′ ⊆ N be st: N ′ |= PN

◮ ⇒ N ′ |= PM ⇒ N ′ ∪ (M \ N) |= PM

◮ Let r ∈ QM be st: N ′ ∪ (M \ N) |= bd(r)
◮ ⇒ M |= bd(r) ⇒ M |= hd(r) (as M |= Q and so, M |= QM )
◮ ⇒ hd(r) ∈ M ⇒ hd(r) ∈ M \ N ⇒ hd(r) ∈ N ′ ∪ (M \ N)

◮ ⇒ N ′ ∪ (M \ N) |= QM ⇒ N ′ ∪ (M \N) |= (P ∪Q)M

◮ ⇒ N ′ ∪ (M \ N) = M ⇒ N ′ = N ⇒ N = LM(PN)

◮ ⇒ N ∈ StM(P)
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Splitting Theorem

Next, we show that M ∈ StM(Q ∪ N)

◮ Recall: N = M ∩ At(P) ⇒ N ⊆ M
◮ Also: M |= Q ⇒ M |= QM ∪ N = (Q ∪N)M

◮ Let M ′ ⊆ M be st: M ′ |= (Q ∪ N)M

◮ ⇒ N ⊆ M ′ M ′ |= QM

◮ Recall: N |= PN and so N |= PM (as PM = PN)
◮ ⇒ M ′ |= PM ⇒ M ′ |= (P ∪Q)M

◮ Recall: M = LM((P ∪Q)M) ⇒ M = M ′

◮ ⇒ M = LM((P ∪Q)M) ⇒ M ∈ StM(Q ∪ N)
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Splitting Theorem

Conversely: M ∈ StM(Q ∪ N) and N ∈ StM(P)

◮ ⇒ M |= Q, N ⊆ M, M ⊆ hd(Q) ∪ N
◮ ⇒ M ∩ At(P) = N ⇒ M |= P
◮ ⇒ M |= P ∪Q ⇒ M |= (P ∪Q)M

◮ Let M ′ ⊆ M be st: M ′ |= (P ∪Q)M

◮ N ′ := M ′ ∩ At(P)

◮ ⇒ M ′ |= PM ⇒ N ′ |= PM ⇒ N ′ |= PN

◮ ⇒ N ′ = N ⇒ N ⊆ M ′ ⇒ M ′ |= QM ∪N = (Q ∪ N)M

◮ ⇒ M ′ = M ⇒ M = LM((Q ∪ N)M ⇒ M ∈ StM(P ∪Q)
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Stratification

Equivalent definition in the finite case

◮ P stratified if
◮ hd(P) ∩ bd−(P) = ∅ , or
◮ P = P1 ∪ P2, where P2 stratified, hd(P1) ∩ (bd−(P1) ∪ At(P2)) = ∅

Finite stratified programs have a unique stable model

◮ Induction
◮ Basis: exident
◮ Inductive step: P2 has a unique stable model, say N
◮ Clearly, P1 ∪ N has a unique stable model, too
◮ Apply splitting theorem
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Equivalence — logics behind nonmonotonic logics

What do I mean?

◮ Logic allows us to manipulate theories
◮ Tautologies can be added or removed without changing the

meaning
◮ Consequences of formulas in theories can be added or removed

without changing the meaning
◮ {p, p→ q} the same as {p, p → q, q}
◮ one can always be replaced with another (within any larger context)

◮ Equivalence for replacement — logical equivalence necessary
and sufficient

◮ Is there a logic which captures such manipulation with theories in
nonmonotonic systems?
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Is it important?

