Continuous Constraints: An Overview

Martine Ceberio University of Texas at El Paso
Logic Programming and Computational Logic
New Mexico State University

Outline of the presentation

© Continuous constraints: definition and solving process
G An example of under and over-constrained problems
6 Important notions
© Some research directions
© Conclusion

Outline of the presentation

- Continuous constraints: definition and solving process
© An example of under and over-constrained problems
6 Important notions
6 Some research directions
© Conclusion

Continuous constraints in a nutshell

- Continuous constraints are...

Continuous constraints in a nutshell

- Continuous constraints are... CONSTRAINTS

Continuous constraints in a nutshell

- Continuous constraints are... CONSTRAINTS
- Continuous constraints define RELATIONS between variables
\star domains of variables: intervals = continuous ranges of possible values
* constraints restrict the possible combinations of values = define a subset
of the search space

Continuous constraints in a nutshell

- Continuous constraints are... CONSTRAINTS
- Continuous constraints define RELATIONS between variables
\star domains of variables: intervals = continuous ranges of possible values
* constraints restrict the possible combinations of values = define a subset
of the search space
- CSP or Constraint systems are defined by:
* a finite set of variables
\star a finite set of domains: continuous ranges of possible values
* a finite set of continuous constraints

Continuous constraints in a nutshell

- Continuous constraints are... CONSTRAINTS
- Continuous constraints define RELATIONS between variables
\star domains of variables: intervals = continuous ranges of possible values
* constraints restrict the possible combinations of values = define a subset
of the search space
- CSP or Constraint systems are defined by:
* a finite set of variables
\star a finite set of domains: continuous ranges of possible values
* a finite set of continuous constraints
- A solution of a constraint system is:
a complete assignment of all the variables, satisfying all constraints at the same time

How to solve continuous

 constraints?- Enumeration is not an option...

How to solve continuous constraints?

- Enumeration is not an option...
- Algorithms based on intervals (as detailed later)

How to solve continuous constraints?

- Enumeration is not an option...
- Algorithms based on intervals (as detailed later)
\star Branch and Bound (B\&B):
http://www-sop.inria.fr/coprin/logiciels/ALIAS/Movie/film_license.mpg
* More sophisticated consistency algorithms: Box / Hull-consistencies and
their combinations
result in Branch and Prune algorithms (B\&P)

Solving algorithm: a skeleton

Suppose you solve (C,X,D)
$S \leftarrow$ Initial domain // S is the store of domains to be visited Solutions $\leftarrow \varnothing$
while $(S \neq \varnothing)$ \{ take D out of S // usually D is the first available domain $\mathrm{D}^{\prime} \leftarrow$ narrow (D,C) // apply a consistency technique on D if ($D^{\prime} \neq \varnothing$) and (D^{\prime} is still too large) then split($\left.\mathrm{D}^{\prime}, D_{1}, D_{2}\right) \quad / /$ splitting in halves is not compulsory $\mathrm{S} \leftarrow \mathrm{S} \cup\left\{D_{1}, D_{2}\right\}$ else store D' in Solutions
\}
return Solutions // What does Solutions contain?

Solving algorithm: narrow(D,C)

