
8/20/2008

1

FOUNDATIONS OF

CONSTRAINT PROGRAMMING

AND CONSTRAINT LOGIC

PROGRAMMING

K. Brent Venable University of Padova, Italykvenable@math.unipd.it

General Outline

 Foundations of Constraint Programming

 what is constraint programming

 short history

 search

 inference

 combining search and inference

 Foundations of Constraint Logic programming

 CP+LP=CLP

 short history

 operational semantics

 semantics of success

 semantics of finite failure

CP: CONSTRAINT PROGRAMMING

What is a constraint?

 Constraint is an arbitrary relation over a set of variables.

– domain of a variable: set of possible values it can take

– the constraint restricts the possible combinations of values

 Examples:

– X is less than Y

– a sum of angles in the triangle is 180°

– the temperature in the warehouse must be in the range 0-5°C

– John can attend the lecture on Wednesday after 14:00

 Constraint can be described:

– intentionally (as a mathematical/logical formula), e.g., X<Y

– extensionally (as a table describing compatible tuples)

– Example : D(X)=D(Y)={1,2}, constraint “X less than Y”, {(X=1,Y=2)}

8/20/2008

2

Constraint Satisfaction Problem

 CSP (Constraint Satisfaction Problem) consists of:

– a finite set of variables

– domains - a finite set of values for each variable

– a finite set of constraints

 A solution to CSP is a complete assignment of variables satisfying all

the constraints.

 CSP is often represented as a (hyper)graph.

 Example:

 variables x1,…,x6 domain {0,1}

Constraints :

 Constraints: c1: x1+x2+x6=1,

c2: x1-x3+x4=1, c3: x4+x5-x6>0

c4: x2+x5-x6=0

0, 1 0, 1 0, 1 0, 1 0, 1 0, 1

c2

x1 x2 x3 x4
x6x5

c1

c3

c4

Example of CSP: cryptoarithmetic problem

SEND + MORE = MONEY

assign different single-digit positive integers to different letters

S and M are not zero

This problem can be modelled by the following CSP

Variables E,N,D,O,R,Y,S,M,P1,P2,P3

Domains

D(E)=D(N)=D(D)=D(O)=D(R)=D(Y)={0,...,9}

D(S)=D(M)= {1,...,9},

D(P1)=D(P2)=D(P3)={0,1}

Constraints all_different(S,E,N,D,M,O,R,Y)

D+E = 10*P1+Y

P1+N+R = 10*P2+E

P2+E+O = 10*P3+N

P3+S+M = 10*M +O

Example of CSP: n Queens Problem

 Place n queens in an nxn chessboard such that they

do not attack each other

 Variables: x1,...,xn (one per column)

 Domains: [1..n] (row position of a queen)

 Constraints:

 xi  xj for all i,j (no attack on a row)

 xi-xj  i-j (no attack on the SW-NE diagonal)

 xi-xj  j-i (no attack on a NW-SE diagonal)

The early days of CP(1)

 The very early days: Theseus used backtrack to find his
way in the labyrinth in Crete

 1848: chess player Bazzel proposed the 8-queens
problems

 1963 Sutherland‟s Ph.D. thesis “SketchPad: a man-
machine graphical communication system”

 Two main streams of research:

 The language stream:
 1970: Fikes proposes the REF-ARF language (1st issue fo AIJ!) REF

language part of a general problem solving system using
constraint satisfaction and propagation

 Kowalski: constraints for theorem proving

 Sussman and Steel: the CONSTRAINTS language

 Borning: extends Smalltalk to ThingLab using constraints

8/20/2008

3

The early days of CP(2)

 The algorithm stream

 1975: Waltz proposes arc consistency in his PH.D. thesis on
scene labeling

 Montanari: “Networks of constraints: fundamental properties
and applications to picture processing”
 path consistency

 general framework for constraints

 Mackworth: “Consistency in networks of relations”
 a new algorithm for arc consistency

 Freuder: generalizes arc and path consistency to k-
consistency

 Rosenfeld, Hummel and Zucker: introduce soft constraint as
different levels of compatibility

Why should you care about constraint

programming?

 Sooner or later you will be asked to solve some horribly
complicated problem…

 CP provides a very general for modeling problems

 CP may help you understand the problem you have to solve

 Many powerful solving techniques have been
developed for problems modeled via CP

 A CP solver may actually solve the problem for you

 This is why CP has proven useful in many application
domains

Constraints in A.I. planning and

scheduling

 Scheduling problem =
a set of activities has to be
processed by a limited number
of resources in a limited amount
of time.

 Combinatorial optimisation

Planning problem =

find a set of activities to achieve a given

goal

MER project

– CP helped Spirit and Opportunity

figure when it was better to do things

Constraints in bioinformatics

 Design of a 3D protein
structure from the
sequence of amino-acids
(3D structure determines
features of proteins)

 Analysing a sequence of
DNA, estimating a
distance between DNAs,
comparing DNAs

8/20/2008

4

Search

 Basic strategy

 assign values to variables: enumerate solutions

 see what happens: use constraints as tests

 Local search

 explore the search space by small steps

 systematic search

 explores the space of all assignments systematically

 non-systematic search

 some assignments may be skipped during search

Systematic search

 Explore systematically the space of all assignments

 systematic = every valuation will be explored sometime

 Features:

 + complete (if there is a solution, the method finds it)

 - it could take a lot of time to find the solution

 Basic classification:

Explore complete assignments
generate and test

same search space is used by local search (non-systematic)

Extending partial assignments

tree search

Generate and test (GT)

 The most general problem solving method

 1) generate a candidate for solution

 2) test if the candidate is really a solution

 How to apply GT to CSP?

 1) assign values to all variables

 2) test whether all the constraints are satisfied

 GT explores complete but inconsistent assignments until a (complete)

consistent assignment is found.

Pros and Cons GT

 The greatest weakness of GT is exploring too many

“visibly” wrong assignments.

 Example:

X,Y,Z::{1,2} X = Y, X  Z, Y > Z

How to improve generate and test?

smart generator

smart (perhaps non-systematic) generator that uses result of test

 local search techniques

earlier detection of clash

constraints are tested as soon as the involved variables are

instantiated  backtracking-based search

X

Y

Z

1

1

1

1

1

2

1

2

1

1

2

2

2

1

1

2

1

2

2

2

1

8/20/2008

5

Local search techniques

Local search

 One way to overcome GT cons

 Assume an assignment is inconsistent

 The next assignment can be constructed in such a way

that constraint violation is smaller.

– only “small” changes (local steps)of the assignment are

allowed

– next assignment should be “better” than previous

 better = more constraints are satisfied

– assignments are not necessarily generated systematically

 we lose completeness but we (hopefully) get better efficiency

Local search terminology

 Search Space S: set of all complete variable assignments

 Set of solutions Sol:

 subset of the search space

 all assignments satisfying all the constraints

 Neighborhood relation: a subset of SxS indicating what assignments can
be reached by a search step given the current assignment during the search
procedure

 Evaluation function: mapping each assignment to a real number
representing “how far the assignment is from being a solution”

 Initialization function: which returns an initial position given a possibility
distribution over the assignments

 Step function: given an assignment, it neighborhood and the evaluation
function returns the new assignment to be explored by the search

 Set of memory states (optional): holding information about the state of
the search mechanism.

 Termination criterion: stopping the search when satisfied

Local search for CSPs

 Neighborhood of an assignment: all assignments
differing on one the value of one variable (1-exchange-
neighborhood)

 Evaluation function: mapping each assignment to the
number of constraints it violates

 Initialization function: returns an initial assignment
chosen randomly

 termination criterion: if a solution is found or if a given
number of search steps is exceeded.

 The different algorithms are characterized by the step
function and use of memory.

8/20/2008

6

Hill Climbing

 The basic technique of local search.

 starts at a randomly generated assignment

 At each state of the search

 Iterative Best-improvement: move to the assignment in
the neighbourhood violating the minimum number of
constraint

 Iterative-First-improvement: choose the first improving
neighbour in a given order

 if multiple choices choose one randomly

neighbourhood = differs in the value of any variable

neighbourhood size = i=1..n(Di-1) (= n*(d-1))

Min-Conflicts (Minton, Johnston, Laird 1997)

 Conflict set of an assignment: set of variables
involved in some constraint violating that assignment

 Min-conflict LS procedure:

 starts at randomly generated assignment

 at each state of the search

 selects a variable from the current conflict set

 selects a value for that variable that minimizes the
number of violated constraints

 if multiple choices choose one randomly

 neighbourhood = different values for the selected variable

 neighbourhood size = (d-1)

Local minima

 The evaluation function can have:

 local minimum - a state that is not minimal and there is

no state with better evaluation in its neighbourhood

 strict local minimum - a state that is not minimal and

there are only states with worse evaluation in its

neighbourhood

 global minimum - the state with the best evaluation

 plateau - a set of neighbouring states with the same

evaluation

Graphically…

plateau
local

minimum
local minimum

global

minimum

e
v

a
lu

a
tio

n

non-strict local

minimum

solutions

n. o
f vio

la
te

d
 co

nstra
ints

8/20/2008

7

Escaping local minima

 A local search procedure may get stuck in a local

minima

 Techniques for preventing stagnation

 restart

 allowing non improving steps  random walk

 changing the neighborhood  tabu search

 changing the evaluation function penalty-based

search strategies

Restart

 Re-initialize the search when the after MaxSteps

(non-strictly improving) steps

 New assignment chosen randomly

 Can be combined both with hill-climbing and Min-

conflicts

 It is effective if MaxSteps is chose correctly and

often it depends on the instance

Random walk

 Add some “noise” to the algorithm!