Query optimization

◮ Compute answers to a query Q (program) from a knowledge base
KB (another program)
reason from Q ∪ KB

◮ Rewrite Q into an equivalent query Q′, which can be processed
more efficiently
reasoning from Q′ ∪ KB easier

◮ When are two queries equivalent?
◮ If Q ∪ KB and Q′ ∪ KB have the same meaning

not quite what we want — knowledge-base dependent
◮ If Q ∪ KB and Q′ ∪KB have the same meaning for every knowledge

base KB
better — knowledge-base independent
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Towards modular logic programming

Equivalence of programs

◮ P and Q are equivalent if they have the same models

Nonmonotonic equivalence of programs

◮ P and Q are stable-equivalent if they have the same stable models
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Towards modular logic programming

Equivalence for replacement

◮ Equivalence for replacement — for every program R, programs
P ∪ R and Q ∪ R have the same stable models

◮ Commonly known as strong equivalence
Lifschitz, Pearce, Valverde 2001; Lin 2002; Turner 2003; Eiter, Fink 2003; Eiter, Fink,

Tompits, Woltran, 2005; T_ 2006; Woltran 2008

◮ Different than equivalence
◮ {p← not q} and {q ← not p}
◮ The same models but different meaning

◮ Different than stable-equivalence
◮ P = {p} and Q = {p← not q}
◮ The same stable models; {p} is the only stable model in each case
◮ But, P ∪ {q} and Q ∪ {q} have different stable models!

({p, q} and {q}, respectively)
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When are two programs strongly equivalent?

Se-model characterization

◮ A pair (X ,Y ) of sets of atoms is an se-model of a program P if
◮ X ⊆ Y
◮ Y |= P
◮ X |= PY

◮ SE(P) set of se-models of P
◮ Logic programs P and Q are strongly equivalent iff they have the

same se-models (SE(P) = SE(Q))
◮ A similar concept characterizes strong equivalence of default

theories
Turner 2003
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When are two programs strongly equivalent?

Lemma 1: SE(P) = SE(Q) ⇒ StM(P) = StM(Q)

◮ Y ∈ StM(P) ⇒ Y |= P and Y |= PY

◮ ⇒ (Y ,Y ) ∈ SE(P) ⇒ (Y ,Y ) ∈ SE(Q)

◮ ⇒ Y |= QY

◮ If Z ⊆ Y and Z |= QY ⇒ (Z ,Y ) ∈ SE(Q)

◮ ⇒ (Z ,Y ) ∈ SE(P)

◮ ⇒ Z |= PY ⇒ Z = Y (as Y = LM(PY ))
◮ ⇒ Y = LM(QY ) ⇒ Y ∈ StM(Q)
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When are two programs strongly equivalent?

Lemma 2: SE(P ∪R) = SE(P) ∩ SE(R)

◮ (X ,Y ) ∈ SE(P ∪ R) iff
◮ X ⊆ Y and Y |= P ∪ R and X |= (P ∪ R)Y = PY ∪ RY iff
◮ X ⊆ Y and (Y |= P and Y |= R) and (X |= PY and X |= RY ) iff
◮ (X ⊆ Y , Y |= P, X |= PY ), and

(X ⊆ Y , Y |= R, X |= RY ) iff
◮ (X ,Y ) ∈ SE(P) and (X ,Y ) ∈ SE(R) iff
◮ (X ,Y ) ∈ SE(P) ∩ SE(R)
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When are two programs strongly equivalent?

SE(P) = SE(Q) ⇒ P and Q are strongly equivalent

◮ By Lemma 2, for every R:
SE(P ∪ R) = SE(P) ∩ SE(R) = SE(Q) ∩ SE(R) = SE(Q ∪R)

◮ By Lemma 1, StM(P ∪ R) = StM(Q ∪ R)

P and Q are strongly equivalent ⇒ SE(P) = SE(Q)

◮ Let (X ,Y ) ∈ SE(P) \ SE(Q): (X ,Y ) ∈ SE(P) and
(X ,Y ) /∈ SE(Q)

◮ ⇒ Y |= PY ⇒ Y = LM(PY ∪ Y )

◮ Since PY ∪ Y = (P ∪ Y )Y , Y = LM((P ∪ Y )Y ) ⇒
Y ∈ StM(P ∪ Y )

◮ ⇒ Y ∈ StM(Q ∪ Y ) ⇒ Y |= Q
◮ ⇒ X 6|= QY
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When are two programs strongly equivalent?

