

Continuous Constraints: An Overview

Martine Ceberio

University of Texas at El Paso

Logic Programming and Computational Logic

New Mexico State University

- 6 Continuous constraints: definition and solving process
- 6 An example of under and over-constrained problems
- 6 Important notions
- 6 Some research directions
- 6 Conclusion

- 6 Continuous constraints: definition and solving process
- 6 An example of under and over-constrained problems
- 6 Important notions
- 6 Some research directions
- 6 Conclusion

• Continuous constraints are...

• Continuous constraints are... **CONSTRAINTS**

- Continuous constraints are... **CONSTRAINTS**
- Continuous constraints define RELATIONS between variables

 domains of variables: intervals = continuous ranges of possible values
 constraints restrict the possible combinations of values = define a subset

 of the search space

- Continuous constraints are... CONSTRAINTS
- Continuous constraints define RELATIONS between variables

 domains of variables: intervals = continuous ranges of possible values
 constraints restrict the possible combinations of values = define a subset

 of the search space
- CSP or Constraint systems are defined by:
 - \star a finite set of variables
 - \star a finite set of domains: continuous ranges of possible values
 - \star a finite set of continuous constraints

- Continuous constraints are... CONSTRAINTS
- Continuous constraints define RELATIONS between variables

 domains of variables: intervals = continuous ranges of possible values
 constraints restrict the possible combinations of values = define a subset

 of the search space
- CSP or Constraint systems are defined by:
 - \star a finite set of variables
 - \star a finite set of domains: continuous ranges of possible values
 - \star a finite set of continuous constraints
- A solution of a constraint system is: a complete assignment of all the variables, satisfying all constraints at the same time

How to solve continuous

• Enumeration is not an option...

Summer School NMSU, 27 July 2008 - p. 4/6

- Enumeration is not an option...
- Algorithms based on intervals (as detailed later)

- Enumeration is not an option...
- Algorithms based on intervals (as detailed later)
 - * Branch and Bound (B&B):

http://www-sop.inria.fr/coprin/logiciels/ALIAS/Movie/film_license.mpg

 \star More sophisticated consistency algorithms: Box / Hull-consistencies and

their combinations

result in Branch and Prune algorithms (B&P)

Solving algorithm: a skeleton

Suppose you solve (C,X,D)

 $S \leftarrow Initial \ domain$ // S is the store of domains to be visited Solutions $\leftarrow \emptyset$ while (S $\neq \emptyset$) { $take \ D \ out \ of \ S \qquad // \ usually \ \mathsf{D} \ is \ the \ first \ available \ domain$ $D' \leftarrow narrow(D,C)$ // apply a consistency technique on D if $(D' \neq \emptyset)$ and (D' is still too large) then **split(D'**, D_1 , D_2) // splitting in halves is not compulsory $\mathbf{S} \leftarrow \mathbf{S} \cup \{D_1, D_2\}$ else store D' in Solutions return Solutions // What does Solutions contain?

Solving algorithm: narrow(D,C)

Here we look at the details of narrow($D_1 \times \cdots \times D_n, \{c_1, \ldots, c_p\}$)

 $\mathbf{S} \leftarrow \{c_1, \ldots, c_p\}$ // S is the store of constraints, no duplicates while (S $\neq \emptyset$) { take c out of S // usually c is the first available constraint for all $i \in \{1, ..., n\}$ { $D'_i \leftarrow \text{consistency}(D_i, \mathbf{c})$ // apply a consistency technique on D_i w.r.t. c if $(D'_i = \emptyset)$ then return \emptyset if $(D'_i \neq D_i)$ then $\mathbf{S} \leftarrow \mathbf{S} \cup \{c_i, j \in J\}$ // c_j are the constraints that share variable i with c return $\times_{1 \leq i \leq n} D'_i$ // What is $\times_{1 \leq i \leq n} D'_i$?

- Continuous constraints: very similar in definition to discrete constraints
- Solving algorithms: quite different to ensure completeness, but similar structures
- In the following: discussion of different flavors of constraint solving

- 6 Continuous constraints: definitions and solving process
- 6 An example of under and over-constrained problems
- 6 Important notions
- 6 Some research directions
- 6 Conclusion

- 6 Continuous constraints: definitions and solving process
- 6 An example of under and over-constrained problems
- 6 Important notions
- 6 Some research directions
- 6 Conclusion

Example (1/3) Problem to be solved: y(t) = f(x, t)

Summer School NMSU. 27 July 2008 – p. 9/6

Problem to be solved: y(t) = f(x, t)

- Knowing: y, t, the model (f)
- *Given:* measurements \check{y}_i of $f(x, t_i)$ at instants t_i

Find:

Problem to be solved: y(t) = f(x, t)

Knowing: y, t, the model (f)

Given: measurements \check{y}_i of $f(x, t_i)$ at instants t_i

Find: parameter *x*

Classical solving method: *least squares* $\min_x \sum_{i=1}^n (\check{y}_i - f(x, t_i))^2$

Taking inaccuracy into account

 \mathbf{I} intervals $[\check{y}_i - e_i, \check{y}_i + e_i]$ at given $t_i, i = 1, \dots, 9$

Constraint system to be solved:

Taking inaccuracy into account

Taking inaccuracy into account

Taking inaccuracy into account

Taking inaccuracy into account

Under-constrained problem

\Downarrow

Definition of an appropriate criterion to be optimized

i.e., discrimination over the solution set

Taking inaccuracy into account

Under-constrained problem

\downarrow

Definition of an appropriate criterion to be optimized

i.e., discrimination over the solution set

\equiv

Constrained global optimization

Taking erroneous measurements into account

Summer School NMSU, 27 July 2008 - p. 11/6

Example (3/3)

Ex. deletion of the measure at t_5

Summer School NMSU, 27 July 2008 - p. 11/

- 6 Continuous constraints: definitions and solving process
- 6 An example of under and over-constrained problems
- 6 Important notions
- 6 Some research directions
- 6 Conclusion

- 6 Continuous constraints: definitions and solving process
- 6 An example of under and over-constrained problems
- Important notions
 - Intervals
 - Global optimization
 - Soft constraints
- 6 Some research directions
- 6 Conclusion

Important notions

Intervals

Global optimization

Soft constraints

Real intervals

Definition 2 (Real interval [Moore, 1966]). A real interval x is a closed and connected set of real numbers, noted [a, b].

$$\boldsymbol{x} = \{x \in \mathbb{R} \mid a \leqslant x \leqslant b\}$$
 $\underline{\boldsymbol{x}} = a$ $\overline{\boldsymbol{x}} = b$

 \mathbb{R} is the set of all real intervals.
Real intervals

Definition 2 (Real interval [Moore, 1966]). A real interval x is a closed and connected set of real numbers, noted [a, b].

$$\boldsymbol{x} = \{ x \in \mathbb{R} \mid a \leqslant x \leqslant b \}$$
 $\underline{\boldsymbol{x}} = a$ $\overline{\boldsymbol{x}} = b$

 \mathbb{R} is the set of all real intervals.

Some useful notions.

Width of x: $w(x) = \overline{x} - \underline{x}$ Interval hull of $\rho \subset \mathbb{R}$: $\operatorname{Hull}(\rho) = [\inf \rho, \sup \rho] = \Box \rho$

Definition 3 (Interval arithmetic (IA)). Usual arithmetic-like arithmetic where

handled items are intervals (and no longer reals)

Real interval arithmetic

Definition 3 (Interval arithmetic (IA)). Usual arithmetic-like arithmetic where

handled items are intervals (and no longer reals)

General formula of IA. Let $\diamond \in \{+, -, \times, /\}$ $\boldsymbol{x} \diamond \boldsymbol{y} = \Box \ \{x \diamond y \mid x \in \boldsymbol{x}, \ y \in \boldsymbol{y}\}$

Real interval arithmetic

Definition 3 (Interval arithmetic (IA)). Usual arithmetic-like arithmetic where

handled items are intervals (and no longer reals)

General formula of IA. Let $\diamond \in \{+, -, \times, /\}$ $\boldsymbol{x} \diamond \boldsymbol{y} = \Box \ \{x \diamond y \mid x \in \boldsymbol{x}, \ y \in \boldsymbol{y}\}$

Properties.

- associativity
- commutativity
- sub-distributivity: $x \times (y+z) \subset x \times y + x \times z$

→ interval arithm. is expression-dependent

= the DEPENDENCY PROBLEM

Real interval arithmetic

Definition 3 (Interval arithmetic (IA)). Usual arithmetic-like arithmetic where

handled items are intervals (and no longer reals)

General formula of IA. Let $\diamond \in \{+, -, \times, /\}$ $\boldsymbol{x} \diamond \boldsymbol{y} = \Box \{x \diamond y \mid x \in \boldsymbol{x}, y \in \boldsymbol{y}\}$

Properties.