 Random walk

 a new assignment from the neighbourhood is selected
randomly (e.g., the value is chosen randomly)

 such technique can hardly find a solution

 so it needs some guide

 Random walk can be combined with the heuristic
guiding the search via probability distribution:

 p: probability of using the random walk (noise setting)

 (1-p) : probability of using the heuristic guide

 Steepest descent random walk: RW+Hill climbing

 Min-conflicts random walk

Tabu search

 Being trapped in local minimum can be seen as cycling.

 How to avoid cycles in general?

 Remember already visited states and do not visit them again.

• memory consuming (too many states)

 It is possible to remember just a few last states.

• prevents „short“ cycles

 Tabu list = a list of forbidden states

 variable, value - describes the change of the state (a previous value)

 tabu list has a fix length k (tabu tenure)

 „old“ states are removed from the list when a new state is added

 state included in the tabu list is forbidden (it is tabu)

 Aspiration criterion = enabling states that are tabu

 i.e., it is possible to visit the state even if the state is tabu

 example: the state is better than any state visited so far

(the incumbent candidate solution)

Algorithm TS-GH

Galinier anf Hao 1997

8/20/2008

8

Penalty-based algorithms

 Modify the evaluation function when the search is

about to stagnate

 Evaluation of an assignment depends on the

constraints

 Associate weights to constraints and change them

during the search

 Result: the search “learns” to distinguish important

constraints

GENET

 Neural Network

 node variable assignment

 CSP variable  cluster of NN nodes corresponding to its assignments

 links between assignments violating some constraint

 penalty weights associated to links

 1 at the beginning

 Assignment  only the nodes corresponding to the assignments are
switched on

 Each node receives a signal from the neighboring nodes that are switched
on with strength equal to the weight of the link

 For each cluster the nodes with the smallest incoming signal are switched on

 When the search stabilizes in a state, the weights of the links among the
active nodes is increased by one

 Solution when the minimum signal is 0 for all clusters

Breakout Method

 Similar to GENET

 Weights are associated to constraints

 Evaluation of an assignment = weighted sum of the

violated constraints

 When a local minimum is reached the weights of the

violated constraints is increased by one

Localizer (Michel, Van Hentenryck 1997)

 The local search algorithms have a similar structure that can be encoded in

the common skeleton. This skeleton is filled by procedures implementing a

particular technique.

procedure local-search(Max_Tries,Max_Moves)

s  random assignment of variables

for i:=1 to Max_Tries while Gcondition do

for j:=1 to Max_Moves while Lcondition do

if eval(s)=0 then

return s

end if

select n in neighbourhood(s)

if acceptable(n) then

s  n

end if

end for

s  restartState(s)

end for

return best s

end local-search

8/20/2008

9

Systematic search techniques

Backtracking

 Key idea: extend a partial consistent assignment until a complete consistent

assignment is found

 The most widely used systematic search algorithm

 Basically : depth-first search

 Backtracking for CSP

 1) assign values to variables incrementally

 2) after each assignment test the constraints over the assigned variables (and

backtrack upon failure)

 Parameters:

 In which order to assign variables

 what is the order of values?

• problem dependent

Algorithm chronological backtracking

Backtracking is always better than generate and test!

procedure BT(X:variables, V:assignment, C:constraints)

if X={} then return V

x  select a not-yet assigned variable from X

for each value h from the domain of x do

if constraints C are consistent with V+{x/h} then

R  BT(X-x, V+{x/h}, C)

if Rfail then return R

end for

return fail

call BT(X, {}, C)

Cons of backtracking(1)

 thrashing

 throws away the reason of the conflict

 Example: A,B,C,D,E:: 1..10, A>E

 BT tries all the assignments for B,C,D before finding that A1

 Solution: backjumping (jump to the source of the failure)

 redundant work

 unnecessary constraint checks are repeated

 Example: A,B,C,D,E:: 1..10, B+8<D, C=5*E

when labelling C,E the values 1,..,9 are repeatedly checked for

D

 Solution: remember (no-)good assignments

8/20/2008

10

Cons of backtracking(2)

 late detection of the conflict

 constraint violation is discovered only when the values

are known

 Example: A,B,C,D,E::1..10, A=3*E

the fact that A>2 is discovered when labelling E

 Solution: forward checking (forward check of

constraints)

No-good

 Informally, a No-good is a set of assignments that is
not consistent with any solution

 Let p={X1=a1, X2=a2,…,Xk=ak} be a deadend of
the search tree

 A jumpback no-good for p is defined recursively

 If p is a leaf node and C is a constraint violated by p

 J(p)={Xh=ah| Xh is in vars(C)}

 otherwise, le {Xk+1=v1, …Xk+1=vj} be all the possible
extensions to Xk+1 tempted by the search

 J(p)= ∪i=1..j (J(p∪ {Xk+1=vi})- {Xk+1=vi})

Example of No-good

p={X1=2,X2=5,X3=3,X4=1,X5=4}

J(p)= ∪i=1..j (J(p∪ {Xk+1=vi})-

{Xk+1=vi})

J(p)=(J(p ∪{X6=1})-{X6=1}) ∪
… ∪ (J(p∪ {X6=6})-{X6=6})=…

Choosing constraints in lex order

…={X2=5} ∪… ∪{X3=3}=

{X1=2,X2=5,X3=3,X5=4}

J(p)={Xh=ah| Xh is in vars(C)}

Backjumping (Gaschnig 1979)

 Backjumping is used to remove thrashing.

1. identify the source of the conflict (impossible to assign a value)

2. jump to the past variable in conflict

 irrelevant assignments are skipped and undone!

 Where to jump to when at dead-end p:

 Without No-goods

 select the constraints containing just the currently assigned variable and the past

variables

 select the closest variable participating in the selected constraints

 With No-goods

 select the Xi where i is the largest index in J(p) x
1 2 3 4 5

8/20/2008

11

Example of Backjump with no good

p={X1=2,X2=5,X3=3,X4=1,X5=4}

J(p)={X1=2,X2=5,X3=3,X5=4}

Undo X5=4

Weakness of backjumping

 When jumping back the in-between assignment is lost!

 Example:
 colour the graph in such a way that the connected vertices have

different colours

1

2

1 2

1 2 3

1 2 3

A

C

B

D

E

node vertex

A

B

C

D

E

1

21

1 2

1 2

1 2 3

During the second attempt to label C superfluous work is done

- it is enough to leave there the original value 2, the change of B

does not influence C.

Dynamic backtracking

 The same graph (A,B,C,D,E), the same colours (1,2,3) but

a different approach.

AC B

D

E
node 1 2 3

A 

B A 

C A 

D A B 

E A B D

node 1 2 3

A 

B A 

C A 

D A B AB

E A B

node 1 2 3

A 

C A 

B  A

D A 

E A B 
jump back

+ carry the conflict source

jump back

+ carry the conflict source

+ change the order of B, C

Backjumping

+ remember the source of the conflict

+ carry the source of the conflict

+ change the order of variables

= DYNAMIC BACKTRACKING

The vertex C (and the possible sub-graph connected to C) is

not re-coloured.

 selected color

AB a source of the conflict

Inference

8/20/2008

12

Constraint propagation

 Transform a CSP into an equivalent simpler CSP

 Main idea: remove elements from domains or tuples
from constraints if they cannot participate in any
solution

 Aim: to obtain a local consistency property

 Example:

 A in 3..7, B in 1..5 the variables‟ domains

 A<B the constraint

 many inconsistent values can be removed

 we get A in 3..4, B in 4..5
 Note: it does not mean that all the remaining combinations of the values are

consistent (for example A=4, B=4 is not consistent)

Node consistency (NC)

 Node consistency:

– The vertex representing the variable X is node consistent iff

every value in the variable‟s domain Dx satisfies all the

unary constraints imposed on the variable X.

– CSP is node consistent iff all the vertices are node consistent.

X

D(X)={1,2,3,4}

2

4

Arc consistency (AC)

– A value v∈D(X) is said to have support in constraint c consistent if

there is an assignment satisfying c in which X=v

– A constraint c is arc consistent iff every value in the domain of each

of its variables has support in c

– CSP is arc consistent iff every constraint is arc consistent.

 Usually we say Arc Consistency (AC) for binary constraints and Generalized

Arc Consistency if there are non binary constraints

3..7 1..5

A<B

no arc is consistent

A B
3..4 1..5

A<B

no arc is consistent

A B
3..4 4..5

A<B

arc is consistent

A B

Arc Revision

 How to make the domain of a variables arc consistent w.r.t.
a constraint?

 Delete all the values x from the domain D that are
inconsistent with all the assignment to the other variables.

 Binary case:

 delete v from D(X) if there is no value w in D(Y) such that the
valuation X = v, Y = w satisfies the binary constrains on X and Y

 Arc (X,c)

 Revise(X,c): removes from D(X) all the values without support
in c

 Returns

 true if the domain has been reduced

 false otherwise

8/20/2008

13

AC-1

 Loop over all arc revisions (pairs (variable,

constraint)) until no change occurs.

What is wrong with AC-1?