(X , Y ) ∈ SE(P), (X , Y ) /∈ SE(Q), Y |= Q, X 6|= QY

◮ Define R = X ∪ {y ← y ′ | y , y ′ ∈ Y \ X}
◮ ⇒ Y |= Q ∪ R and Y |= (Q ∪ R)Y

◮ Let Z ⊆ Y st: Z |= (Q ∪ R)Y ⇒ Z |= QY ∪R
◮ ⇒ Z |= QY ⇒ X 6= Z
◮ Since Z |= R, X ⊆ Z ⇒ ∃y ∈ Y \ X st: y ∈ Z
◮ Since Z |= R, Y \ X ⊆ Z
◮ ⇒ Y ⊆ Z ⇒ Z = Y
◮ ⇒ Y ∈ StM(Q ∪R) ⇒ Y ∈ StM(P ∪ R)

◮ ⇒ Y = LM((P ∪R)Y )

◮ Since X |= PY ∪ R = (P ∪ R)Y , X = Y
◮ ⇒ Y 6|= QY ⇒ Y 6|= Q, a contradiction
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An interesting variant

Uniform equivalence

◮ Programs P and Q are uniformly equivalent if for every set D of
facts (rules with empty body) P ∪D and Q ∪ D have the same
stable models

◮ Relevant for DB query optimization
◮ Different than other types of equivalence discussed here
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When are two programs uniformly equivalent?

Se-model characterization

◮ Programs P and Q are uniformly equivalent iff
◮ for every Y ⊆ At , Y is a model of P if and only if Y is a model of Q
◮ for every (X ,Y ) ∈ SE(P) such that X ⊂ Y , there is U ⊆ At such

that X ⊆ U ⊂ Y and (U,Y ) ∈ SE(Q)
◮ for every (X ,Y ) ∈ SE(Q) such that X ⊂ Y , there is U ⊆ At such

that X ⊆ U ⊂ Y and (U,Y ) ∈ SE(P)
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When are two programs uniformly equivalent?

Ue-model characterization

◮ A pair (X ,Y ) of sets of atoms is a ue-model of a program P if it is
an se-model of P and

◮ For every se-model (X ′,Y ) such that X ⊆ X ′, X ′ = X or X ′ = Y
◮ Finite logic programs P and Q are uniformly equivalent iff they

have the same ue-models
Eiter and Fink, 2003
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General logic programs Ferraris and Lifschitz, 2005

Formulas

◮ Base: atoms and the symbol ⊥ (“false”)
◮ Connectives ∧, ∨ and→
◮ Shortcuts

◮ ¬F ::= F → ⊥
◮ ⊤ ::= ⊥ → ⊥
◮ F ↔ G ::= (F → G) ∧ (G → F )
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General logic programs

Positive and negative occurrences of atoms in formulas

◮ An occurrence of a in F is positive, if the # of implications with this
occurrence of a in antecedent is even

◮ Otherwise, it is negative
◮ An occurrence of a in F is strictly positive if no implication

contains this occurrence of a in the antecedent
◮ ¬F (that is, F → ⊥) has no strictly positive occurrences of any

atom.

◮ A head atom (of a formula) an atom with at least one strictly
positive occurrence

◮ In (¬p → q)→ (p ∨ ¬q):
◮ the first occurrence of p is negative
◮ the second occurrence of p is strictly positive
◮ both occurrences of q are negative
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Stable-model semantics

Reduct of a formula F with respect to a set X of atoms

◮ The formula F X obtained by replacing in F each maximal
subformula of F that is not satisfied by X with ⊥

Example: F = (¬p → q) ∧ (¬q → p) and X = {p}

◮ ¬p = p → ⊥, and X |= ¬p → q
◮ Thus: ¬p is a maximal subformula not satisfied by X
◮ ¬q = q → ⊥, X 6|= q, X |= ¬q
◮ Thus, q is a maximal subformula not satisfied by X
◮ Thus: F X = (⊥ → q) ∧ ((⊥ → ⊥)→ p)

◮ Classically equivalent to p
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Stable-model semantics

To facilitate computation of the reduct

◮ ⊥X = ⊥

◮ For a an atom, if a ∈ X , aX = a; otherwise, aX = ⊥

◮ If X |= F ◦G, (F ◦G)X = F X ◦GX ; otherwise, (F ◦G)X = ⊥ (◦
stands for any of ∧, ∨,→)