- associativity ~> No longer valid!
- commutativity
- sub-distributivity: $x \times (y+z) \subset x \times y + x \times z$

→ interval arithm. is expression-dependent

= the DEPENDENCY PROBLEM

IA Principle: provides outer approximations of real quantities being looked for

→ used for the evaluation of the ranges of functions

Summer School NMSU, 27 July 2008 - p. 16/6

Interval extensions

IA Principle: provides outer approximations of real quantities being looked for \[arrow used for the evaluation of the ranges of functions]

Definition 5 (Interval extension). Let f be a real function defined over $E \subset \mathbb{R}^n$. Any interval function ϕ is an interval extension of f provided that: $\forall \boldsymbol{x} \subset \mathbb{R}^n$, $\{f(x) \mid x \in \boldsymbol{x} \cap E\} \subset \phi(\boldsymbol{x})$.

Interval extensions

IA Principle: provides outer approximations of real quantities being looked for ~> used for the evaluation of the **ranges of functions**

Definition 5 (Interval extension). Let f be a real function defined over $E \subset \mathbb{R}^n$. Any interval function ϕ is an interval extension of f provided that: $\forall \boldsymbol{x} \subset \mathbb{R}^n$, $\{f(x) \mid x \in \boldsymbol{x} \cap E\} \subset \phi(\boldsymbol{x})$.

Examples. possibility of an infinite number of interval extensions

rough extension: $\phi_f: x \mapsto [-\infty, +\infty]$ totally uselessideal extension: $\phi_f: x \mapsto \Box\{f(x) \mid x \in x\}$ extremely rarenatural extension: $\phi_f: x \mapsto f(x)$ syntactic interval extension

Global optimization

Definition 1 (Unconstrained and constrained global optimization).

Optimality conditions [Fritz, 1948] [Hiriart-Urruty, 1995&1996]

• Optimization problem ~>> constraint satisfaction problem

Optimality conditions [Fritz, 1948] [Hiriart-Urruty, 1995&1996]

Optimization problem ~> constraint satisfaction problem

ex. for unconstrained optimization, slope = 0

Optimality conditions [Fritz, 1948] [Hiriart-Urruty, 1995&1996]

- Optimization problem ~> constraint satisfaction problem
 - *ex.* for unconstrained optimization, slope = 0
- \rightsquigarrow not necessarily an optimum, nor a global one (except if the problem is convex)
- → necessary but not sufficient conditions (Lagrange, Fritz-John, Karush-Kuhn-Tucker)

Optimality conditions [Fritz, 1948] [Hiriart-Urruty, 1995&1996]

- Optimization problem ~> constraint satisfaction problem
- Penalty-based methods [Joines & Houck, 1994] [Michalewicz & al., 1995&1996]
 - Constrained optimization problem ~> unconstrained optimization problem

Optimality conditions [Fritz, 1948] [Hiriart-Urruty, 1995&1996]

Optimization problem ~> constraint satisfaction problem

Penalty-based methods [Joines & Houck, 1994] [Michalewicz & al., 1995&1996]

Constrained optimization problem ~> unconstrained optimization problem

Optimality conditions [Fritz, 1948] [Hiriart-Urruty, 1995&1996]

- Optimization problem ~> constraint satisfaction problem
- Penalty-based methods [Joines & Houck, 1994] [Michalewicz & al., 1995&1996]
 - Constrained optimization problem ~> unconstrained optimization problem
 - \rightsquigarrow number of iterations uncontrolled, optimization process to be performed
 - \rightsquigarrow no guarantee about the globality of the solutions

Optimality conditions [Fritz, 1948] [Hiriart-Urruty, 1995&1996]

Optimization problem ~> constraint satisfaction problem

Penalty-based methods [Joines & Houck, 1994] [Michalewicz & al., 1995&1996]

● Constrained optimization problem ~→ unconstrained optimization problem *Meta-heuristics* [Goldberg, 1989] [Michalewicz, 1996]

• genetic, evolutionary algorithms, tabu search, simulated annealing, clustering, etc.

Optimality conditions [Fritz, 1948] [Hiriart-Urruty, 1995&1996]

Optimization problem ~> constraint satisfaction problem

Penalty-based methods [Joines & Houck, 1994] [Michalewicz & al., 1995&1996]

Constrained optimization problem → unconstrained optimization problem
 Meta-heuristics [Goldberg, 1989] [Michalewicz, 1996]

• genetic, evolutionary algorithms, tabu search, simulated annealing, clustering, etc.

↓ Incomplete methods

i.e., no guarantee about the solution set: minimum, globality, completeness

Objective: a complete method = globality, and no loss of solutions

Objective: a complete method = globality, and no loss of solutions

Continuation methods [Chen & Harker, 1993]

• series of auxiliary problems leading continuously to the initial problem

to be solved

 \star global information, completeness

Objective: a complete method = globality, and no loss of solutions

Continuation methods [Chen & Harker, 1993]

- series of auxiliary problems leading continuously to the initial problem to be solved
- \star global information, completeness
- [†] uneffective for high-order problems, and apply only to polynomial expressions

Objective: a complete method = globality, and no loss of solutions

Continuation methods [Chen & Harker, 1993]

- series of auxiliary problems leading continuously to the initial problem to be solved
- \star global information, completeness
- [†] uneffective for high-order problems, and apply only to polynomial expressions

Interval methods [Hansen, 1992] [Kearfott, 1996]

- real quantities bounded by intervals, controlled rounding-errors
- \star global information, completeness

Objective: a complete method = globality, and no loss of solutions

Continuation methods [Chen & Harker, 1993]

- series of auxiliary problems leading continuously to the initial problem to be solved
- \star global information, completeness
- [†] uneffective for high-order problems, and apply only to polynomial expressions

Interval methods [Hansen, 1992] [Kearfott, 1996]

- real quantities bounded by intervals, controlled rounding-errors
- \star global information, completeness
- † more expensive computations (higher complexity)
- loss of accuracy

Classical algorithms. Branch-and-Bound / Prune algorithms

[Hansen, 1992] [Kearfott, 1996] [VanHentenryck et al., 1995&1997] = upper-bound update and domain tightening processes

Classical algorithms. Branch-and-Bound / Prune algorithms

[Hansen, 1992] [Kearfott, 1996] [VanHentenryck et al., 1995&1997]

2 stable traits: (interval) evaluation and constraint solving

Classical algorithms. Branch-and-Bound / Prune algorithms

[Hansen, 1992] [Kearfott, 1996] [VanHentenryck et al., 1995&1997] *2 stable traits: (interval)* evaluation and constraint solving Interval evaluation.

Classical algorithms. Branch-and-Bound / Prune algorithms

[Hansen, 1992] [Kearfott, 1996] [VanHentenryck et al., 1995&1997]
2 stable traits: (interval) evaluation and constraint solving

Interval evaluation.

Classical algorithms. Branch-and-Bound / Prune algorithms

[Hansen, 1992] [Kearfott, 1996] [VanHentenryck et al., 1995&1997] *2 stable traits: (interval)* evaluation and constraint solving Interval evaluation.

Classical algorithms. Branch-and-Bound / Prune algorithms

[Hansen, 1992] [Kearfott, 1996] [VanHentenryck et al., 1995&1997]

2 stable traits: (interval) evaluation and constraint solving

Interval evaluation.

Classical algorithms. Branch-and-Bound / Prune algorithms

[Hansen, 1992] [Kearfott, 1996] [VanHentenryck et al., 1995&1997] *2 stable traits: (interval)* evaluation and constraint solving Interval evaluation.

overestimation = dependency problem

Summer School NMSU, 27 July 2008 - p. 20/6

Classical algorithms. Branch-and-Bound / Prune algorithms

[Hansen, 1992] [Kearfott, 1996] [VanHentenryck et al., 1995&1997]

2 stable traits: (interval) evaluation and constraint solving

Interval evaluation.

dependency problem

Classical algorithms. Branch-and-Bound / Prune algorithms

[Hansen, 1992] [Kearfott, 1996] [VanHentenryck et al., 1995&1997]

2 stable traits: (interval) evaluation and constraint solving

Interval evaluation.

dependency problem

Classical algorithms. Branch-and-Bound / Prune algorithms

[Hansen, 1992] [Kearfott, 1996] [VanHentenryck et al., 1995&1997]

2 stable traits: (interval) evaluation and constraint solving

Interval evaluation.

dependency problem

Classical algorithms. Branch-and-Bound / Prune algorithms

[Hansen, 1992] [Kearfott, 1996] [VanHentenryck et al., 1995&1997]

2 stable traits: (interval) evaluation and constraint solving

Interval evaluation.

dependency problem

Classical algorithms. Branch-and-Bound / Prune algorithms

[Hansen, 1992] [Kearfott, 1996] [VanHentenryck et al., 1995&1997]

2 stable traits: (interval) evaluation and constraint solving

Interval evaluation.

dependency problem

Classical algorithms. Branch-and-Bound / Prune algorithms

[Hansen, 1992] [Kearfott, 1996] [VanHentenryck et al., 1995&1997]

2 stable traits: (interval) evaluation and constraint solving
Interval evaluation. dependency problem

Constraint solving.