 If a single domain is pruned then revisions of all the arcs

are repeated even if the pruned domain does not

influence most of these arcs.

 What arcs should be reconsidered for revisions?

 The arcs involving variables whose consistency is affected

by the domain pruning

 i.e., the arcs with variables involved in some

constraints with the reduced variable.

AC-2 and AC-3

 AC-2(Mackworth „77)

 In every step, the arcs involving a given variable are
processed (i.e. a sub-graph of visited nodes is AC)

 AC-3 (Mackworth „77)

1. Put all arcs in a queue Q

2. While Q not empty

3. (X,c)=Pop(Q)

4. If Revise((X,c)) wipes out the domain of X: stop

5. else

6. if revise(X,c) returns true add to Q all arcs (Y,c‟) such that
c‟ involves X and Y

Complexity of AC-3

 For binary constraint networks

 Time: O(ed3)

 e: number of constraints

 d: domain size

 Proof:

 (X,c) is revised only when it is in the Q

 (X,c) is inserted in the Q only when the domain of some Y involved with X
in c has been revised

 This can happen at most d times

 there are 2e arcs (X,c)

 Thus 2ed revisions each costing at most d2

 Space: O(e) : the queue contains at most e elements

8/20/2008

14

Looking for (and remembering of) the

support

With AC-3 many pairs of values are tested for consistency in

every arc revision and these tests are repeated every time

the arc is revised.

a

b

c

d

a

b

c

d

a

b

c

d

V1 V2 V3

1. When the arc (V2,c12) is revised, the

value a is removed from domain of V2.

2. Now the domain of V3, should be

explored to find out if any value

a,b,c,d loses the support in V2.

Observation:

The values a,b,c need not be checked again because they still have a

support in V2 different from a.

The support set for aDi is the set {<xj,b> | bDj , (a,b)Ci,j}

Compute the support sets once and then use them during re-revisions.

1

2

Support sets

 For each constraint c on variables X and Y, for each

value of v in D(X) (and D(Y))

 Compute:

 Counter(X,v,Y): how many supports does v have in c

 Support set (or list) S(X,v,Y): set of values of Y

supported by v in c

 if the v disappears then these values lose one

support

AC-4 (Mohr and Anderson ‟86)

counter(i,j),_

2

2

1

Sj,_

<i,a1>,<i,a2>

<i,a1>

<i,a2>,<i,a3>

i

a1

a2

a3

j

b1

b2

b3

Using the support sets:

1. Assume b3 is deleted from the domain of j (for some reason).

2. Look at Sj,b3 to find out the values that were supported by b3

(i.e. <i,a2>,<i,a3>).

3. Decrease the counter for these values (they lost one support).

4. If any counter is zero (a3) then delete the value and repeat the

procedure for the values it supported (i.e., go to 1).

counter(i,j),_

2

2

1

Sj,_

<i,a1>,<i,a2>

<i,a1>

<i,a2>,<i,a3>

i

a1

a2

a3

j

b1

b2

b312

1

00

Complexity of AC-4

 On binary constraint networks

 Time: O(ed2)

 e: number of constraints

 d: domain size

 for each value for each constraint I must look for support
only once: at most e2d times

 Looking for support takes d

 Thus O(ed2)
 optimal!

 Space: O(ed2)

 Maximal total size of the support lists

8/20/2008

15

Other arc consistency algorithms

 AC-4: optimal worst case but bad average case and bad space complexity

 AC-6 (Bessiere 1994)

– improves memory complexity and average time complexity of AC-4

– keeps one support only, the next support is looked for when the current

support is lost

– Complexity

– time O(ed2)

– Space O(ed)

 AC-2001

– Similar to AC-3

– Pointer Last[X,v,Y]: is the “smallest” value of Y supporting v in c

– Complexity as AC-6

Directional arc consistency (DAC)

 Observation 1: arc revisions have a directional character

but CSP is not directional.

 Observation 2: AC has to repeat arc revisions; the total

number of revisions depends on the number of arcs but

also on the size of domains.

 Weakening AC assuming an order over the variables

 Definition: A binary CSP is directional arc consistent using a

given order of variables iff for every constraint c(Xi,Xj)

such that Xi<Xj the (Xi,c) is arc consistent in c.

How to use DAC

 AC is stronger than DAC (if CSP is AC then it is DAC as well)

 So, is DAC useful?

– DAC-1 is surely much faster than any AC-x

– there exist problems where DAC is enough

 Example: If the constraint graph forms a tree then DAC is enough to solve the

problem without backtracks.

 How to order the vertices for DAC?

 How to order the vertices for search? 1. Apply DAC in the order from

the leaf nodes to the root.

2. Label vertices starting from

the root.

DAC guarantees that there is a

value for the child node

compatible with all the parents.

Is arc consistency enough?

 By using AC we can remove many incompatible values

– Do we get a solution?

– Do we know if there exists a solution?

 Unfortunately, the answer to both above questions is NO!

 Example:
X

Y
Z

XZ
XY

YZ

{1,2}

{1,2} {1,2}

CSP is arc consistent

but there is no solution

So what is the benefit of AC?

Sometimes we have a solution after AC

• a domain is empty  no solution exists

• all the domains are singleton  we have a solution

In general, AC prunes the search space  equivalent easier problem

8/20/2008

16

Singleton Arc Consistency

 Another possible relaxation of AC

 A CSP P is SAC iff for every variable X and for

every value v in D(X) then P|X=v is not arc

inconsistent

Consistency techniques in practice

 N-ary constraints are processed directly!

 The constraint CY is arc consistent iff for every variable i constrained by CY and

for every value vDi there is an assignment of the remaining variables in CY

such that the constraint is satisfied.

 Example: A+B=C, A in 1..3, B in 2..4, C in 3..7 is AC

 Constraint semantics is used!

 Interval consistency

 working with intervals rather than with individual values

 interval arithmetic

 Example: after change of A we compute A+B  C, C-A  B

 bounded consistency

 only lower and upper bound of the domain are propagated

 Such techniques do not provide full arc consistency!

 It is possible to use different levels of consistency for different constraints!

Path consistency (PC)

 How to strengthen the consistency level?

 Require consistency over more than one constraint

 Path (V0,V1,…, Vm) is path consistent iff for every pair of values

xD0 a yDm satisfying all the binary constraints on V0,Vm there

exists an assignment of variables V1,…,Vm-1 such that all the binary

constraints between the neighbouring variables Vi,Vi+1 are satisfied.

 CSP is path consistent iff every path is consistent.

 Path consistency does not guarantee that all the constraints among

the variables on the path are satisfied; only the constraints between

the neighbouring variables must be satisfied.

 For PC it is sufficient to look only at paths of length 2

Montanari
V0 V1

V 2

V3

V4

???

Operations over the constraints

Composition Rik * Rkj  Rij

binary matrix multiplication

A<B * B<C  A<C-1

011 011 001

001 * 001 = 000

000 000 000

The induced constraint is joined with the original constraint

Rij & (Rik * Rkj)  Rij

R25 & (R21 * R15)  R25

01101 00111 01110 01101

10110 00011 10111 10110

11011 & 10001 * 11011 = 01010

01101 11000 11101 01101

10110 11100 01110 10110

1

2

3

4

5

A B C D E












Rij = RT
ji, Rii is a diagonal matrix representing the domain

REVISE((i,j)) from AC is equivalent to Rii  Rii & (Rij * Rjj * Rji)

Intersection Rij & R‘ij

bitwise AND

A<B & AB-1  B-1A<B

011 110 010

001 & 111 = 001

000 111 000

8/20/2008

17

PC-1 and PC-2

 PC-1 (Mackworth 77)

 How to make the path (i,k,j) consistent?
 Rij  Rij & (Rik * Rkk * Rkj)

 How to make a CSP path consistent?

 Repeated revisions of all paths (of length 2) while any

domain changes.

 PC-2 (Mackworth 77)

 Paths in one direction only (attention, this is not DPC!)

 After every revision, the affected paths are re-revised

Other path consistency algorithms

 PC-3 (Mohr, Henderson 1986) and PC-4 (Han, Lee 1988)

– based on computing supports for a value (like AC-4)

 PC-5 (Singh 1995)

– uses the ideas behind AC-6

– only one support is kept and a new support is looked for

when the current support is lost

Drawbacks of path consistency

 Memory consumption

– because PC eliminates pairs of values, we need to keep all the compatible

pairs extensionally, e.g. using {0,1}-matrix

 Bad ratio strength/efficiency

– PC removes more (or same) inconsistencies than AC, but the

strength/efficiency ratio is much worse than for AC

 Modifies the constraint network

– PC adds redundant arcs (constraints) and thus it changes connectivity of the

constraint network

– this complicates using heuristics derived from the structure of the constraint

network (like tightness, graph width etc.)

 PC is still not a complete technique

– A,B,C,D in {1,2,3}

AB, AC, AD, BC, BD, CD

is PC but has not solution

1,2,3 1,2,3

1,2,3 1,2,3








 

Restricted path consistency(Berlandier „95)

 A binary CSP is Restricted Path Consistent iff

 it is arc consistent

 for every constraints c(XY)

 for each v in D(X) which has a unique support w in D(Y)

 for each variable Z connected to X and Y

 there is a value z of D(z) such that (v,z) satisfies c(X,Z) and

(z,w) satisfies C(Z,Y)

 Stronger than AC weaker than PC

8/20/2008

18

k-consistency

 Is there a common formalism for AC and PC?