◮ If X |= F , (¬F )X = ⊥; otherwise,
(¬F )X = (F → ⊥)X = F X → ⊥X = ⊥ → ⊥ = ⊤
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Stable-model semantics

Definition

◮ A set X of atoms is a stable model of a formula F if X is a minimal
model of F

Example: F = (¬p → q) ∧ (¬q → p), X = {p}

◮ F X = (⊥ → q) ∧ ((⊥ → ⊥)→ p) (which is equivalent to p)
◮ X is a minimal model of F X , so a stable model

Example: F = (¬p → q) ∧ (¬q → p), X = {p, q}

◮ F X = (⊥ → q) ∧ (⊥ → p) (which is equivalent to ⊤)
◮ X is not a minimal model of F X , so not a stable model
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Stable-model semantics

Properties

◮ If X is a stable model of a formula F then X consists of head
atoms of F

◮ A least model of a Horn formula (conjunction of definite Horn
clauses given as implications) is a unique stable model of the
theory

◮ A set X is a stable model of a formula F ∧ ¬G if and only if X is a
stable model of F and X |= ¬G
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Stable-model semantics

Strong equivalence

◮ Formulas F and F ′ are strongly equivalent if for every formula G,
F ∧G and F ′ ∧G have the same stable models

◮ (X ,Y ) is an se-model of F if Y ⊆ At , X ⊆ Y , Y |= F and X |= F Y .
◮ The following conditions are equivalent:

◮ Formulas F and G are strongly equivalent
◮ For every set X of atoms, F X and GX are equivalent in classical

logic
◮ F and G have the same se-models
◮ F and G are equivalent in the logic here-and-there (details later)
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Stable-model semantics

Splitting

◮ Let F and G be formulas such that F does not contain any of the
head atoms of G

◮ A set X is a stable model of F ∧G iff there is a stable model Y of
F such that X is a stable model of G ∧

∧
Y
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Multivalued semantics

2-input one-step operator ΦP

◮ Given two interpretations I and J

ΦP(I, J) = {hd(r) : r ∈ P, bd+(r) ⊆ I, bd−(r) ∩ J = ∅}

◮ ΦP(·, J) monotone
◮ I ⊆ I′ ⇒ ΦP(I, J) ⊆ ΦP(I′, J)

◮ ΦP(I, ·) antimonotone
◮ J ⊆ J ′ ⇒ ΦP(I, J ′) ⊆ ΦP(I, J)

◮ ΦP(I, I) = TP(I)
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Multivalued semantics: 4-val interpretations

Pairs (I, J) of 2-val interpretations

◮ Atoms in I are known and atoms in J are possible
◮ Give rise to 4 truth values

◮ If a ∈ I ∩ J , a is true
◮ If a /∈ I ∪ J , a is false
◮ If a ∈ J \ I, a is unknown
◮ If a ∈ I \ J , a is overdefined (inconsistent)

◮ (I, J) consistent if I ⊆ J

Alternatively

◮ Functions val from At to {t, f,u, i}
◮ I := {a | val(a) = t or val(a) = i}
◮ J := {a | val(a) = t or val(a) = u}
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Multivalued semantics

4-val one-step provability operator

◮ TP(I, J) = (ΦP(I, J),ΦP (J, I))
◮ Precision (information) ordering:

(I, J)≤i (I ′, J ′) - if I ⊆ I ′ and J ′ ⊆ J
◮ TP monotone wrt ≤i

◮ (I, J)≤i (I ′J ′) ⇒ TP(I, J)≤iTP(I ′, J ′)
◮ We have: I ⊆ I′ and J ′ ⊆ J
◮ ΦP(I, J) ⊆ ΦP(I′, J) (monotonicity of ΦP(·, J))
◮ ΦP(I, J ′) ⊆ ΦP(I, J) (antimonotonicity of ΦP(I, ·))

(I, J) consistent ⇒ TP(I, J) consistent

◮ Let I ⊆ J
◮ ⇒ ΦP(I, J) ⊆ ΦP(I, I) ⊆ ΦP(J, I)
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4-val supported models