 \downarrow

Classical algorithms. Branch-and-Bound / Prune algorithms

[Hansen, 1992] [Kearfott, 1996] [VanHentenryck et al., 1995&1997]

2 stable traits: (interval) evaluation and constraint solving

Interval evaluation. dependency problem

Constraint solving.

locality of reasonings

Definition 6 (Soft constraint). Given a constraint c over a set of variables V, defining a relation ρ . A soft constraint \hat{c} resulting from c is a constraint defining a relation $\hat{\rho}$ over V s.t. $\rho \subset \hat{\rho}$.

Definition 6 (Soft constraint). Given a constraint c over a set of variables V, defining a relation ρ . A soft constraint \hat{c} resulting from c is a constraint defining a relation $\hat{\rho}$ over V s.t. $\rho \subset \hat{\rho}$.

Definition 6 (Soft constraint). Given a constraint c over a set of variables V, defining a relation ρ . A soft constraint \hat{c} resulting from c is a constraint defining a relation $\hat{\rho}$ over V s.t. $\rho \subset \hat{\rho}$.

Definition 6 (Soft constraint). Given a constraint c over a set of variables V, defining a relation ρ . A soft constraint \hat{c} resulting from c is a constraint defining a relation $\hat{\rho}$ over V s.t. $\rho \subset \hat{\rho}$.

Definition 6 (Soft constraint). Given a constraint c over a set of variables V, defining a relation ρ . A soft constraint \hat{c} resulting from c is a constraint defining a relation $\hat{\rho}$ over V s.t. $\rho \subset \hat{\rho}$.

Definition 6 (Soft constraint). Given a constraint c over a set of variables V, defining a relation ρ . A soft constraint \hat{c} resulting from c is a constraint defining a relation $\hat{\rho}$ over V s.t. $\rho \subset \hat{\rho}$.

Definition 6 (Soft constraint). Given a constraint c over a set of variables V, defining a relation ρ . A soft constraint \hat{c} resulting from c is a constraint defining a relation $\hat{\rho}$ over V s.t. $\rho \subset \hat{\rho}$.

Hierarchical CSP [Borning et al., 1988,1989&1992] [Wilson, 1993]

the set of constraints is ordered (hierarchical)

objective: determining the instanciations satisfying the hierarchy

Hierarchical CSP [Borning et al., 1988,1989&1992] [Wilson, 1993]

- the set of constraints is ordered (hierarchical)
 - objective: determining the instanciations satisfying the hierarchy
- \star preferences over the constraints and over the search space

Hierarchical CSP [Borning et al., 1988,1989&1992] [Wilson, 1993]

 \star preference over the constraints and over the search space

Partial CSP [Freuder & Wallace, 1995]

• given P to be solved, and some distance d, (\mathcal{P}, d) ordered set of problems objective: determining *the closest problem* P' and solving it

Hierarchical CSP [Borning et al., 1988,1989&1992] [Wilson, 1993]

 \star preference over the constraints and over the search space

Partial CSP [Freuder & Wallace, 1995]

- given P to be solved, and some distance d, (\mathcal{P}, d) ordered set of problems objective: determining *the closest problem* P' and solving it
- \star preference over the space of problems

Hierarchical CSP [Borning et al., 1988,1989&1992] [Wilson, 1993]

 \star preference over the constraints and over the search space

Partial CSP [Freuder & Wallace, 1995]

 \star preference over the space of problems

Semiring-based CSP [Bistarelli, Montanari & Rossi, 1997&1999]

 each instanciation x is valuated w.r.t. each constraint valuations are combined, and express the quality of x objective: determining the best quality instanciation

Hierarchical CSP [Borning et al., 1988,1989&1992] [Wilson, 1993]

 \star preference over the constraints and over the search space

Partial CSP [Freuder & Wallace, 1995]

 \star preference over the space of problems

Semiring-based CSP [Bistarelli, Montanari & Rossi, 1997&1999]

• each instanciation x is valuated w.r.t. each constraint valuations are combined, and express the quality of x objective: determining *the best quality instanciation*

 \star preference over the search space

Hierarchical CSP [Borning et al., 1988,1989&1992] [Wilson, 1993]

 \star preference over the constraints and over the search space

Partial CSP [Freuder & Wallace, 1995]

 \star preference over the space of problems

Semiring-based CSP [Bistarelli, Montanari & Rossi, 1997&1999]

• each instanciation x is valuated w.r.t. each constraint valuations are combined, and express the quality of x objective: determining *the best quality instanciation*

 \star preference over the search space

the *qualitative* aspect is drowned out by the (*quantitative*) combination

Hierarchical CSP [Borning et al., 1988,1989&1992] [Wilson, 1993]

 \star preference over the constraints and over the search space

Partial CSP [Freuder & Wallace, 1995]

 \star preference over the space of problems

Semiring-based CSP [Bistarelli, Montanari & Rossi, 1997&1999]

 \star preference over the search space

Valued CSP [Bistarelli, Montanari & Rossi, 1997&1999]

 constraints are valuated (weighted) instanciations are valued through the constraint valuation objective: determining *the best quality instanciation* equivalent to SCSP

Hierarchical CSP [Borning et al., 1988,1989&1992] [Wilson, 1993]

 \star preference over the constraints and over the search space

Partial CSP [Freuder & Wallace, 1995]

 \star preference over the space of problems

Semiring-based CSP [Bistarelli, Montanari & Rossi, 1997&1999]

 \star preference over the search space

Valued CSP [Bistarelli, Montanari & Rossi, 1997&1999]

- constraints are valuated (weighted) instanciations are valued through the constraint valuation objective: determining *the best quality instanciation* equivalent to SCSP
- \star a kind of preferences

Hierarchical CSP [Borning et al., 1988,1989&1992] [Wilson, 1993]

 \star preference over the constraints and over the search space

Partial CSP [Freuder & Wallace, 1995]

 \star preference over the space of problems

Semiring-based CSP [Bistarelli, Montanari & Rossi, 1997&1999]

 \star preference over the search space

Valued CSP [Bistarelli, Montanari & Rossi, 1997&1999]

 \star equivalent to SCSP

Fuzzy CSP [Dubois, Fargier & Prade, 1996] [Moura Pires, 2000]

• integrated in the SCSP framework

Hierarchical CSP [Borning et al., 1988,1989&1992] [Wilson, 1993]

 \star preference over the constraints and over the search space

Partial CSP [Freuder & Wallace, 1995]

 \star preference over the space of problems

Semiring-based CSP [Bistarelli, Montanari & Rossi, 1997&1999]

 \star preference over the search space

Valued CSP [Bistarelli, Montanari & Rossi, 1997&1999]

 \star equivalent to SCSP

Fuzzy CSP [Dubois, Fargier & Prade, 1996] [Moura Pires, 2000]

integrated in the SCSP framework
 ex: priorities, discrimin (leximin)

Hierarchical CSP [Borning et al., 1988,1989&1992] [Wilson, 1993]

 \star preference over the constraints and over the search space

Partial CSP [Freuder & Wallace, 1995]

 \star preference over the space of problems

Semiring-based CSP [Bistarelli, Montanari & Rossi, 1997&1999]

 \star preference over the search space

Valued CSP [Bistarelli, Montanari & Rossi, 1997&1999]

 \star equivalent to SCSP

Fuzzy CSP [Dubois, Fargier & Prade, 1996] [Moura Pires, 2000]

- integrated in the SCSP framework
- \star allows to express priorities and preferences

There is room for improvement:

- 6 the dependency problem of interval computations;
- 6 the locality of reasonings arising in constraint solving;

In the following, we also present:

- 6 a unifying framework for modeling and solving soft constraints.
- and a way to address some problems in distributed constraint solving

Outline of the presentation

- 6 Continuous constraints: definitions and solving process
- 6 An example of under and over-constrained problems
- 6 Important notions
- 6 Some research directions
- 6 Conclusion

Outline of the presentation

- 6 Continuous constraints: definitions and solving process
- 6 An example of under and over-constrained problems
- 6 Important notions
- 6 Some research directions
 - Interval evaluation: the dependency problem
 - Constraint solving: the locality of reasonings
 - Soft constraints: a unifying hard framework
 - Distributed constraints: speculating to solve faster
- 6 Conclusion

Some research directions

The dependency problem

The locality of reasonings A unifying framework for soft constraints Distributed constraints: speculations

1. The dependency problem

The workings of this problem Classical treatments and their limits Another factorization method