 AC: a value is extended to another variable

 PC: a pair of values is extended to another variable

 … we can continue

 Definition: CSP is k-consistent iff any (locally) consistent

assignment of (k-1) different variables can be extended to a

consistent assignment of one additional variable.

1,2,3 1,2,3 1,2,3 4





  

4-consistent graph

Strong k-consistency

 Definition: CSP is strongly k-
consistent iff it is
j-consistent for every jk.

 Visibly: strong k-consistency 
k-consistency

 Moreover: strong k-consistency
 j-consistency jk

 In general:  k-consistency 
 strong k-consistency

 NC = strong 1-consistency = 1-
consistency

 AC = (strong) 2-consistency

 PC = (strong) 3-consistency

1,2 1,2 1,2,3
= =

=

3-consistent graph

but not 2-consistent graph!

What k-consistency is enough?

 Assume that the number of

vertices is n. What level of

consistency do we need in

order to find a solution?

 Strong n-consistency for

graphs with n vertices!

 n-consistency is not enough

 strong k-consistency where

k<n is not enough as well

1,2,..,n-1

1,2,..,n-1

1,2,..,n-1

1,2,..,n-1











 



…

…

graph with n vertices

domains 1..(n-1)

It is strongly k-consistent for k<n

but it has no solution

1,2 1,2,3=

<

<

1,2,31,2,3

And what about this graph?

(D)AC is enough!

Because this a tree..

(i,j)-consistency

 k-consistency extends instantiation of (k-1) variables to a new

variable,

 we remove (k-1)- tuples that cannot be extended to another

variable.

Definition: CSP is (i,j)-consistent iff every consistent instantiation

of i variables can be extended to a consistent instantiation

of any j additional variables.

CSP is strongly (i,j)-consistent, iff it is (k,j)-consistent for every ki.

k-consistency = (k-1,1) consistency

AC = (1,1) consistency

PC = (2,1) consistency

We can do even more! …

… …

8/20/2008

19

Inverse consistencies

 Worst case time and space complexity of (i,j)-consistency is

exponential in i, moreover we need to record forbidden i-

tuples extensionally (see PC).

 What about keeping i=1 and increasing j?

 We already have such an example:

RPC is (1,1)-consistency and sometimes (1,2)-consistency

 Definition: (1,k-1)-consistency is called k-inverse consistency.

 We remove values from the domain that cannot be consistently

extended to additional (k-1) variables.

 Inverse path consistency (PIC) = (1,2)-consistency

 Neighbourhood inverse consistency (NIC) (Freuder , Elfe 1996)

 We remove values of v that cannot be consistently extended to

the set of variables directly linked to v.

Singleton consistencies

 Key Idea: assign a value and make the rest of the problem consistent according to

some consistency notion.

 Definition: CSP P is singleton A-consistent for some notion of

A-consistency iff for every value h of any variable X the problem P|X=h| is A-

consistent.

 Features:

 + we remove only values from variable‟s domain - like NIC and RPC

 + easy implementation

 - not so good time complexity

 1) singleton A-consistency  A-consistency

 2) A-consistency  B-consistency 

singleton A-consistency  singleton B-consistency

 3) singleton (i,j)-consistency > (i,j+1)-consistency (SAC>PIC)

 4) strong (i+1,j)-consistency > singleton (i,j)-consistency (PC>SAC)

Consistency techniques at glance

#

 NC = 1- consistency

 AC = 2- consistency = (1,1)- consistency

 PC = 3- consistency = (2,1)- consistency

 PIC = (1,2)- consistency

a stronger technique

incomparable techniques

NIC

##

SPC

#

strong PC

SAC PIC RPC AC

Search+inference

8/20/2008

20

How to solve the constraint problems?

 In addition to local search we have two other methods:

 depth-first search

• complete (finds a solution or proves its non-existence)

• too slow (exponential)

 explores “visibly” wrong valuations

 consistency techniques

• usually incomplete (inconsistent values stay in domains)

• pretty fast (polynomial)

 Share advantages of both approaches - combine them!

– label the variables step by step (backtracking)

– maintain consistency after assigning a value

Solving techniques (1)

 Core procedure DFS:

 assign variables one by one

 ensure consistency after each assignment

 Look back:

 maintain consistency among already assigned variables

 look back= look to already assigned variables

 if the consistency test return a conflict (+ explanation)

 backtrack (basic) or

 backjump

Solving techniques (2)

 Forward checking:

 prevention technique

 remove values from future variables which are incompatible with current assignments

 check only future variables connected to some assigned variables by some constraint

 Partial look ahead

 propagate the value assigned to the current variable to all future variables

 DAC maintained in reverse order w.r.t. the labeling order (aka known as DAC look ahead)

 it is not necessary to consider constraints involving past variables other than the current one

 Look Ahead

 Like Partial Look Ahead but with AC instead of DAC

 MAC

 AC performed initially

 maintained after each assignment

 MCk:

 Maintain strong-k-consistency

 chronological backtracking

Comparison of solving methods (4 queens)
 Backtracking is not very

good: 19 attempts

Forward checking is better

3 attempts

And the winner is... Look Ahead

2 attempts

8/20/2008

21

Constraint propagation at glance

 Propagating through more constraints remove more inconsistencies

(BT < FC < PLA < LA), of course it increases complexity of the step.

 Forward Checking does no increase complexity of backtracking, the

constraint is just checked earlier in FC (BT tests it later).

 When using AC-4 in LA, the initialisation is done just once.

 Consistency can be ensured before starting search

1 2 3 4 5 6 7 8

Past (already labelled) variables
Future (free) variables

cv

backtracking forward checking look ahead

Variable ordering(1)

 Variable ordering in labelling influence significantly efficiency of

solvers (e.g. in tree-structured CSP).

 FIRST-FAIL principle

 „select the variable whose instantiation will lead to failure“

 it is better to tackle failures earlier, they can be become even

harder

– prefer the variables with smaller domain (dynamic order)

 a smaller number of choices ~ lower probability of success

 the dynamic order is appropriate only when new information

appears during solving (e.g., in look ahead algorithms)

Variable ordering(2)

 „solve the hard cases first, they may become even harder

later“

– prefer the most constrained variables

 it is more complicated to label such variables (it is

possible to assume complexity of satisfaction of the

constraints)

this heuristic is used when there are domains of equal

size

– prefer the variables with more constraints to past

variables

a static heuristic that is useful for look-back techniques

 Order of values in labelling influence significantly

efficiency (if we choose the right value each time, no

backtrack is necessary).

 What value ordering for the variable should be chosen in

general?

 SUCCEED FIRST principle

 „prefer the values which have a better chance of

belonging to the solution“

 if they all look the same then we have to check all

values

Value ordering (1)

8/20/2008

22

 SUCCEED FIRST does not go against FIRST-FAIL !

– prefer the values with more supporters

this information can be found in AC-4

– prefer the value leading to less domain reduction

this information can be computed using singleton

consistency

– prefer the value simplifying the problem

solve approximation of the problem (e.g. a tree)

 Generic heuristics are usually too complex for computation.

 It is better to use problem-driven heuristics that proposes

the value!

Value ordering (2) Other interesting issues

 Soft constraints

 the world is not black and white

 satisfaction relaxed to degrees of satisfaction

 a tuple satisfies a constraint to certain degree

 this degree may represent a preference or a cost

 satisfaction problem  optimization problem

 find not just a solution but the best solution

 Global constraints

 Specific constraints that occur often in practice, and specific

efficient propagation algorithms for them

 Symmetry breaking

LP formulation of CSPs

 Constraint

 CSP: set of constraints

 Satisfying the CSP

 Finding a solution

 Set of facts defining a
predicate

 LP program : set of
predicate definitions

 Clause with

 body: all the predicates

 head: contains all the
variables of the CSP

 Executing a goal matching
the head of the clause

CSP LP

Example: CSP  LP program

 Variables: x,y,z

 Domain {a,b,c} for all
the variables

 Constraints:

 c1(x,y)={(a,a),(a,b),(b,b)}

 c2(y,z)={(b,a)}

 Solutions:

 (X=a, Y=b, Z=a),

 (X=b, Y=b, Z=a),

csp(X,Y,Z) :- c1(X,Y),c2(Y,Z).

c1(a,a).

c1(a,b).

c1(b,b).

c2(b,a).

Goal: csp(X,Y,Z)

CSP LP

csp(X,Y,Z)

c1(X,Y),c2(Y,Z)

c2(a,Z) c2(b,Z) c2(b,Z)

success

failure

X=a
X=a

X=b

Z=a Z=a

8/20/2008

23

LP formulation of CPS (2)

 Summarizing:

 a finite domain CSP= LP program with one clause and

several facts

 LP can represent much more complex things

 recursion

 function symbols

 Functions can be used for a more compact

representation of constraints

Examples: CSP  LP program

 Expressing binary constraint eq(X,Y): X=Y

 Enumerating all facts…not the way to go

 just one fact: eq(X,X).