Recall: TP(I, J) = (ΦP(I, J), ΦP(J , I)) and TP(I) = ΦP(I, I)

◮ (I, J) is a 4-val supported model of P if (I, J) = TP(I, J)

◮ (I, I) is a 4-val supported model iff I is a supported model
◮ (I, I) = TP(I, I) iff (I, I) = (ΦP(I, I),ΦP(I, I)) = (TP(I),TP(I))

◮ The least 4-val supported model exists!
◮ TP is monotone and so has the least (wrt ≤i ) fixpoint
◮ Moreover, it is consistent!

◮ Kripke-Kleene (Fitting) fixpoint or semantics: (KK t(P),KK p(P))
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Well-founded semantics van Gelder, Ross, Schlipf, 1991

◮ 4-val Gelfond-Lifschitz operator
◮ GLP(I, J) = (GLP(J),GL(I))
◮ Also monotone wrt ≤i

◮ (I, J) is a 4-val stable model if GLP(I, J) = (I, J)

◮ M is a stable model of P if and only if (M,M) is a 4-val stable
model of P

◮ The least fixpoint of GL exists!! (by monotonicity)
◮ And is consistent

◮ if I ⊆ J then: GLP(J) ⊆ GL(I) (antimonotonicity)

◮ Well-founded fixpoint (semantics): (WF t(P),WF p(P))

◮ For every stable model M of P

WF t(P) ⊆ M ⊆WF p(P)
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Logic here-and-there
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Logic here-and-there, Heyting 1930

Syntax

◮ Connectives: ⊥, ∨, ∧,→
◮ Formulas - standard extension of atoms by means of

connectives
◮ ¬ϕ - shorthand for ϕ→ ⊥
◮ ϕ↔ ψ - shorthand for (ϕ→ ψ) ∧ (ψ → ϕ)

◮ Language Lht
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Logic here-and-there

Why important?

◮ Disjunctive logic programs — special theories in Lht
◮ a1| . . . |ak ← b1, . . . ,bm, not c1, . . .not cn
◮ b1 ∧ . . . ∧ bm ∧ ¬c1 ∧ . . . ∧ ¬cn → c1 ∨ . . . ∨ cn

◮ General logic programs (Ferraris, Lifschitz) = theories in Lht
◮ answer-set semantics extends to general logic programs
◮ equilibrium models in logic ht
◮ the two coincide!
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Entailment in logic here-and-there

Ht-interpretations

◮ Pairs 〈H,T 〉, where H ⊆ T are sets of atoms
◮ Kripke interpretations with two worlds “here” and “there”

◮ H determines the valuation for “here”
◮ T determines the valuation for “there”

Kripke-model satisfiability in the world “here” |=ht

◮ 〈H,T 〉 6|=ht ⊥

◮ 〈H,T 〉 |=ht p if p ∈ H (for atoms only)
◮ 〈H,T 〉 |=ht ϕ ∧ ψ and 〈H,T 〉 |=ht ϕ ∨ ψ — standard recursion
◮ 〈H,T 〉 |=ht ϕ→ ψ if

◮ 〈H,T 〉 6|=ht ϕ or 〈H,T 〉 |=ht ψ
◮ T |= ϕ→ ψ (in standard propositional logic).
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Entailment in logic here-and-there

ht-model, ht-validity, ht-equivalence

◮ If 〈H,T 〉 |=ht ϕ - 〈H,T 〉 is an ht-model of ϕ
◮ ϕ is ht-valid if for every ht-model 〈H,T 〉, 〈H,T 〉 |= ϕ

◮ ϕ and ψ are ht-equivalent if they have the same ht−models

◮ ϕ and ψ are ht-equivalent iff ϕ↔ ψ is ht-valid
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Proof theory