Summer School NMSU, 27 July 2008 - p. 26/6

1. Independency of the occurrences.

2 occurrences of the same variable "behave" as if they were different variables

1. Independency of the occurrences.

2 occurrences of the same variable "behave" as if they were different variables

$$oldsymbol{x} = [-1, 1] \rightsquigarrow oldsymbol{x} imes oldsymbol{x} = [-1, 1]$$
 instead of $[0, 1]$
 $= [oldsymbol{x} \overline{oldsymbol{x}}, \overline{oldsymbol{x}} \overline{oldsymbol{x}}]$
 $= oldsymbol{x} imes oldsymbol{y},$ where $oldsymbol{y} = oldsymbol{x}$

- 1. Independency of the occurrences.
- 2 occurrences of the same variable "behave" as if they were different variables
- * limiting the number of occurrences [Hong & Stahl, 1994][Ceberio & Granvilliers, 2000]

1. Independency of the occurrences.

2 occurrences of the same variable "behave" as if they were different variables

* limiting the number of occurrences [Hong & Stahl, 1994][Ceberio & Granvilliers, 2000]

2. Monotonicities.

occurrences are independent \rightsquigarrow respecting monotonicities is crucial for the computations to be performed on **the proper bounds**

1. Independency of the occurrences.

2 occurrences of the **same** variable "behave" as if they were **different** variables * limiting the number of occurrences [Hong & Stahl, 1994][Ceberio & Granvilliers, 2000]

Summer School NMSU, 27 July 2008 - p. 27/6

1. Independency of the occurrences.

2 occurrences of the same variable "behave" as if they were different variables

* limiting the number of occurrences [Hong & Stahl, 1994][Ceberio & Granvilliers, 2000]

2. Monotonicities.

occurrences are independent ~> monotony is to be respected so that

computations are performed on the proper bounds

- † difficult to determine the monotonicities
- ★ at least, we try to respect some properties:

multiplications are easier to handle and control, sub-distributivity of IA

1. Independency of the occurrences.

2 occurrences of the same variable "behave" as if they were different variables

* limiting the number of occurrences [Hong & Stahl, 1994][Ceberio & Granvilliers, 2000]

2. Monotonicities.

occurrences are independent ~> monotony is to be respected so that

computations are performed on the proper bounds

- *† difficult to determine the monotonicities*
- ★ at least, we try to respect some properties:

multiplications are easier to handle and control,

sub-distributivity of IA

 \rightsquigarrow factorized forms

for univariate polynomials

Interval Horner form. [Shih-Chieh, 1303][Horner, 1819][Stahl, 1995]

Let p be a polynomial defined by: $a_0 + \sum_{i=1}^n a_i x^{\alpha_i}$

$$h_{p}(x) = a_{0} + x^{d_{1}} \left(\cdots + x^{d_{n-1}} (a_{n-1} + a_{n}x^{d_{n}}) \cdots \right)$$

Def. Intermediate polynomials:

$$\begin{cases} p_n(x) = a_n \\ p_i(x) = x^{d_{i+1}} p_{i+1}(x) + a_i \quad i = n-1, n-2, \dots, 0 \end{cases}$$

for univariate polynomials

Interval Horner form. [Shih-Chieh, 1303][Horner, 1819][Stahl, 1995]

Let p be a polynomial defined by: $a_0 + \sum_{i=1}^n a_i x^{\alpha_i}$

$$m{h}_{m{p}}(m{x}) = m{a}_0 + m{x}^{d_1} \left(\cdots + m{x}^{d_{n-1}} (m{a}_{n-1} + m{a}_n m{x}^{d_n}) \cdots
ight)$$

= optimal w.r.t. factorization:

- **1.** made of only multiplications and additions of constants \rightsquigarrow monotonicity
- **2.** *completely nested* ~> **sub-distributivity**

for univariate polynomials

Interval Horner form. [Shih-Chieh, 1303][Horner, 1819][Stahl, 1995]

Let p be a polynomial defined by: $a_0 + \sum_{i=1}^n a_i x^{\alpha_i}$

$$m{h}_{m{p}}(m{x}) = m{a}_0 + m{x}^{d_1} \left(\cdots + m{x}^{d_{n-1}} (m{a}_{n-1} + m{a}_n m{x}^{d_n}) \cdots
ight)$$

1. Monotonicity.

Let $O_p = \Box \{ \text{ all the zeros of the intermediate polynomials of } h_p \cup \{0\} \}$ $\forall x \in \mathbb{R}^n \text{ s.t. } \overset{\circ}{x} \cap O_p = \varnothing, \ h_p(x) = \{p(x) \mid x \in x\} \}$

for univariate polynomials

Interval Horner form. [Shih-Chieh, 1303][Horner, 1819][Stahl, 1995]

Let p be a polynomial defined by: $a_0 + \sum_{i=1}^n a_i x^{\alpha_i}$

$$m{h}_{m{p}}(m{x}) = m{a}_0 + m{x}^{d_1} \left(\cdots + m{x}^{d_{n-1}} (m{a}_{n-1} + m{a}_n m{x}^{d_n}) \cdots
ight)$$

1. Monotonicity.

Let $O_p = \Box \{ \text{ all the zeros of the intermediate polynomials of } h_p \cup \{0\} \}$ $\forall x \in \mathbb{R}^n \text{ s.t. } \overset{\circ}{x} \cap O_p = \varnothing, \ h_p(x) = \{p(x) \mid x \in x\}$

† beyond this condition, no guarantee.

Summer School NMSU, 27 July 2008 - p. 29/6
for univariate polynomials

Interval Horner form. [Shih-Chieh, 1303][Horner, 1819][Stahl, 1995]

Let p be a polynomial defined by: $a_0 + \sum_{i=1}^n a_i x^{\alpha_i}$

$$m{h}_{m{p}}(m{x}) = m{a}_0 + m{x}^{d_1} \left(\cdots + m{x}^{d_{n-1}} (m{a}_{n-1} + m{a}_n m{x}^{d_n}) \cdots
ight)$$

1. Monotonicity.

Let $O_p = \Box \{ \text{ all the zeros of the intermediate polynomials of } h_p \cup \{0\} \}$ $\forall x \in \mathbb{R}^n \text{ s.t. } \overset{\circ}{x} \cap O_p = \emptyset, \ h_p(x) = \{p(x) \mid x \in x\} \}$

† beyond this condition, no guarantee.

† pb. with the decomposition of powers

for univariate polynomials

Interval Horner form. [Shih-Chieh, 1303][Horner, 1819][Stahl, 1995]

Let p be a polynomial defined by: $a_0 + \sum_{i=1}^n a_i x^{\alpha_i}$

$$m{h}_{m{p}}(m{x}) = m{a}_0 + m{x}^{d_1} \left(\cdots + m{x}^{d_{n-1}} (m{a}_{n-1} + m{a}_n m{x}^{d_n}) \cdots
ight)$$

2. Sub-distributivity.

for univariate polynomials

Interval Horner form. [Shih-Chieh, 1303][Horner, 1819][Stahl, 1995]

Let p be a polynomial defined by: $a_0 + \sum_{i=1}^n a_i x^{\alpha_i}$

$$h_{p}(x) = a_{0} + x^{d_{1}} \left(\cdots + x^{d_{n-1}} (a_{n-1} + a_{n}x^{d_{n}}) \cdots \right)$$

2. Sub-distributivity.

$$egin{aligned} & a_0+\overbrace{x\cdots x}^{d_1 ext{ times}}(\cdots+\overbrace{x\cdots x}^{d_{n-1} ext{ times}}(a_{n-1}+a_n\overbrace{x\cdots x}^{d_n ext{ times}})\cdots) &\subseteq a_0+\sum\limits_{i=1}^n a_i\overbrace{x\cdots x}^{eta_i ext{ times}}\ a_0+x^{d_1}\left(\cdots+x^{d_{n-1}}(a_{n-1}+a_nx^{d_n})\cdots
ight) &\subseteq a_0+\sum\limits_{i=1}^n a_ix^{lpha_i} \end{aligned}$$

Summer School NMSU, 27 July 2008 - p. 30/6

for univariate polynomials

Interval Horner form. [Shih-Chieh, 1303][Horner, 1819][Stahl, 1995]

Let p be a polynomial defined by: $a_0 + \sum_{i=1}^n a_i x^{\alpha_i}$

$$m{h}_{m{p}}(m{x}) = m{a}_0 + m{x}^{d_1} \left(\cdots + m{x}^{d_{n-1}} (m{a}_{n-1} + m{a}_n m{x}^{d_n}) \cdots
ight)$$

2. Sub-distributivity.

$$p(x) = x + x^{4} \qquad h_{p}(x) = x(x^{3} + 1)$$

$$q(x) = x + xxxx \qquad r(x) = x(xxx + 1)$$
Let $x = [-2, 1]$:

$$p(x) = [-2, 17] \qquad h_{p}(x) = [-7, 14]$$

$$q(x) = [-10, 17] \qquad r(x) = [-10, 14]$$

for univariate polynomials

Interval Horner form. [Shih-Chieh, 1303][Horner, 1819][Stahl, 1995]

Let p be a polynomial defined by: $a_0 + \sum_{i=1}^n a_i x^{\alpha_i}$

$$h_{p}(x) = a_{0} + x^{d_{1}} \left(\cdots + x^{d_{n-1}} (a_{n-1} + a_{n}x^{d_{n}}) \cdots \right)$$

Limits of Horner's form.