 Expressing binary constraint neq(X,Y): X≠Y

 just one clause and one fact:

 neq(X,X):- !, fail.

 neq(X,Y).

 fail built in predicate that always fails

 ! cut: makes sure second clause in not tried if first fails

LP formulation of CSPs(4)

 LP solution engine corresponds to depth-first search
with chronological backtracking

 not the most efficient way to solve CSPs

 Constraint Logic Programming

 extends LP allowing for the use of CP techniques for
improving solving

 extend CP by allowing more general and compact
definition of constraints (formulas over a specific
language)

Constraint Logic Programming

8/20/2008

24

CLP = CP + LP

 CLP : the merger of two declarative paradigms

 Constraint solving

 Logic Programming

 Common base: mathematical relations

Key feature

 Combing logic and solving in an algorithmic context

 Conceptual model of a problem: its precise formulation
in logic

 Design model of a problem: its algorithmic formulation,
sequence of steps for solving it

 CLP can express both models

 Provides mapping: conceptual models  design models

Example (..seen in CP)

 Cryptoarithmetic problem:

 SEND+MORE=MONEY

 Conceptual model:

smm(S,E,N,D,M,O,R,Y) :-

[S,E,N,D,M,O,R,Y] :: 0 . . 9,

1000 * S + 100 * E + 10 * N + D

+1000 * M + 100* O + 10 * R + E

#= 10000 * M +1000 * O + 100 * N + 10 * E + Y,

M #> 1, S#>1,

alldifferent([S,E,N,D,M,O,R,Y])

New predicate/constraint definition:

name: smm

arguments: S,E,N,D,M,O,R,Y

the variables of the problem

Body of rule:

defines the

new predicate/

constraint in terms

of other (known)

predicates/

constraints

ECLiPSe notation

Example(2)

 LABELING (basic CLP search procedure)

 Design model of SEND+MORE=MONEY

 smm(S,E,N,D,M,O,R,Y), labeling([S,E,N,D,M,O,R,Y])

 underlying finite domain constraint solver

 Returned solution:

 S=9, E= 5, N= 6, D= 7, M= 1, O= 0, R= 8, Y= 2.

labeling([]).

labeling([V|Rest]) :-

indomain(V),

labeling(Rest).

Built-in predicate

allows to nondetermistically

set the value of V to each

of its possible values in turn

8/20/2008

25

Important features of CLP

 The CLP paradigm is generic in

 the choice of primitive constraints

 the choice of the underlying constraint solver

  CLP Scheme

 In our cryptoarithmetic example

 Primitive constraints (needed):

 bounded integer constraints

 Possible underlying solvers:

 propagation based

 mixed integer programming (MIP)

 local search-based

A little bit of history

 CLP was developed by three independent research

teams:

 Colmerauer et al. in Marseilles (France)

 Jaffar and Lassez et al. in Melbourne (Australia)

 Dincbas et al. Munich (Germany)

 CLP as a generalization of LP

 Primitive constraints: only syntactic equality

 Solver: unification

A little bit of history (2)

 Research development lines:

 generalizing unification to other types of equality

 allowing more flexible dynamic evaluation

 relaxing Prolog‟s left-to-right literal selection strategy

allowing goals to be delayed until sufficiently instantiated

A little bit of history (3)

 The Melbourne group

 coined CLP term 1986

 schema and semantics for CLP languages

 CLP(R) = Prolog + arithmetic constraints

 Solver: incremental Simplex

 Applications: financial and engineering

 The Marseilles group

 Prolog II (early 80‟s):

 first logic programming language with constraints

 equations and disequations over rational trees

 Prolog III (late 80‟s)

 constraints over Booleans

 linear arithmetic over rational numbers

 constraints over lists

 Applications: chemical reasoning

8/20/2008

26

A little bit of history (4)

 The Munich group:

 CHIP language

 Prolog‟s backtracking search + AI consistency techniques

 Finite domain constraints

 Applications: circuit diagnosis

A little bit of history (5)

 From black box to glass box

 languages that allow programmers to extend and/or

define new underlying solvers

 Hybrid constraint-solving techniques combining

 propagator-based solving + linear programming

MIP + local search

 ECLiPSe

CLP Scheme (Jaffar and Lassez „87)

Some type

of constraints

Solver for

the constraints

Rule-based

Language

Different ingredients, different soup!

CLP scheme: key idea

 Key idea

 Parameterize:

 operational semantics

 declarative semantics

 relation between the two

 by a choice of

 constraints

 solver for the constraints

 algebraic and logical semantics for the constraints

8/20/2008

27

The Constraint Domain(1)

 CLP schema defines the class of languages CLP(C), parametric in C

 C : constraint domain, definition and interpretation of built-in
primitive constraints and functions

 Constraint domain signature SC

 set of function and predicate symbols

 map symbol arity

 Thus defines the terms of the language

 variables

 function terms f(t1,…,tn) f function symbol and ti term

 Class of constraints LC

 predefined subset of first order SC-formulas

 Domain of computation DC

 set D

 mapping:

 function symbols in signature SC  functions over D

 predicate symbols in signature SC relations over D

 respecting the arities

 algebraic semantics of the constraints

The Constraint Domain(2)

 Constraint Theory TC

 (possibly infinite) set of closed SC-formulae

 logical semantics of the constraints

 Solver solvC

 mapping

 constraints  {true,false,unknown}

 solveC(c)=true means “c is satisfiable”

 solveC(c)=false means “c is not satisfiable”

 solceC(c)= unknown means “don‟t know if it satisfiable or not”

 operational semantics of constraints

 Note
 Primitive constraint: atom p(t1,…,tn) in LC

 Constraint: first order formula built from primitive constraints in LC

Assumptions

 Equality

 binary predicate symbol “=“ is in SC

 = interpreted as the identity relation in DC

 standard equality axioms in TC

 Lc always contains

 all atoms with predicate symbol =

 true (the “always true” constraint)

 false (the “always false” constraint)

 DC, solvC and TC agree

 DC is a model of TC

 for any primitive constraint c

 if solvC(c)=false then TC⊨¬∃c

 if solvC(c) =true then TC ⊨∃c

~

~

Example: the constraint domain Real

 Signature SC:

 predicate symbols: <,>,=,≤,≥
 all binary

 function symbols:

 Binary: +,*,-,/

 Constants: sequences of digits possibly with a decimal point (1, 2.3…)

 Constraints LC

 primitive constraints: <,>,=,≤,≥

 Domain of computation DC

 domain: set of real numbers R

 <,>,=,≤,≥  usual arithmetic relations

 +,*,-,/  usual arithmetic functions over R

 1,2,4.5…decimal representation of elements of R

 Theory TC

 Theory of real closed fields

 Solver solvC

 Simplex + Gauss-Jordan elimination

 Corresponding CLP language : CLP(R)

8/20/2008

28

Example: the constraint domain Term

 Signature SC:

 predicate symbols: = binary

 function (and constant) symbols:

 strings of alphanumeric characters

 Constraints LC

 primitive constraints: =

 Domain of computation DC

 domain: set of finite trees Tree

 =  identity relation over Tree

 Interpretation of n-ary function f:

 I(f) : Tn →T, n trees ↦ tree with root f and the n-trees as children

 Theory TC

 Clark‟s theory for Term (= syntactic equality)

 Solver solvC

 unification algorithm

 Corresponding CLP language : CLP(Term), aka Prolog

Syntax of Constraint Logic Programs

 Constraint logic programs are sets of logical statements
(aka rule or clauses) which extend a constraint domain
by defining new constraints in terms of primitive
constraints

 Constraint logic program = set of rules

 Rule H :- B

 H, head of the rule, is an atom

 B, body of the rule, finite sequence of literals

⊠ the empty sequence

 H:-⊠, written H. for short

 Literal: atom or primitive constraint

 Atom: p(t1,…,tn) p predicate symbol, ti term

Example

 Expressing Relation: max(x,y,z)↔ z=max(x,y)

max(X,Y,Z) :- X #>=Y, Z#=X. %%M1

max(X,Y,Z) :- Y #>= X, Z #= Y. %%M2

atom primitive constraint

literal

Head Body

names of rules

as comments

Operational Semantics (1)

 Operational semantics provides a way of repeatedly
unfolding a goal with user-defined constraints until a
conjunction of primitive constraints is reached

 Renaming: bijective mapping between variables

 Syntactic object: formula, rule or constraint

 Variants : synt. objs. s and s‟ are variants iff there exists
a renaming r such that r(s)=s‟

 Definition of User-defined predicate p in program P
defnP(p):

 set of of rules in P with head of the form p(s1,…,sn)

 renaming assumption: every time defnP(p) is called it returns
a variants with distinct new variables

8/20/2008

29

Operational semantics (2)

 State <G|c>

 G current goal (current literal sequence L1,…,Lm)

 c current constraint store (conjunction of primitive constraints)

 Reduction step from state S to state S‟ (SS‟)

 if left-most literal L1 is a primitive constraint

 if solv(c ∧ L1)≠false

 then S‟=<L2, …, Lm | L1∧ c>

 else S‟ =< ⊠| false>

 if left-most literal L1 is an atom of form p(s1,…,sn)

 if defnP(p) ≠ ∅

 then S‟ =<s1=t1,…, sn = tn ,B,L2,…,Lm|c> , for some (A :- B)
∈defnP(p) with A of form p(t1,…,tn)

 else S‟ = <⊠ |false>

Operational semantics(3)