Natural deduction — sequents and rules

◮ Sequents Γ⇒ ϕ — “ϕ under the assumptions Γ”
◮ Introduction rules for ∧, ∨,→

Γ ⇒ ϕ ∆ ⇒ ψ

Γ,∆ ⇒ ϕ ∧ ψ

◮ Elimination rules for ∧, ∨,→

Γ ⇒ ϕ ∆ ⇒ ϕ→ ψ

Γ,∆ ⇒ ψ

◮ Contradiction
Γ ⇒ ⊥

Γ ⇒ ϕ

◮ Weakening
Γ ⇒ ϕ

Γ′ ⇒ ϕ
for all Γ′, Γ s.t. Γ

′
⊆ Γ
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Proof theory

Axiom schemas

(AS1) ϕ⇒ ϕ
(AS2) ⇒ ϕ ∨ ¬ϕ (Excluded Middle)
(AS2′) ⇒ ¬ϕ ∨ ¬¬ϕ (Weak EM)
(AS2′′) ⇒ ϕ ∨ (ϕ→ ψ) ∨ ¬ψ (in between (AS2) and (AS2′)

Logics through natural deduction

Propositional logic (AS1), (AS2)
Intuitionistic logic (AS1)
Logic here-and-there (AS1),(AS2′′)
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Bringing the two together

Soundness and completeness

◮ A formula is a theorem of ht if and only if it is ht-valid

In particular

◮ ϕ and ψ are ht-equivalent iff⇒ ϕ↔ ψ is a theorem of ht
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Logic here-and-there and ASP

Equilibrium models, Pearce 1997

◮ 〈T ,T 〉 is an equilibrium model of a set A of formulas if
◮ 〈T ,T 〉 |=ht A, and
◮ for every H ⊆ T such that 〈H,T 〉 |=ht A, H = T

Key connection

◮ A set M of atoms is an answer set of a disjunctive logic program P
(general logic program P) if and only if 〈M,M〉 is an equlibrium
model for P
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Key application

Strong equivalence

◮ Let P and Q be two (general) programs. The following conditions
are equivalent:

◮ P and Q are strongly equivalent
◮ P and Q are ht-equivalent
◮ P and Q have the same ht-models
◮ P ↔ Q is ht-valid
◮ ⇒ P ↔ Q is a theorem of ht
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Algebraic approach
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The problem

Complex landscape of nonmonotonicity

◮ Multitude of formalisms
◮ Different intuitions
◮ Different languages
◮ Different semantics
◮ Complexity

Needed!

◮ Unifying abstract foundation
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A triumph of universal algebra

Basic lesson for this segment

◮ Major nonmonotonic systems
◮ logic programming
◮ default logic
◮ autoepistemic logics

can be given a unified algebraic treatment
◮ Each system can be assigned the same family of semantics
◮ Key concepts: lattices and bilattices, operators and fixpoints
◮ Key ideas: approximating operators and stable operators
◮ Key tool: Knaster-Tarski Theorem
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Overview of approach

Generalize Fitting’s work on logic programming

◮ Central role of 4-valued van Emden-Kowalski operator TP

◮ Derived stable operator, Ψ′P
◮ 2-valued and 3-valued supported models and Kripke-Kleene

semantics described by fixpoints of TP

◮ 2-valued and 3-valued stable models and well-founded semantics
described by fixpoints of Ψ′P
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Lattices

Key definitions, some notation

◮ 〈L,≤〉
◮ L is a nonempty set
◮ ≤ is a partial order such that every two lattice elements have lub

(join) and glb (meet)
◮ Elements of L express

◮ degree of truth
◮ measure of knowledge

◮ ≤ - order of increased truth or knowledge
◮ Complete lattices (both bounds defined for all sets)
◮ ⊥, ⊤
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Lattices - examples

Lattice T WO

◮ {f, t}
◮ f ≤ t

Lattice A2

◮ set of all 2-valued interpretations
◮ componentwise extension of the ordering from T WO

LatticeW

◮ family of sets of 2-valued interpretations
◮ W1 ⊑W2 if W2 ⊆W1
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Operators

That’s what it’s all about!