† when intersecting the overestimation set: no guarantee

† does not benefit from the sub-distributivity property

~> Another factorization scheme

for univariate polynomials

for univariate polynomials

Elementary scheme. Given $p(x) = ax^{\alpha+\gamma} + bx^{\alpha}$,

$$\mathit{Mcr}_p(x) = ax^{\alpha - \gamma} \left[\left(x^{\gamma} + \frac{b}{2a} \right)^2 - \left(\frac{b}{2a} \right)^2 \right]$$

with: a, $b \in \mathbb{R}^*$, $\alpha \geqslant \gamma$ and $\alpha + \gamma$ even.

Horner form of the same binomial: $h_p(x) = x^{lpha}(b+ax^{\gamma})$

for univariate polynomials

Elementary scheme. Given $p(x) = ax^{\alpha+\gamma} + bx^{\alpha}$,

$$\mathit{Mcr}_p(x) = ax^{\alpha - \gamma} \left[\left(x^{\gamma} + \frac{b}{2a} \right)^2 - \left(\frac{b}{2a} \right)^2 \right]$$

with: $a, b \in \mathbb{R}^*$, $\alpha \ge \gamma$ and $\alpha + \gamma$ even.

Main properties.

$$\begin{array}{l} \bullet \ \forall \boldsymbol{x} \in \mathbb{R}, \ 0 \not\in \boldsymbol{x} \ \to \ w(\operatorname{Mcr}_{\boldsymbol{p}}(\boldsymbol{x})) \leqslant w(\boldsymbol{h}_{\boldsymbol{p}}(\boldsymbol{x})) \\ \\ \bullet \ \left\{ \begin{array}{l} (ab > 0 \ \text{and} \ (\underline{\boldsymbol{x}} \geqslant 0 \ \text{or} \ \overline{\boldsymbol{x}}^{\gamma} \leqslant -\frac{b}{a})) \\ \text{or} \ (ab < 0 \ \text{and} \ (\overline{\boldsymbol{x}} \leqslant 0 \ \text{or} \ \underline{\boldsymbol{x}}^{\gamma} \geqslant \frac{b}{a})) \end{array} \right. \rightarrow \operatorname{Mcr}_{\boldsymbol{p}}(\boldsymbol{x}) = \{ p(\boldsymbol{x}) \ | \ \boldsymbol{x} \in \boldsymbol{x} \} \end{array}$$

for univariate polynomials

Generalization. Given $p(x) = \sum_{i=1}^{n} a_i x^i$, we define: $I = \{(i, j) \in \{0, \dots, n\}^2 \mid a_i \neq 0, a_j \neq 0, i < j < 2i, j \text{ is even}\}$ and $I' \subset I$ without shared monomials

for univariate polynomials

Generalization. Given
$$p(x) = \sum_{i=1}^{n} a_i x^i$$
, we define:
 $I = \{(i, j) \in \{0, \dots, n\}^2 \mid a_i \neq 0, a_j \neq 0, i < j < 2i, j \text{ is even}\}$
and $I' \subset I$ without shared monomials

 \rightsquigarrow we can rewrite p as follows:

$$p(x) = r(x) + \sum_{(i,j) \in I'} \left(a_i x^i + a_j x^j \right) = r(x) + \sum_{(i,j) \in I'} p_{i,j}(x)$$

for univariate polynomials

Generalization. Given
$$p(x) = \sum_{i=1}^{n} a_i x^i$$
, we define:
 $I = \{(i, j) \in \{0, \dots, n\}^2 \mid a_i \neq 0, a_j \neq 0, i < j < 2i, j \text{ is even}\}$
and $I' \subset I$ without shared monomials

 \rightsquigarrow we can rewrite p as follows:

$$p(x) = r(x) + \sum_{(i,j) \in I'} \left(a_i x^i + a_j x^j \right) = r(x) + \sum_{(i,j) \in I'} p_{i,j}(x)$$

and we finally factorize:

$$\mathit{Mcr}_p(x) = r(x) + \sum_{(i,j) \in I'} \mathit{Mcr}_{p_{i,j}}(x)$$

for univariate polynomials

Generalization. Given
$$p(x) = \sum_{i=1}^{n} a_i x^i$$
, we define:
 $I = \{(i, j) \in \{0, \dots, n\}^2 \mid a_i \neq 0, a_j \neq 0, i < j < 2i, j \text{ is even}\}$
and $I' \subset I$ without shared monomials

 \rightsquigarrow we can rewrite p as follows:

$$p(x) = r(x) + \sum_{(i,j) \in I'} \left(a_i x^i + a_j x^j \right) = r(x) + \sum_{(i,j) \in I'} p_{i,j}(x)$$

and we finally factorize:

$$\mathit{Mcr}_p(x) = r(x) + \sum_{(i,j) \in I'} \mathit{Mcr}_{p_{i,j}}(x)$$

many possibilities ~> strategies are defined

Main principles.

- No decomposition of odd powers
- No decomposition of even powers into odd ones
- No introduction of odd powers / deletion of odd powers

Main principles.

- No decomposition of odd powers
- No decomposition of even powers into odd ones
- No introduction of odd powers / deletion of odd powers

Two classes of strategies. *parsing the expressions in the increasing order of their powers*

- **1.** given a power i, another one is looked for between i + 1 and 2i
- **2.** priority to the factorization of odd powers, i.e., schemes (i, j) where i is odd

Main principles.

- No decomposition of odd powers
- No decomposition of even powers into odd ones
- No introduction of odd powers / deletion of odd powers

Two classes of strategies. parsing the expressions in the increasing order of their powers

 $p(x) = x^{2} + x^{3} + x^{4} + x^{5} + x^{6} + x^{7} + x^{9} + x^{12}$

- **1.** given a power i, another one is looked for between i + 1 and 2i $\{(2,4), (3,6), (7,12), 5, 9\}$ $\{(2,4), (3,6), 5, 7, 9, 12\}$
- **2.** priority to the factorization of odd powers, i.e., schemes (i, j) where i is odd $\{(3, 4), (5, 6), (7, 12), 2, 9\}$

Main principles.

- No decomposition of odd powers
- No decomposition of even powers into odd ones
- No introduction of odd powers / deletion of odd powers

Tests and results.

Sparse polynomials: the greater α , the sparser $P_{\alpha,n}$

$$P_{\alpha,n}(x) = (x^{\alpha} - 1)^n = \sum_{k=0}^n (-1)^{n-k} C_n^k x^{k\alpha}$$

Comparison of several forms to the exact range of $P_{\alpha,n}$ over $m{x} = [-0.5, 0.3]$

lpha	1	2	3	4	5
$s_1\&s_2$	1.11	2.57	1.02	1.00	1.00
s_1'	1.11	4.86	1.07	1.05	1.00
horner	1.49	2.92	1.10	1.34	1.09
natural	1.15	2.92	1.08	1.34	1.05

Main principles.

- No decomposition of odd powers
- No decomposition of even powers into odd ones
- No introduction of odd powers / deletion of odd powers

Tests and results.

Sparse polynomials: the greater α , the sparser $P_{\alpha,n}$

$$P_{\alpha,n}(x) = (x^{\alpha} - 1)^n = \sum_{k=0}^n (-1)^{n-k} C_n^k x^{k\alpha}$$

Randomly generated polynomials: 500-polynomial basis

interval evaluations using Mcr are globally better than Horner's

Best strategy:

- second strategy (φ) when $\overset{\circ}{x} \cap O_p \neq \emptyset$ $\approx 25\%$ -improvement (w.r.t. our tests)
- Horner otherwise
- \rightarrow globally composition of Horner with our strategy on average

Properties.