 Derivation from a goal G in a program P: sequence of
states S0  S1…  Sn, where

 S0=<G|true>

 Si-1 Si reduction using rules is P

 Length of derivation S0S1…Sn : n

 A derivation is finished when the last goal cannot be
reduced

 Last state of a finished derivation: < ⊠|c>

 if c = false, failing derivation

 otherwise successful derivation

 Answers of a goal G for a program P

 constraints ∃vars(G)c where there is a successful derivation
from G with final state with constraint store c

Example(1)

<max(A,B,C), B #=2 | true>

⇓ max(X,Y,Z) :- X #>= Y, Z #= X

<A = X, B = Y, C = Z, X #>= Y, Z #=X, B#=2 |true>

⇓

<B = Y, C = Z, X #>= Y, Z #=X, B#=2 | A = X >

⇓

<C = Z, X #>= Y, Z #=X, B#=2 | A = X ∧ B = Y >

⇓

<X #>= Y, Z #=X, B#=2 | A = X ∧ B = Y ∧ C = Z>

⇓

< Z #=X, B#=2 | A = X ∧ B = Y ∧ C = Z ∧ X ≥Y>

⇓

< B#=2 | A = X ∧ B = Y ∧ C = Z ∧ X ≥Y ∧Z =X>

⇓

< ⊠| A = X ∧ B = Y ∧ C = Z ∧ X ≥Y ∧Z =X ∧B=2 >

projecting onto the variables of the original goal gives A≥2∧B=2∧C=A

Example(2)

<A#=1,max(1,2,1)| true>

⇓

<max(A,2,1)|A=1>

max(X,Y,Z) :- X #>= Y, Z #= X⇓

<A= X, 2 = Y, 1=Z, X #>= Y, Z #=X| A = 1 >

⇓

< 2 = Y, 1=Z, X #>= Y, Z #=X| A = 1 ∧ A=X >

⇓

<1=Z, X #>= Y, Z #=X| A = 1 ∧ A=X ∧2=Y >

⇓

< X #>= Y, Z #=X| A = 1 ∧ A=X ∧2=Y ∧1=Z >

⇓

< ⊠| false>

First Derivation Second Derivation

<A#=1,max(1,2,1)| true>

⇓

<max(A,2,1)|A=1>

⇓ max(X,Y,Z) :- Y #>= X, Z #= Y

<A= X, 2 = Y, 1=Z, Y#>= X, Z #=Y| A = 1 >

⇓

< 2 = Y, 1=Z, Y #>= X, Z #=Y| A = 1 ∧ A=X >

⇓

<1=Z, Y #>= X, Z #=Y| A = 1 ∧ A=X ∧2=Y >

⇓

< Y #>= X, Z #=Y| A = 1 ∧ A=X ∧2=Y ∧1=Z >

⇓

< ⊠| false>

Fails!

8/20/2008

30

Example(3)

<factr(1,X) | true>

⇓ R2

<1 = N, X = N*F, N #>= 1, factr(N-1,F) |true>

⇓

< X = N*F, N #>= 1, factr(N-1,F) | 1 = N >

⇓

< N #>= 1, factr(N-1,F) | 1 = N ∧ X = N*F >

⇓

< factr(N-1,F) | 1 = N ∧ X = N*F∧ N ≥ 1>

⇓ R1

< N-1=0, F=1| 1 = N ∧ X = N*F∧ N ≥ 1 >

⇓

< F=1| 1 = N ∧ X = N*F∧ N ≥ 1∧ N-1=0 >

⇓

< ⊠| 1 = N ∧ X = N*F∧ N ≥ 1∧ N-1=0∧F=1 >

projecting onto the variables of the original
goal gives X=1

CLP(R) program

factr(0,1). %%R1

factr(N,N*F):- N #>=1, factr(N-1,F). %%R2

<factr(2,1) | true>

⇓ R1

<2= 0, 1= X|true>

⇓

< ⊠| false>

Successful derivation

Failed derivation

Role of the solver(1)

 Check if L∧c is satisfiable, knowing that c was satisfiable

  incremental constraint solving!

 The solver may be incomplete

 something may be unsatisfiable and the solver may not detect this

 gives pseudo-answers

 Identify a class of goals for which the solver is known to be complete

<Y= X * X, Y#<0 | true>

⇓

<Y#<0|Y=X*X>

⇓

< ⊠| Y=X*X ∧ Y<0>

successful derivation for the CLP(R) solver

Operational semantics confluence(1)

 Sources of non-determinism in derivations

1. choice of rule

2. choice of renaming

3. choice of literal

1. Different rules  (possibly) different answers

 For completeness, all rule must be considered

2. Renaming is harmless

 the solver does not take into account names of
variables

Operational semantics confluence(2)

3. Independence from the choice of literal selection

 Literal selection strategy: given a derivation,

returns a literal in the last goal

 may select different literals in same goal if occurring

more than once in the derivation

 Derivation is via a literal selections strategy S iff

all choices are performed through S

8/20/2008

31

When literal selection may cause trouble

 Literal selection influences the order of the constraints in the
constraint store

 such order may be crucial for the solver

 Example 1:

 CLP(R) program : p(Y):- Y#=1, Y#=2.

 Solver: ignoring the last primitive constraint in its argument

 solv(X=Y)  unknown

 solv(X=Y ∧Y=1)  unknown

 solv(X=Y ∧Y=1 ∧ Y=2)  unknown

 solve(Y=2)  unknown

 solve(Y=2 ∧Y=1)  unknown

 solve(Y=2 ∧Y=1 ∧ X=Y)  false

 left-to-right for goal p(X) : ∃Y(X=Y ∧Y=1 ∧Y=2) (unknown)

 right-to-left for goal p(X): ∃Y(Y=2 ∧Y=1 ∧X=Y) false

When literal selection may cause trouble

 Example 2:

 CLP(R) program : p(Y):- Y#=1, Y#=2.

 Solver: complete for all constraints with only 2 primitives,
unknown to all others

 solv(X=Y)  true

 solv(X=Y ∧Y=1)  true

 solv(X=Y ∧Y=1 ∧ Y=2)  unknown

 solve(Y=2)  true

 solve(Y=2 ∧Y=1)  false

 solve(Y=2 ∧Y=1 ∧ X=Y)  unknown

 left-to-right for goal p(X): ∃Y(X=Y ∧Y=1 ∧Y=2) unknown

 right-to-left for goal p(X):∃Y(Y=2 ∧Y=1) fails

 Not monotonic

Well-behaved solvers

 Solver solv is well-behaved for constraint domain C if for
any constraints c and c‟ in LC it is:

 Logical: solv(c) = solve(c‟) whenever ⊨c ↔c‟

 if the two constraints are logically equivalent independently of
the constraint domain, then the solver answers the same for both

 Monotonic: if solv(c)= false then solve(c‟)=false whenever
⊨c ←∃vars(c) c‟

 if the solver fails c then whenever c‟ contains more constraints it
fails also c‟

 Misbehavior Example 1: not logical

 Misbehavior Example 2: not monotonic

 Any complete solver is well-behaved

Independence of literal selection strategy

 Switching Lemma:

 Let

 S state

 L and L‟ literals in the goal of S

 solv well-behaved solver

 SS1 S‟ non-failed derivation obtained by solv with L selected first followed by L‟

 Then

 there is a derivation S  S2 S‟‟ obtained by solv with L‟ selected first followed by L

 S‟ and S” are identical up to reordering of their constraint components

 TH: Let

 solv well behaved solver

 P program

 G goal

 there is a derivation from G with answer c

 Then

 for any literal selection strategy S

 there is a derivation of the same length form G via S with answer a reordering of c

8/20/2008

32

Derivation tree

 Independence of literal selection  the solver can use a
single selection strategy

 Single strategy  collect all derivations in a single tree

 Derivation tree for goal G, program P and and selection
strategy S

 node: states

 root: <G|true>

 children of a node with state s1: states reachable from s1 given
strategy s

 different branches : different rules

 unique up to variable renaming

 derivation: path from root to leaf

 successful: <⊠|c> c not false leaf

 failed: <⊠|false> leaf

Example of derivation tree

CLP(R) program

factr(0,1). %%R1

factr(N,N*F):- N #>=1, factr(N-1,F). %%R2

<0=0, 2=1 | true>

<2= 1|0=0>

< ⊠| false>

<0=N, 2=N*F, N#>=1, factr(N-1,F)| true>

< 2=N*F, N#>=1, factr(N-1,F)| 0=N >

< N#>=1, factr(N-1,F)| 0=N ∧2=N*F >

< ⊠| false>

<factr(0,2)|true>

R1 R2

Left-most strategy

Possible outcomes of an execution

 The execution of a CL program can return:

 yes and an answer (obtained from the constraint store of the leaf in the
derivation tree)

 no

 A goal G finitely fails if

 it has a finite set of derivations

 they all fail

 Example: factr(0,2) finitely fails

 Finite failure is NOT independent of the literal choice, even if the solver is
well-behaved

 Fair selection strategy S: in every infinite derivation via S each literal in
the derivation is selected

 Example

 left-to right: unfair

 oldest first: fair

 TH: If the solver is well-behaved then finite failure is independent of fair
selection strategies

The semantics of success

 Each rule corresponds to a formula:

 Logical semantics of a CLP(C) program P

 theory obtained adding (the formulas corresponding to) the

rules of P to the constraint theory TC of the constraint domain

)(
~

,...,:
11 nn

LLALLA  
rule of a CLP program corresponding implication

max(X,Y,Z) :- X #>=Z, Z#=X.

max(X,Y,Z) :- Y #>= X, Z #= Y.))(),,max(.