◮ Truth or knowledge can be revised
◮ Revisions are described by operators on lattices
◮ Fixpoints — states of truth or knowledge that cannot be revised
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Operators

Monotone operators

◮ An operator O is monotone if x ≤ y implies O(x) ≤ O(y)

◮ Knaster-Tarski Theorem: a monotone operator on a complete
lattice has a least fixpoint
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Operators, cont’d

Antimonotone operators

◮ An operator O is antimonotone if x ≤ y implies O(y) ≤ O(x)

◮ If O is antimonotone then O2 is monotone:

x ≤ y ⇒ O(y) ≤ O(x) ⇒ O2(x) ≤ O2(y)

◮ Oscillating pair: (x , y) is an oscillating pair for an operator O if
O(x) = y and O2(x) = x

◮ Antimonotone operator O has an extreme oscillating pair

(lfp(O2),gfp(O2))
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Approximations and bilattices

Key definitions, some notation

◮ A pair (x , y) approximates an element z if x ≤ z ≤ y
◮ Orderings of approximations:

◮ information (or precision) ordering: (x1, y1)≤i(x2, y2) iff x1 ≤ x2 and
y2 ≤ y1

◮ truth ordering: (x1, y1) ≤t (x2, y2) iff x1 ≤ x2 and y1 ≤ y2

◮ Bilattice 〈L2,≤i ,≤t〉

◮ A pair (x , y) is consistent if x ≤ y , and inconsistent, otherwise
◮ An element (x , y) is complete if x = y
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Bilattices - examples

Bilattice FOUR

-
≤t

6≤i
(t, f)

(f, f) (t, t)

(f, t)
�@

� @

Bilattice A4

◮ set of all pairs of 2-valued interpretations (identified with 4-valued
interpretations)

◮ componentwise extension of the orderings from FOUR

Summer School on LP and CL 2008 (University of Kentucky)Foundations of Logic Programming July 24-27, 2008 112 / 139



Bilattices - examples

Bilattice FOUR

-
≤t

6≤i
(t, f)

(f, f) (t, t)

(f, t)
�@

� @

Bilattice A4

◮ set of all pairs of 2-valued interpretations (identified with 4-valued
interpretations)

◮ componentwise extension of the orderings from FOUR

Summer School on LP and CL 2008 (University of Kentucky)Foundations of Logic Programming July 24-27, 2008 112 / 139



Bilattices - examples, cont’d

Bilattice B

◮ Family of pairs of sets of 2-valued interpretations
◮ Belief pairs
◮ (P1,S1) ⊑i (P2,S2) if P2 ⊆ P1 and S1 ⊆ S2

◮ (P1,S1) ⊑t (P2,S2) if P2 ⊆ P1 and S2 ⊆ S1
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Approximating operators

Key definitions, some notation

◮ A : L2 → L2 approximates O : L→ L if
◮ A(x , x) = (O(x),O(x))
◮ A is ≤i -monotone
◮ A is symmetric: A1(x , y) = A2(y , x), where

A(x , y) = (A1(x , y),A2(x , y))

Properties

◮ Approximating operators are consistent
◮ Complete fixpoints of A correspond to fixpoints of O
◮ Every fixpoint of A is approximated by the least fixpoint of A:

Kripke-Kleene fixpoint of A
◮ Kripke-Kleene fixpoint of an approximating operator is consistent
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Getting down to business!

Stable operators

◮ If A : L2 → L2 is ≤i -monotone then A1(·, y) and A2(x , ·) are
monotone

◮ For ≤i -monotone operator A : L2 → L2 define:

C l
A(y) = lfp(A1(·, y)) and Cu

A(x) = lfp(A2(x , ·))

◮ Since A is symmetric, C l
A = Cu

A = CA

◮ Stable operator for A:

CA(x , y) = (CA(y),CA(x))

◮ Stable fixpoints (relative to CA)
◮ ≤i -least fixpoint of CA — well-founded (WF) fixpoint of A
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Properties of stable operators

All quite easy to prove, in fact

◮ CA is antimonotone
◮ CA is ≤i -monotone and ≤t -antimonotone
◮ Fixpoints of CA are ≤t -minimal fixpoints of A
◮ Complete fixpoints of CA correspond to fixpoints of CA

◮ Complete fixpoints of CA are fixpoints of O
◮ K-K fixpoint of A ≤i WF fixpoint of A
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Logic programming — case study 1