- ullet beyond the overestimation interval, $h\circ arphi$ is equivalent to p
- otherwise, $h \circ \varphi_b$ globally improves the Horner form (w.r.t. our tests), while always keeping equivalent to p

Research directions

The dependency problem
The locality of reasonings
A unifying framework for soft constraints
Distributed constraints: speculations

2. The locality of reasonings

The workings of this problem Classical treatments and their limits Triangularization is an idea

- the propagation stage only communicates locally consistent domains
- pieces of information are lost between constraints

for instance the correspondance of bounds is lost, drowned out in the local reasonings

A new symbolic representation to enhance the propagation stage

Redundant constraints [Marti & Rueher, 1995] [Benhamou & Granvilliers, 1998]

[Van Emden, 1999]

Summer School NMSU, 27 July 2008 - p. 39/6

Redundant constraints [Marti & Rueher, 1995] [Benhamou & Granvilliers, 1998]

[Van Emden, 1999]

Linear constraint solving and introduction of nonlinear constraints when their nonlinear

variables are determined [Colmerauer, 1993]

Linearization of the nonlinear terms [Yamamura et al., 1998]

- \star these methods aim at improving the propagation stage
- † no control of the accuracy of interval computations
- \uparrow or no stopping control \rightsquigarrow exponential in time and memory

Redundant constraints [Marti & Rueher, 1995] [Benhamou & Granvilliers, 1998]

[Van Emden, 1999]

Linear constraint solving [Colmerauer, 1993]

Linearization of the nonlinear terms [Yamamura et al., 1998]

Gaussian elimination

- \star generation of triangular systems, information totally shared is the system is totally triangular
- † only for linear systems

Redundant constraints [Marti & Rueher, 1995] [Benhamou & Granvilliers, 1998]

[Van Emden, 1999]

Linear constraint solving [Colmerauer, 1993]

Linearization of the nonlinear terms [Yamamura et al., 1998]

Gaussian elimination

control of the amount of transformations

+ control of the interval computations accuracy

= A new triangularization scheme

Consider the following nonlinear constraint system:

$$C: \begin{cases} c_1: & x+y+x^2+xy+y^2 &= 0\\ c_2: & x+t+xy+t^2+x^2 &= 0\\ c_3: & y+z+x^2+z^2 &= 0\\ c_4: & x+z+x^2+y^2+z^2+xy &= 0 \end{cases}$$

defined over $E = [-100, 100]^4$,

- 4 solutions reached in 140 ms using realpaver [Granvilliers, 2002].
- difficult to remove nonlinear terms ~> the nonlinear terms are abstracted

Abstraction phase: equivalent system

$lc_1: \ lc_2: \ lc_3: \ lc_4:$	$egin{array}{c} x \ x \ x \end{array} \end{array}$	+y y	+z +z	+t	$+u_1$ $+u_1$ $+u_1$ $+u_1$	$+u_2$ $+u_2$ $+u_2$	+	-u3 -u3	$+u_4$	$+u_5$ $+u_5$	
		and th	ne abs	tracte	d syste	em: {	$egin{array}{c} u_1 \ u_2 \ u_3 \ u_4 \ u_5 \end{array}$	= = = =	$egin{array}{c} x \ xy \ y^2 \ t^2 \ z^2 \end{array}$		

Gaussian elimination phase:

Gaussian elimination phase:

nonlinear terms are restored

Concretization phase:

	$lc_1:$	x^2	+y					+x	+xy	$+ y^{2}$	= 0
J	lc'_2 :		y			-t	$-t^2$			$+ y^{2}$	= 0
	lc'_3 :			-z	$-z^2$			+x	+xy	$+ y^{2}$	= 0
	$lc'_4:$					-t	$-t^2$	+x	+xy	$+2y^{2}$	= 0

The new system is solved in 240ms!!

Concretization phase:

ſ	$lc_1:$	x^2	+y					+x	+xy	$+ y^{2}$	= 0
J	$lc_2':$		y			-t	$-t^2$			$+ y^{2}$	= 0
	lc'_3 :			-z	$-z^2$			+x	+xy	$+ y^{2}$	= 0
	$lc'_4:$					-t	$-t^2$	+x	+xy	$+2y^{2}$	= 0

The new system is solved in 240ms!!

Strategies are designed

Strategies

Let us consider again the previous problem. We begin with the linearized system:

$\int lc_1:$	x	+y			$+u_1$	$+u_{2}$	$+u_{3}$			= 0
$\int lc_2:$	x			+t	$+u_1$	$+u_2$		$+u_4$		= 0
$lc_3:$		y	+z		$+u_1$				$+u_5$	= 0
$lc_4:$	x		+z		$+u_1$	$+u_2$	$+u_3$		$+u_5$	= 0

Pivot. (lc_3, u_5)

Strategies

First step of elimination

$\int lc_3$:		y	+z		$+u_1$				$+u_5$	=	0
$lc_1:$	x	+y			$+u_1$	$+u_2$	$+u_3$			=	0
$lc_2:$	x			+t	$+u_1$	$+u_2$		$+u_4$		=	0
$lc'_4:$	-x	+y				$-u_2$	$-u_3$			=	0

Control criterion: controls the densification of the "linear" system

User linear part: 0

Abstracted linear part: -2

Pivot. (lc'_4, u_3)

Strategies

Second step of elimination

	$lc_3:$		y	+z		$+u_1$				$+u_5$	=	0
J	lc_4' :	-x	+y				$-u_2$	$-u_3$			=	0
	$lc'_1:$		2y			$+u_1$					=	0
	$lc_2:$	x			+t	$+u_1$	$+u_2$		$+u_4$		=	0

Control criterion: controls the densification of the "linear" system

User linear part: 0

Abstracted linear part: -1

Pivot. (lc'_1, u_1)

Strategies

Third step of elimination

	$lc_3:$		y	+z	$+u_1$				$+u_5$	=	0
J	$lc_4':$	-x	+y			$-u_2$	$-u_3$			=	0
	$lc_1':$		2y		$+u_1$					=	0
	$lc'_2:$	-x	+2y	-t		$-u_2$		$-u_4$		=	0

Control criterion: controls the densification of the "linear" system

User linear part: +1

Abstracted linear part: -1

End of the elimination stage.
A triangularization method

Triangularized system

	$lc'_2:$	-t	-x	$-u_2$		$-u_4$				+2y	=	0
J	$lc'_4:$		-x	$-u_2$	$-u_3$					+y	=	0
	$lc_3:$						$+u_5$	+z	$+u_1$	+y	=	0
	$lc'_1:$								$+u_1$	+2y	=	0

Concretization: nonlinear terms are restored, using the abstracted system

A triangularization method

Strategies

Concretization phase

	$c'_1:$	-t	-x	-xy		$-t^{2}$				+2y	=	0
J	c_2' :		-x	-xy	$-y^2$					+y	=	0
	c_3' :						z^2	+z	$+x^{2}$	+y	=	0
	$c'_4:$								x^2	+2y	=	0

Post-processing: *simplification of the system using specific constraints*

 $x_i = f(x_1, \dots, x_{i-1}, x_{i+1}, \dots, x_n)$

 $c'_4: -2y = x^2$ is eligible for post-processing -2y is substituted for x^2

A triangularization method

Strategies

Post-processing: $x^2 = -2y$

$C_T: \langle$	$c_{1}^{T}:$	-t	-x	-xy		$-t^{2}$				+2y	=	0
	c_2^T :		-x	-xy	$-y^2$					+y	=	0
	$c_3^{T'}$:						z^2	+z		-y	=	0
	c_4^T :								$+x^{2}$	+2y	=	0

Solving stage: 4 solutions reached in 10ms!

Bratu's problem.

$$x_{k-1} - 2x_k + x_{k+1} + h \exp(x_k) = 0, \quad 1 \le k \le n$$

defined over
$$[-10^8, +10^8]^n$$
, with $x_0 = x_{n+1} = 0$ and $h = \frac{1}{(n+1)^2}$.

Bratu's problem.

$$x_{k-1} - 2x_k + x_{k+1} + h \exp(x_k) = 0, \quad 1 \le k \le n$$

defined over $[-10^8, +10^8]^n$, with $x_0 = x_{n+1} = 0$ and $h = \frac{1}{(n+1)^2}$.

The initial problem is transformed as follows into a dense triangular system:

$$-(k+1)x_k + (k+2)x_{k+1} + h\sum_{i=1}^k i\exp(x_i) = 0, \quad 1 \le k \le n$$

Tests and results

Bratu's problem.

$$x_{k-1} - 2x_k + x_{k+1} + h \exp(x_k) = 0, \quad 1 \le k \le n$$

defined over $[-10^8, +10^8]^n$, with $x_0 = x_{n+1} = 0$ and $h = \frac{1}{(n+1)^2}$.

Problem v		Initial	Pb.	Triangul. Pb.			
		Time	Sol.	Time	Sol.		
Bratu	7	1.10	3	0.60	4		
	8	0.70	2	0.10	2		
	10	2.30	2	0.10	2		
	13	20.50	6	0.10	2		
	14	46.40	11	0.20	2		
	15	94.40	12	0.20	2		

Symbolic pre-processing of constraint systems is efficient:

Triangularization through abstraction and elimination

Related work

- triangularization methods that cross even more sub-expressions
- elimination based on the tree representation

Research directions

The dependency problem
The locality of reasonings
A unifying framework for soft constraints
Distributed constraints: speculations

3. Soft constraints

A unifying framework Interval solving process Applications

Summer School NMSU, 27 July 2008 - p. 45/6

Motivation.