))(),,max(.

YZXYZYXZYX

XZYXZYXZYX





CLP program conjunction of implications

8/20/2008

33

Logical Soundness and completeness(1)

 It is desirable for the operational semantics to be

sound w.r.t. the logical semantics

 Soundness: the answers returned by the operational

semantics logically imply the initial goal

 Thus, “goal G has answer c” means “if c holds, so

does G “

Logical Soundness of the semantics of success

 Logical soundness

 Let:

 TC: constraint theory for constraint domain C

 P: CLP(C) program

G goal with answer c

 then P,TC ⊨ c→G

Algebraic semantics for success

 Find a model for the program that is the intended interpretation of the
program

 Agree with the interpretation of the primitive constraint and function
symbols in constraint domain

 Extend the interpretation to all user-defined predicate symbols in P

 A C-interpretation of a CLP(C) program P, is an interpretation that agrees
with the domain of computation DC on the symbols in SC

 C-baseP ={p(d1,…,dn)|p n-ary user-defined predicate in P and di domain
element of DC }

 C-interpretation identified by the subset of the C-baseP which it makes true

 A C-model of a CLP(C) program P is a C-interpretation which is a model
of P

 lm(P,c): least (under subset ordering) C-model of a program P

 always exists

 usually chosen as “inteded” representation since it is the most conservative

 same as least Herbrand model as algebraic semantics for logic programs

Example of least model

CLP(R) program

factr(0,1). %%R1

factr(N,N*F):- N #>=1, factr(N-1,F). %%R2

Has an infinite number of real models, e.g.,

model 1: {factr(n,n!) | n∈{0,1,2,…} }∪{factr(n,0)| n∈{0,1,2,…} }

model 2: {factr(n,n!) | n∈{0,1,2,…}}

model 3: {factr(r,r‟)| r ∈R}

The least model is model 2

8/20/2008

34

Role of the least model

 If a goal is satisfiable in the least C-model it is so in all
models

 TH: let

 P CLP(C) program

 G goal

 σ valuation

 then

 P,DC ⊨σ G iff lm(P,C) ⊨σ G

 TH: let

 P CLP(C) program

 G goal

 then

 P,DC ⊨ ∃G iff lm(P,C) ⊨ ∃G
~ ~

Algebraic Soundness of the semantics of

success(1)

 Soundness w.r.t. the algebraic semantics: the

operational semantics only answers which are

solutions of the goal

 Let

P , CLP(C) program

G goal with answer c

 then lm(P,C) ⊨ c→G

Completeness of success semantics

 Algebraic and logical soundness ensure that the

operational semantics only returns answers which

are solutions of the goal

 Completeness: the operational semantics returns all

the solutions of a goal

Logical Completeness of success

 Logical completeness: the answers returned by the

operational semantics cover all of the constraints

which imply the goal

 Let:

 TC: constraint theory for constraint domain C

 P: CLP(C) program

G goal, c constraint such that P,TC ⊨ c→G

 then G has answers c1,…,cn such that

TC⊨c→(c1∨…∨ cn)

8/20/2008

35

Logical completeness of success

 Notice that more than one answer may be needed to
cover c (i.e. n>1 in some cases)

 Example:

 CLP(R) program:

 p(X):- X#>=2.

 p(X):- X#<=2.

 Consider Goal p(X)

 Then P,TReal ⊨ true→p(X)

 p(X) has answers c1=(X≥2) and c2=(X≤2)

 Both are needed to cover true

 TReal ⊨ true→(c1 v c2)

Algebraic completeness

 In order to show that the operational semantics is

complete w.r.t. the algebraic semantics we need to

introduce an additional semantics for CLP programs

that bridges the gap between the algebraic and

the operational semantics

Fixed Point Semantics(1)

 Based on the immediate consequence operator

 set of facts in a C-interpretation  set of facts
implied by the rules in the program

 captures Modus Ponens

 Generalizes the TP semantics for logic programs

 Immediate consequence function TP
C for CLP(C)

program P:

 I: C-interpretation of P

 σ: range over valuations for C

 then TP
C(I)={σ(A)| A:-L1,…,Ln rule in P s.t. I⊨σ

L1∧…∧Ln}

Fixed Point Semantics(2)

 Notice that:

 I⊨σ L1∧…∧Ln iff

 for each literal Li

 either Li primitive constraint s.t. C ⊨σ Li

 or Li user-defined predicate p(t1,…,tm) such that
p(σ(t1),…,σ(tm))∈I

 TP
C is continuous and monotonic on the complete

lattice P(C-baseP)

 it has a greatest and a least fixed point, gfp(TP
C)

and lfp(TP
C).

8/20/2008

36

Fixed Point semantics

 Kleene‟s fixpoint theorem

 the least fixpoint of F is the supremum of the ascending

Kleene chain of F

 ⊥ ≤F(⊥)≤F(F(⊥))≤…≤Fn(⊥)≤…

 lfp(F)=sup {Fn(⊥)| n ∈N}

 the greatest fixed point of F is the infimum of the

descending Kleene chain

⊤ ≥F(⊤)≥F(F(⊤))≥…≥Fn(⊤)≥…

 gfp(F)=inf ({Fn(⊥)| n ∈N}

C-models of a program P and TP
C

 Lemma: M C-model of program P iff M is a pre-

fixpoint of TP
C, that is, TP

C(M)⊆M

 Main result:

 let

 P, CLP(C) program

 then lm(P,C)=lfp(TP
C)

Algebraic completeness of the semantics

of success

 Algebraic completeness: the answers provided by the operational
semantics cover all solutions to the goal

 TH: Let

 P , CLP(C) program

 G goal

 θ evaluation such that lm(P,C)⊨θ G

 then G has answer c such that DC⊨θ c

 The proof uses lm(P,C)=lfp(TP
C)

 Soundess+Completeness: The solutions of the goal in the minimal
model are exactly the solutions to the constraints the operational
semantics returns as answers

 TH: Let

 P , CLP(C) program

 G goal with answers c1, c2,…

 Then lm(P,C)⊨ G ↔⋁i=1,…,∞ci

Semantics for finite failure

 A goal G can finitely fail

 the semantics for success does not work well with
finite failure

 In fact, there is always a C-model, the entire C-
base, in which every constraint is satisfiable

  new semantics based on the Clark completion

 captures the if-and-only-if nature of rules for defining
predicates

 rules should cover all the cases which make the
predicate true

8/20/2008

37

Clark completion

 The definition of n-ary predicate symbol p in the
program P is the formula:

 ∀X1 … ∀Xn p(X1,…,Xn)↔B1∨…∨Bm

 where each Bi

 corresponds to a rule p(t1,…,tn):-L1,…,Lk

 is of the form

 ∃Y1 … ∃Yj (X1=t1∧…∧Xn=tn ∧L1∧…∧Lk)

 Y1 … Yj variables in the original rule

 X1 ,…,Xn variables that do not appear in any rule

 If there is no rule with head p, we have

 ∀X1 … ∀Xn p(X1,…,Xn)↔false (∨∅)

 Clark-completion P*of a CLP program P: conjunction of
all the definitions of the user defined predicates in P

Example of Clark Completion(1)

 CLP program P:

 Clarke-completion P* of P:

 max(1,2,1) is a goal which finitely fails

 its negation is implied by the Clark completion

max(X,Y,Z) :- X #>=Y, Z#=X.

max(X,Y,Z) :- Y #>= X, Z #= Y.

∀P∀Q∀R max(P,Q,R) ↔ ∃X∃Y∃Z(P=X ∧Q=Y∧ R=Z ∧X

≥Y∧Z=X) ∨ ∃X∃Y∃Z(P=X ∧Q=Y∧ R=Z ∧Y ≥ X ∧Z= Y)

Example of Clark Completion(2)

 CLP program P:

 Clark-completion P* of P:

 factr(0,2) is a goal which finitely fails

 its negation is implied by the Clark completion

∀X∀Y factr(X,Y) ↔ (X=0 ∧Y=1) ∨
∃N∃F(X=N ∧ Y=N*F ∧ N ≥ 1 ∧ factr(N-1,F))

factr(0,1). %%R1

factr(N,N*F):- N #>=1, factr(N-1,F). %%R2

Models of a Clark completion

 Clark completion P* of program P captures the true
meaning of a program

 Thus, intended interpretation of a P is a C-
interpretation which is a model for P*.