Fitting

◮ Lattice A2, bilattice A4

◮ Operators associated with program P
◮ 2-valued van Emden-Kowalski operator TP
◮ Its approximation: 4-valued van Emden-Kowalski operator TP
◮ 2-valued stable operator (Gelfond-Lifschitz operator GLP)
◮ Stable operator CP of TP (operator Ψ′

P of Przymusinski)
◮ Semantics

◮ Supported models: fixpoints of the operator TP (TP)
◮ Kripke-Kleene semantics: least fixpoint of TP
◮ Stable models: fixpoints of the operator CP (CP)
◮ Well-founded semantics: least fixpoint of CP
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Logic programming explained

Central role of TP

TP

TP CP

CP
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Autoepistemic Logic — case study 2

Truth assignment function HV ,I

◮ For atom p: HV ,I(p) = I(p)

◮ The boolean connectives — standard way
◮ HV ,I(KF ) = t, if for every J ∈ V , HV ,J(F ) = t
◮ HV ,I(KF ) = f, otherwise

AE models, expansions

◮ Moore’s operator DT : W →W

DT (V ) = {I : HV ,I(T ) = t}

◮ Fixpoints of DT — autoepistemic models of T
◮ Autoepistemic models generate expansions
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AEL — approximating operators

The setting

◮ LatticeW, bilattice B
◮ H4

(V ,V ′),I

◮ Approximating operator for DT — DT (DMT 98)

DT (V ,V ′) = ({I : H4
(V ,V ′),I(T ) ≥t (f, t)}, {I : H4

(V ,V ′),I(T ) ≥t (t, f)})

◮ Complete fixpoints of DT — autoepistemic models of T
◮ The least fixpoint of DT — Kripke-Kleene fixpoint

◮ approximates all autoepistemic models of T

◮ The stable operator for DT : CT (V ,V ′) = (CT (V ′),CT (V ))

◮ What are the fixpoints of CT ?
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Autoepistemic logic explained

Central role of DT

DT

DT CT

CT
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Default Logic — case study 3

Same setting as for AEL

◮ LatticeW, bilattice B
◮ HV ,I(ϕ) = I(ϕ), for every formula ϕ

◮ d = α : β1,...,βk
γ

◮ HV ,I(d) = t iff
◮ there is J ∈ V such that J(α) = f, or
◮ there is i, 1 ≤ i ≤ k such that for every J ∈ V , J(βi) = f, or
◮ I(γ) = t

◮ Weak-extension operator E∆ (∆ — default theory):

E∆(V ) = {I ∈ A2 : HV ,I(∆) = t}

◮ Fixpoints of E∆(V ) — default models of weak extensions of ∆
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DL

4-valued truth assignment, approximating operator

◮ H4
(V ,V ′),I

◮ Approximating operator for E∆ — E∆

E∆(V ,V ′) = ({I : H4
(V ,V ′),I(∆) ≥t (f, t)}, {I : H4

(V ,V ′),I(∆) ≥t (t, f)})

◮ Complete fixpoints of E∆ — models of weak extensions of ∆

◮ The least fixpoint of E∆ — Kripke-Kleene fixpoint
◮ approximates all default models of weak extensions of ∆
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DL

Stable operator

◮ The stable operator for E∆:

C∆(V ,V ′) = (C∆(V ′),C∆(V ))

◮ C∆ — Guerreiro-Casanova operator Σ∆

◮ Fixpoints of C∆ — default models of Reiter’s extensions
◮ Consistent fixpoints of C∆ — stationary extensions by

Przymusinski
◮ Well-founded fixpoint of E∆ (least fixpoint of C∆ — well-founded

semantics of default logic by Baral and Subrahmanian)
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DL explained

Central role of E∆

E∆

E∆ C∆

C∆
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Connections

Strong parallels!

TP

TP CP

CP
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E∆

E∆ C∆

C∆
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-

c ← a, not b ⇒ a:¬b
c
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c ← a, not b ⇒ a:¬b
c

α:β
γ
⇒ Kα ∧ ¬K¬β ⊃ γ
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Thank you!
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