- providing a general framework, allowing to model explicitly the required flexibility
- exploiting the properties of well-known algorithms for classical problems (i.e., \neq soft)

Framework.

- based on distances/flexibility measures: the smallest flexibility is sought
- also integrates an order over the constraints

soft constraints

Given a constraint c defined over $E \subset \mathbb{R}^n$, a soft constraint resulting from c is defined by a pair

$$\widehat{c} = (c,d)$$

where: d defines a distance between c and the elements of the search space.

soft constraints

Given a constraint c defined over $E \subset \mathbb{R}^n$, a soft constraint resulting from c is defined by a pair

$$\widehat{c} = (c,d)$$

where: d defines a distance between c and the elements of the search space.

Properties of *d*: increasing function s.t. d(0) = 0.

interprets the rough distance to c.

soft constraints

Given a constraint c defined over $E \subset \mathbb{R}^n$, a soft constraint resulting from c is defined by a pair

$$\widehat{c} = (c,d)$$

where: d defines a distance between c and the elements of the search space.

Summer School NMSU, 27 July 2008 - p. 47/6

soft constraints

Given a constraint c defined over $E \subset \mathbb{R}^n$, a soft constraint resulting from c is defined by a pair

$$\widehat{c} = (c,d)$$

where: d defines a distance between c and the elements of the search space.

soft constraints

Given a constraint c defined over $E \subset \mathbb{R}^n$, a soft constraint resulting from c is defined by a pair

$$\widehat{c} = (c,d)$$

where: d defines a distance between c and the elements of the search space.

Summer School NMSU, 27 July 2008 - p. 47/6

soft constraints

Given a constraint c defined over $E \subset \mathbb{R}^n$, a soft constraint resulting from c is defined by a pair

$$\widehat{c} = (c,d)$$

where: d defines a distance between c and the elements of the search space.

Properties of *d*: increasing function s.t. d(0) = 0.

interprets the rough distance to *c*.

instanciations \leftrightarrow quality: to be maximized.

soft constraints

Given a constraint c defined over $E \subset \mathbb{R}^n$, a soft constraint resulting from c is defined by a pair

$$\widehat{c} = (c,d)$$

where: d defines a distance between c and the elements of the search space.

Solution set of \widehat{c} = the closest to c (w.r.t. d) subset of E. = { $x \in E \mid \forall y \in E, d(x, c) \leq d(y, c)$ }

soft constraints

Given a constraint c defined over $E \subset \mathbb{R}^n$, a soft constraint resulting from c is defined by a pair

$$\widehat{c} = (c,d)$$

where: d defines a distance between c and the elements of the search space.

Solution set of \widehat{c} = the closest to c (w.r.t. d) subset of E. = $\{x \in E \mid \forall y \in E, d(x, c) \leq d(y, c)\}$

Preferences over the search space

soft CSP

Given a CSP $C = \{c_1, \cdots, c_p\}$ defined over $E \subset \mathbb{R}^n$, a soft CSP resulting from C is defined by a tuple $\widehat{C} = (C, d, D, \succ)$

where: $m{D}$ is a set of distances corresponding to each constraint $m{c_i}$

d is a operator combining the values of the distances of D

 \succ is an order over the set of constraints.

soft CSP

Given a CSP $C = \{c_1, \cdots, c_p\}$ defined over $E \subset \mathbb{R}^n$, a soft CSP resulting from C is defined by a tuple $\widehat{C} = (C, d, D, \succ)$

Properties of *d*: defined over $(\mathbb{R}^+)^p$ = combination of distances

the same as those of each distance to a single constraint

increasing function w.r.t. each parameter

soft CSP

Given a CSP $C = \{c_1, \cdots, c_p\}$ defined over $E \subset \mathbb{R}^n$, a soft CSP resulting from C is defined by a tuple $\widehat{C} = (C, d, D, \succ)$

Properties of *d*: defined over $(\mathbb{R}^+)^p$ = combination of distances

the same as those of each distance to a single constraint:

increasing function w.r.t. each parameter

Remark concerning D: up to now, all the distances are of the same type

= commensurability problem

soft CSP

Given a CSP $C = \{c_1, \cdots, c_p\}$ defined over $E \subset \mathbb{R}^n$, a soft CSP resulting from C is defined by a tuple $\widehat{C} = (C, d, D, \succ)$

Properties of *d*: defined over $(\mathbb{R}^+)^p$ = combination of distances

the same as those of each distance to a single constraint:

increasing function w.r.t. each parameter

Remark concerning D: up to now, all the distances are of the same type

= commensurability problem

Order \succ : establish the order instanciations are to satisfy

 \star may be trivial

• otherwise, states new constraints C_{\succ}

soft CSP

Given a CSP $C = \{c_1, \cdots, c_p\}$ defined over $E \subset \mathbb{R}^n$, a soft CSP resulting from C is defined by a tuple $\widehat{C} = (C, d, D, \succ)$

soft CSP

Given a CSP $C = \{c_1, \cdots, c_p\}$ defined over $E \subset \mathbb{R}^n$, a soft CSP resulting from C is defined by a tuple $\widehat{C} = (C, d, D, \succ)$

soft CSP

Given a CSP $C = \{c_1, \cdots, c_p\}$ defined over $E \subset \mathbb{R}^n$, a soft CSP resulting from C is defined by a tuple $\widehat{C} = (C, d, D, \succ)$

Solution set of \widehat{C} = the closest to C (w.r.t. d) subset of E satisfying C_{\succ} . $= \{x \in E \mid C_{\succ} \text{ holds on } x$ and $\forall y \in E, d(x, C) \leq d(y, C)\}$

soft CSP

Given a CSP $C = \{c_1, \cdots, c_p\}$ defined over $E \subset \mathbb{R}^n$, a soft CSP resulting from C is defined by a tuple $\widehat{C} = (C, d, D, \succ)$

Solution set of \widehat{C} = the closest to C (w.r.t. d) subset of E satisfying C_{\succ} . = { $x \in E \mid C_{\succ}$ holds on x and $\forall y \in E, d(x, C) \leq d(y, C)$ }

For instance, preferences over the constraints establish an order over the satisfaction/violation of the constraints: C_{\succ} expresses this order.

On the other hand, when trivial, C_{\succ} holds on any $x \in E$

Preferences over the search space and over the constraints

Solving process

Given a soft CSP $\widehat{C} = (C, d, D, \succ)$ defined over $E \subset \mathbb{R}^n$, the solution set of \widehat{C} is the solution set of the following hard problem:

 $\min_{x \in E} d(d_1(x), \cdots, d_p(x))$ s.t. x satisfies C_{\succ}

Solving process

Given a soft CSP $\widehat{C} = (C, d, D, \succ)$ defined over $E \subset \mathbb{R}^n$, the solution set of \widehat{C} is the solution set of the following hard problem:

 $\min_{x \in E} d(d_1(x), \cdots, d_p(x))$ s.t. x satisfies C_{\succ}

Interval solving process: distance functions are extended in the usual way.

- *† Pbs. with normalized distances:*
 - 1. *maximum value of the rough distance = another optimization process!*

→ interval upper bound

- 2. but may be ∞
 - \rightsquigarrow variation of the normalized distance

Solving process

Camera positioning problem.

- given a camera, find a position and angle allowing to visualize given objects
- inconsistent (over-constrained) problem: solved using several soft models

Possible locations of the camera

Camera positioning problem.

- given a camera, find a position and angle allowing to visualize given objects
- inconsistent (over-constrained) problem: solved using several soft models

Results.

- 1. soft positioning are easily reached using an optimization process
- 2. some positioning are useless w.r.t. the camera problem:

no object is in the camera's scope

Camera positioning problem.

- given a camera, find a position and angle allowing to visualize given objects
- inconsistent (over-constrained) problem: solved using several soft models

Results.

- 1. soft positioning are easily reached using an optimization process
- 2. some positioning are useless w.r.t. the camera problem:

Camera positioning problem.

- given a camera, find a position and angle allowing to visualize given objects
- inconsistent (over-constrained) problem: solved using several soft models

Results.

- 1. soft positioning are easily reached using an optimization process
- 2. some positioning are useless w.r.t. the camera problem:

Camera positioning problem.

- given a camera, find a position and angle allowing to visualize given objects
- inconsistent (over-constrained) problem: solved using several soft models

Results.

- 1. soft positioning are easily reached using an optimization process
- 2. some positioning are useless w.r.t. the camera problem:

Conclusions.

- soft constraints allowing violation degrees are useless when violated constraints are meaningless
- for specific problems, a priori knowledge is crucial to guarantee exploitable solutions
- the user is essential in the modelling stage

Research directions

The dependency problem
The locality of reasonings
A unifying framework for soft constraints
Distributed constraints: speculations

What is a speculation?

Speculation = a hypothesis that has been formed by speculating or conjecturing (usually with little hard evidence)
What is a speculation?