 There may be more than one C-model for the Clark
completion

8/20/2008

38

Example of models of the Clark completion

program CLP(R) P

factr(0,1). %%R1

factr(N,N*F):- N #>=1, factr(N-1,F). %%R2

Clark completion P* of P

Has an infinite number of real-interpretations, e.g.,

I1: {factr(n,n!) | n∈{0,1,2,…} }∪{factr(n,0)| n∈{0,1,2,…} }

I2: {factr(n,n!) | n∈{0,1,2,…}}

I3: {factr(r,r‟)| r ∈R}

Only I2 is a R-model of the Clark completion

I1,I2 and I3 are all R-models given the semantics of success

∀X∀Y factr(X,Y) ↔ (X=0 ∧Y=1) ∨
∃N∃F(X=N ∧ Y=N*F ∧ N ≥ 1 ∧ factr(N-1,F))

Clark-completion and fixed points

 TH: Let

 P CLP(C) program

 P* Clark-completion

 TP
C immediate consequence operator

 then

 I is a model of P* iff it is a fixpoint of TP
C

 Relation between the algebraic semantics of the completion and the
fixpoint semantics

 TH: Let

 P, P*, TP
C as above

 gm(P*,C) the greatest C-model of P*

 lm(P*,C) the least C-model of P*

 Then

 lm(P*,C)=lfp(TP
C)=lm(P,C)

 gm(P*,C)=gfp(TP
C)

Modeling success and failure

 The semantics based on the Clark-completion allows to
model success

 TH: Let

 TC: constraint theory of constraint domain C

 P: CLP(C) program

 G goal

 Then

 P*,TC⊨∃G iff lm(P*,C) ⊨∃G iff lm(P,C) ⊨∃G iff P,TC⊨∃G

 The semantics based on the Clark-completion allows to
model failure

 TH: Let

 TC: constraint theory of constraint domain C

 P: CLP(C) program

 G goal

 Then

 P*,TC⊨¬∃G iff gm(P*,C) ⊨¬∃G

~ ~

~

~

~

~

Results for the semantics of success

continue to hold

1. TH: Let P be a CLP(C) program. Then TC ⊨P*→ P

2. TH: Let P be a CLP(C) program. Then P,TC ⊨c→ G
then P*,TC ⊨c→ G

3. TH: Let P be a CLP(C) program, G goal with
answer c. P*,TC ⊨c→ G

4. TH: Let P be a CLP(C) program. Then P*,TC ⊨c→
G then P,TC ⊨c→ G

5. TH: Let P be a CLP(C) program, G a goal and c a
constraint. If P*,TC ⊨c→ G then G has answers
c1,…, cn such that TC ⊨c→ (c1 ∨…∨ cn)

8/20/2008

39

Logical soundness for finite failure

 Finitely evaluable goal: it has no infinite derivations

 TH.: Let

 TC theory

 P CLP(C) program

 G finitely evaluable goal with answers c1,…,cn.

 Then
 P*,TC⊨ G↔ (c1∨ …∨ cn)

 TH. (special case of the one above when there are no
answers) Let

 TC theory

 P CLP(C) program

 G finitely failing goal

 Then

 P*,TC⊨ ¬∃G
~

Algebraic soundness of finite failure

 Follows immediately from logical soundness for finite
failure since any intended interpretation of the
constraint domain is a model of the constraint theory

 TH: Algebraic soundness

 Let

 P CLP(C) program

 G finitely failing goal

 Then

 P*,DC ⊨ ¬∃G and

 gm(P*,C) ⊨ ¬∃G

~

~

Logical completeness of finite failure

 Additional assumptions

 theory-complete solver

 fair literal selections strategy

 THM (logical completeness) Let
 TC: constraint theory of constraint domain C

 P: CLP(C) program

G goal

 Then,

 if P*,TC⊨¬∃G

 then G finitely fails

~

Algebraic completeness for finite failure:

assumptions

 Solver should agree with the domain of computation
on the satisfiability of constraints should be
complete

 Complete solvertheory satisfaction-complete

 satisfaction complete: able to determine for each
constraint if it is satisfiable or not

 Completeness of the solver and fair literal selections
not sufficient for algebraic completeness

 Finitely evaluable goal G for a program P: a goal
with no infinite derivations

8/20/2008

40

Example

 CLP(Term) program P

 q(a):- p(X).

 p(f(X)) :-p(X)

 Clark completion P*

 ∀Y(p(Y)) ↔∃X (Y=f(X)∧p(X))) ∧∀Y(q(Y)↔∃X(Y=a ∧p(X)))

 The only Term-model of P* is ∅ but q(a) does finitely fail

with a complete solver for any selection rule

Algebraic completeness of finite failure

 Finitely evaluable goal G for a program P: a goal
with no infinite derivations

 THM(Algebraic completeness of Finite Failure)Let

 P, CLP(C) program

 G finitely evaluable goal

 solv complete solver

 TC satisfaction complete

 fair selection strategy

 Then
 If lm(P*,C) ⊨¬∃G
 then G finitely fails

~

~

Extended semantics

 Many extensions have been proposed

 Negation

Optimization

…many others

CLP formulation of CSPs

 Formulation of standard CSPs (where constraints
are represented by sets of allowed tuples) inherited
from LP

 CLP provides

 equality, disequality

 standard mathematical functions and relations

 global constraints

 alldifferent

 cumulative

8/20/2008

41

Example

1. Constraint max(X,Y,Z): (X≥Y ∧Z=X)∨ (Y≥X∧ Z=Y)

Corresponding CLP program

2. Constraint: “X is an even number”, ∃Y.(X=2 x Y)

Corresponding CLP program: even(X) :- X#=2*Y.

Not representable extensionally

Use of local variables which do not need an initial
domain

max(X,Y,Z) :- X #>=Z, Z#=X.

max(X,Y,Z) :- Y #>= X, Z #= Y.

CLP formulation of CSPs

 Allows for the use of local variables

 Allows encapsulation of a CSP as a constraint and

making any of its variables local

 Building complex CSPs from simple ones

 Recursive definition of constraints

Important features of CLP

 CLP allows for local variables and recursive

definition

 can express problem with unbounded number of

variables

 Representing solutions without fixing all the

variables

 interactive problem solving

 partial solution observation during search

Important features of CLP(2)

 Allows the programmer to define search strategies

 expressing the design model

 backtracking (inherited from LP) combined with reflection
predicates

 Allows the programmer to (partially) control how the
underlying constraint solver works

 disjunction

 reification

 indexicals

 constraint handling rules

 generalized propagation

8/20/2008

42

CLP for design modeling

 In CLP languages

 constraints generated dynamically

 satisfaction tests are performed at intermediate stages

 such tests influence future execution and constraint
generation

  incremental solvers

 solver current state: constraints encountered so far during
the derivation

 new constraint added  revise current state and test its
satisfiability

 if unsatifiability is detected  return to the last state with
unexplored child states (state recovery)

 nothing new: it‟s backtracking!

Incremental solvers

 Prolog II  incremental solver for equations and

disequations

 CLP(R)  incremental simplex

 CHIP  Backtracking + AI techniques

(propagation)

Bibliography for CP

 Handbook of Constraint programming, Rossi, van Beek
and Walsh editors, Elsevier 2006.

 K. R. Apt, Principles of Constraint Programming,
Cambridge University Press, 2003.

 R. Dechter, Constraint processing, Morgan Kaufmann,
2003

 A. Mackworth, Consistency in networks of relations,
Artificial Intelligence, 8, 1, 1977.

 A. Mackworth, E. Freuder, The complexity of some
polynomial network consistency algorithms for
constraint satisfaction problems, Artificial
Intelligence, 25, 1985.

 U. Montanari, Networks of constraints: fundamental
properties and applications to picture processing,
Information Science, 7, 66, 1974

Bibliography for CLP

main

references for

this tutorial

 Constraint Logic Programming: Chapter 12 of handbook of
Constraint programming, Rossi, van Beek and Walsh editors,
Elsevier 2006.

 J. Jaffar, M. J. Maher, K. Marriott and P. J. Stuckey, The
Semantics of Constraint Logic Programs, Journal of Logic
Programming, volume 37, number 1-3, pages 1-46, 1998.

 K.R. Apt, M. H. van Emden: Contributions to the Theory of Logic
Programming. J. ACM 29(3): 841-862 (1982)

 A. M. Cheadle W. Harvey, A. J. Sadler, J. Schimpf K. Shen M. G.
Wallace, ECLiPSe: An Introduction, Tech. Report IC-PARC 03 1

 Alain Colmerauer: An Introduction to Prolog III. Commun. ACM
33(7): 69-90 (1990)

 M. Dincbas, P. Van Hentenryck, Helmut Simonis, A. Aggoun, T.
Graf, F. BerthierThe Constraint Logic Programming Language
CHIP. FGCS 1988: 693-702

 T. W. Frühwirth, A. Herold, V. Küchenhoff, T. Le Provost, P. Lim, E.
Monfroy, M.Wallace: Contraint Logic Programming - An Informal
Introduction. Logic Programming Summer School 1992: 3-35

Other

important

references

8/20/2008

43

Bibliography for CLP

Other

important

references

ctd.

 M. Gabbrielli, G. Levi: Modeling Answer Constraints in Constraint
Logic Programs. ICLP 1991: 238-252

 J. Jaffar, J-L. Lassez: Constraint Logic Programming. POPL 1987:
111-119.

 J.Jaffar, M. J. Maher: Constraint Logic Programming: A Survey. J.
Log. Program. 19/20: 503-581 (1994)

 J. Jaffar, S.Michaylov, P. J. Stuckey, R. H. C. Yap: The CLP(R)
Language and System. ACM Trans. Program. Lang. Syst. 14(3):
339-395 (1992)

 K. Marriott, P. J. Stuckey: Semantics of Constraint Logic Programs
with Optimization. LOPLAS 2(1-4): 197-212, 1993.

 F. Rossi: Constraint (Logic) Programming: A Survey on Research
and Applications. New Trends in Constraints 1999: 40-74

 H. Simonis Tutorial on constraint logic programming. On the web.

 P.Van Hentenryck, H. Simonis, M. Dincbas: Constraint Satisfaction
Using Constraint Logic Programming. Artif. Intell. 58(1-3): 113-
159 (1992)