Speculation = a hypothesis that has been formed by speculating or conjecturing (usually with little hard evidence) e.g., "speculations about the outcome of the election"

Examples:

6 you invite people at home, and you give them a choice among possible dates, but they don't reply immediately when they can come

What is a speculation? (2)

Examples:

- 9 you invite people at home, and you give them a choice among possible dates, but they don't reply immediately when they can come
 - instead of waiting for their replies, you may have a clue about the chosen date, and begin to prepare the party, based on this speculation

What is a speculation? (2)

Examples:

- 9 you invite people at home, and you give them a choice among possible dates, but they don't reply immediately when they can come
 - instead of waiting for their replies, you may have a clue about the chosen date, and begin to prepare the party, based on this speculation
- 9 you plan a trip and ask Rose to take care about this, but you may not specify all your preferences: e.g., only the date, and destination

What is a speculation? (2)

Examples:

- 9 you invite people at home, and you give them a choice among possible dates, but they don't reply immediately when they can come
 - instead of waiting for their replies, you may have a clue about the chosen date, and begin to prepare the party, based on this speculation
- 6 you plan a trip and ask Rose to take care about this, but you may not specify all your preferences: e.g., only the date, and destination
 - the travel agency will not wait until you specify your time preferences to begin and look for air fares

Most studies on multi-agent systems (MAS) assume that the communication between agents is guaranteed

- Most studies on multi-agent systems (MAS) assume that the communication between agents is guaranteed
- When an agent asks a question to another one, the process depending on the answer is suspended until some response is sent

- Most studies on multi-agent systems (MAS) assume that the communication between agents is guaranteed
- When an agent asks a question to another one, the process depending on the answer is suspended until some response is sent

However...

- Most studies on multi-agent systems (MAS) assume that the communication between agents is guaranteed
- When an agent asks a question to another one, the process depending on the answer is suspended until some response is sent

However...

In real settings (e.g. internet), communication may fail

- Most studies on multi-agent systems (MAS) assume that the communication between agents is guaranteed
- When an agent asks a question to another one, the process depending on the answer is suspended until some response is sent

However...

- 6 In real settings (e.g. internet), communication may fail
- 6 Agents may take time to send back a reply

What kind of problems can be considered?

In the Constraint Logic Programming (CLP) world e.g., organize a meeting, and determine when, where, and with whom

 $organize(large_room, [a, b, c], D) \leftarrow meeting([a, b, c], D)$ $organize(small_room, [X, Y], D) \leftarrow meeting([X, Y], D)$ $meeting([a, b], D) \leftarrow available(a, D), available(b, D), not_available(c, D)$ $meeting([b, c], D) \leftarrow not_available(a, D), available(b, D), available(c, D)$ $meeting([a, c], D) \leftarrow available(a, D), not_available(b, D), available(c, D)$ $meeting([a, b, c], D) \leftarrow available(a, D), available(b, D), available(c, D)$ $meeting([a, b, c], D) \leftarrow available(a, D), available(b, D), available(c, D)$ $meeting([a, b, c], D) \leftarrow free(P)@D$ $not_available(P, D) \leftarrow free(P)@D$ $not_available(P, D) \leftarrow busy(P)@D$ equations sent to agents

? - organize(R, L, D).

What kind of problems can be considered?

- In the Constraint Logic Programming (CLP) world
- In the Constraint Solving world e.g., determine the geographical zone a robot can cover

$$(x - x_0)^2 + (y - y_0)^2 \leq (t_0 \cdot s_0)^2$$

 $x, y, \in [-10^8, 10^8]$

$$x_0 = location(X)$$

$$y_0 = location(Y)$$

$$s_0 = speed(S)$$

$$d_0 = duration(D)$$

questions sent to agents and transmitted to sensors

Basic idea [Satoh, Prima 2003]:

6 The program (constraint problem, denoted by P) is centralized at the master's level (denoted by M)

- 6 The program (constraint problem, denoted by P) is centralized at the master's level (denoted by M)
- 6 M begins to run the program / solve the constraint system

- 6 The program (constraint problem, denoted by P) is centralized at the master's level (denoted by M)
- 6 M begins to run the program / solve the constraint system
- 6 When specific information is needed:

- 6 The program (constraint problem, denoted by P) is centralized at the master's level (denoted by M)
- 6 M begins to run the program / solve the constraint system
- 6 When specific information is needed: *e.g.,*
 - is person a available on day D? free(a)@D
 - ▲ where is the robot located? $x_0 = location(X)$, $y_0 = location(Y)$
 - etc.

- 6 The program (constraint problem, denoted by P) is centralized at the master's level (denoted by M)
- 6 M begins to run the program / solve the constraint system
- 6 When specific information is needed: M asks a slave S the corresponding question

6 Before S answers, M continue the processing of P with some default value/constraint δ :

- 6 Before S answers, M continue the processing of P with some default value/constraint δ : *e.g.*,
 - $\textbf{A} \ \leftarrow \ D \in \{1,2\} || free(a) @D$
 - $x_0 \in [1, 100]$, $y_0 \in [10, 25]$

6 Before S answers, M continue the processing of P with some default value/constraint δ : no time is wasted

- 6 Before S answers, M continue the processing of P with some default value/constraint δ : no time is wasted
- 6 When answers α come from S, M updates or reinforces its belief depending on whether:
 - α entails δ : $\alpha \subset \delta$
 - α contradicts δ : $\alpha \cap \delta = \emptyset$
 - α is consistent with δ but does not entail it: $\alpha \cap \delta \neq \emptyset$ but $\alpha \not\subset \delta$

6 What is speculative computation with MA belief revision?

- 6 What is speculative computation with MA belief revision?
 - each agent can perform speculative computations

- 6 What is speculative computation with MA belief revision?
 - each agent can perform speculative computations
 - therefore, answers from slaves may not be certified: they are now likely to be default too

Speculative computations with MA belief revision for yes/no questions [Satoh, AAMAS'03]

- Speculative computations with MA belief revision for yes/no questions [Satoh, AAMAS'03]
 - when S sends an answer δ_s , it may be a default S uses, instead of the actual certified answer from a person, or a sensor

- Speculative computations with MA belief revision for yes/no questions [Satoh, AAMAS'03]
 - when S sends an answer δ_s , it may be a default S uses, instead of the actual certified answer from a person, or a sensor
 - therefore: different process management when answers come

MA belief revision in the case of

yes/no questions (2)

6 There are only two possible cases:

- △ Entailment: default = answer
- △ Contradiction: default = \neg answer

- 6 There are only two possible cases:
 - △ Entailment: default = answer
 - △ Contradiction: default = \neg answer
- 6 When certified information comes, same situation as in [Satoh, Prima 2003]

- 6 There are only two possible cases:
 - ▶ Entailment: default = answer
 - △ Contradiction: default = \neg answer
- 6 When certified information comes, same situation as in [Satoh, Prima 2003]
- 6 Otherwise, complementary processes must not be killed:
 - △ in case later answers contradicts the current one
 - instead, they are recorded

Recap on speculative computations in MA systems

- 6 Frameworks for speculative computations exist
- In master-slave, we can perform speculative constraint processing
- In general hierarchical systems, all agents can perform spec. computations in the case of yes/no questions

Make it possible to:

6 solve general constraints (or ask more general questions)...

Summer School NMSU, 27 July 2008 - p. 63/6

Make it possible to:

- 6 solve general constraints (or ask more general questions)...
- 6 ... in a general hierarchical MA system...

How to improve this?

Make it possible to:

- 6 solve general constraints (or ask more general questions)...
- 6 ... in a general hierarchical MA system...
- where all agents are enabled to perform speculations.

Outline of the presentation

- 6 Continuous constraints: definitions and solving process
- 6 An example of under and over-constrained problems
- 6 Important notions
- 6 Some research directions
- 6 Conclusion
Outline of the presentation

- 6 Continuous constraints: definitions and solving process
- 6 An example of under and over-constrained problems
- 6 Important notions
- 6 Some research directions
- 6 Conclusion

Now you know about:

- Continuous constraints
- Variations: optimization, soft constraints
- Some issue about distributed constraint solving
- and their limitations / open problems

You're ready to:

• find new methods to address them

Dependency problems: Extension of factorization schemes

- to more generalized rules: elementary scheme greater than binomials
- to more general terms (sin, cos), integrated in schemes (more in-depth parsing)
- to more general terms: linearization, loss of accuracy needs to be evaluated

Locality of Reasonings: Cooperation of linearization processes

or: Class of suitable problems

Soft constraints: *More expressivity*

Speculations: Other social group organizations

Thank you for your attention

QUESTIONS?

Martine Ceberio mceberio@utep.edu www.constraintsolving.com http://www.martineceberio.fr University of Texas at El Paso

Summer School NMSU, 27 July 2008 - p. 67/6