Here we look at the details of narrow $\left(D_{1} \times \cdots \times D_{n},\left\{c_{1}, \ldots, c_{p}\right\}\right)$

```
S}\leftarrow{\mp@subsup{c}{1}{},\ldots,\mp@subsup{c}{p}{}}\quad//\textrm{S}\mathrm{ is the store of constraints, no duplicates
while (S\not=\varnothing){
    take c out of S // usually c is the first available constraint
    for all i\in{1,\ldots,n} {
    Di
    // apply a consistency technique on }\mp@subsup{D}{i}{}\mathrm{ w.r.t. c
    if ( }\mp@subsup{D}{i}{\prime}=\varnothing)\mathrm{ then return }
    if ( }\mp@subsup{D}{i}{\prime}\not=\mp@subsup{D}{i}{})\mathrm{ then
        S}\leftarrow\textrm{S}\cup{\mp@subsup{c}{j}{},j\inJ
        // cj}\mathrm{ are the constraints that share variable i with c
}
return }\mp@subsup{\times}{1\leqslanti\leqslantn}{}\mp@subsup{D}{i}{\prime}\quad// What is \mp@subsup{\times}{1\leqslanti\leqslantn}{}\mp@subsup{D}{i}{\prime}\mathrm{ ?

\section*{Recap}
- Continuous constraints: very similar in definition to discrete constraints
- Solving algorithms: quite different to ensure completeness, but similar structures
- In the following: discussion of different flavors of constraint solving

\section*{Outline of the presentation}

G Continuous constraints: definitions and solving process
© An example of under and over-constrained problems
6 Important notions
© Some research directions
© Conclusion

\section*{Outline of the presentation}

6 Continuous constraints: definitions and solving process
© An example of under and over-constrained problems
6 Important notions
© Some research directions
© Conclusion

\section*{Example (1/3)}

\section*{Problem to be solved: \(y(t)=f(x, t)\)}

\section*{Example (1/3)}

\section*{Problem to be solved: \(y(t)=f(x, t)\)}
\(\Downarrow\)
the radioactive decay of radium
[Pierre and Marie Curie (1898)]
\[
y(t)=\exp ^{-x t}
\]

\section*{Example (1/3)}

\section*{Problem to be solved: \(y(t)=f(x, t)\)}

Knowing: \(\quad y, t\), the model ( \(f\) )

Given:
Find:
measurements \(\check{y}_{i}\) of \(f\left(x, t_{i}\right)\) at instants \(t_{i}\)
parameter \(x\)


\section*{Example (1/3)}

\section*{Problem to be solved: \(y(t)=f(x, t)\)}

Knowing: \(\quad y, t\), the model \((f)\)
Given: measurements \(\check{y}_{i}\) of \(f\left(x, t_{i}\right)\) at instants \(t_{i}\)
Find:
parameter \(x\)
Classical solving method: least squares \(\min _{x} \sum_{i=1}^{n}\left(\check{y}_{i}-f\left(x, t_{i}\right)\right)^{2}\)


\section*{Example (2/3)}

Taking inaccuracy into account


\section*{Example (2/3)}

Taking inaccuracy into account

\section*{Under-constrained problem}

Definition of an appropriate criterion to be optimized
i.e., discrimination over the solution set

\section*{Example (2/3)}

Taking inaccuracy into account

\section*{Under-constrained problem}

Definition of an appropriate criterion to be optimized
i.e., discrimination over the solution set
\(\equiv\)

\section*{Constrained global optimization}

\section*{Example (3/3)}

Taking erroneous measurements into account


\section*{Example (3/3)}

Taking erroneous measurements into account


\section*{Example (3/3)}

Taking erroneous measurements into account

\section*{Over-constrained problem}
\(\Downarrow\)
Need of solution \(\rightsquigarrow\) weaker constraints i.e., need for flexibility

\section*{Example (3/3)}

Taking erroneous measurements into account

\section*{Over-constrained problem}
\(\Downarrow\)
Need of solution \(\rightsquigarrow\) weaker constraints i.e., need for flexibility
Ex. deletion of the measure at \(t_{5}\)


\section*{Example (3/3)}

Taking erroneous measurements into account

\section*{Over-constrained problem}

Need of solution \(\rightsquigarrow\) weaker constraints i.e., need for flexibility
Ex. deletion of the measure at \(t_{5}\), i.e., deletion of a constraint


\section*{Example (3/3)}

Taking erroneous measurements into account

\section*{Over-constrained problem}
\(\Downarrow\)
Need of solution \(\rightsquigarrow\) weaker constraints i.e., need for flexibility
\(\equiv\)
Soft constraints

\section*{Outline of the presentation}

G Continuous constraints: definitions and solving process
© An example of under and over-constrained problems
6 Important notions
© Some research directions
© Conclusion

\section*{Outline of the presentation}

G Continuous constraints: definitions and solving process
G An example of under and over-constrained problems
G Important notions
- Intervals
- Global optimization
\(\triangle\) Soft constraints
© Some research directions
6 Conclusion

\title{
Important notions
}

Intervals
Global optimization

\section*{Soft constraints}

\section*{Real intervals}

Definition 2 (Real interval [Moore, 1966]). A real interval \(\boldsymbol{x}\) is a closed and connected set of real numbers, noted \([a, b]\).
\[
\boldsymbol{x}=\{x \in \mathbb{R} \mid a \leqslant x \leqslant b\} \quad \underline{\boldsymbol{x}}=a \quad \overline{\boldsymbol{x}}=b
\]
\(\mathbb{R}\) is the set of all real intervals.

\section*{Real intervals}

Definition 2 (Real interval [Moore, 1966]). A real interval \(\boldsymbol{x}\) is a closed and connected set of real numbers, noted \([a, b]\).
\[
\boldsymbol{x}=\{x \in \mathbb{R} \mid a \leqslant x \leqslant b\} \quad \underline{\boldsymbol{x}}=a \quad \overline{\boldsymbol{x}}=b
\]
\(\mathbb{R}\) is the set of all real intervals.

Some useful notions.

Width of \(\boldsymbol{x}\) :
Interval hull of \(\rho \subset \mathbb{R}: \quad \operatorname{Hull}(\rho)=[\inf \rho, \sup \rho]=\square \rho\)

\section*{Real interval arithmetic}

Definition 3 (Interval arithmetic (IA)). Usual arithmetic-like arithmetic where
handled items are intervals (and no longer reals)

\section*{Real interval arithmetic}

Definition 3 (Interval arithmetic (IA)). Usual arithmetic-like arithmetic where
handled items are intervals (and no longer reals)

General formula of IA. Let \(\diamond \in\{+,-, \times, /\}\)
\[
\boldsymbol{x} \diamond \boldsymbol{y}=\square\{x \diamond y \mid x \in \boldsymbol{x}, y \in \boldsymbol{y}\}
\]

\section*{Real interval arithmetic}

Definition 3 (Interval arithmetic (IA)). Usual arithmetic-like arithmetic where
handled items are intervals (and no longer reals)

General formula of IA. Let \(\diamond \in\{+,-, \times, /\}\)
\[
\boldsymbol{x} \diamond \boldsymbol{y}=\square\{x \diamond y \mid x \in \boldsymbol{x}, y \in \boldsymbol{y}\}
\]

Properties.
- associativity
- commutativity
- sub-distributivity: \(x \times(y+z) \subset x \times y+x \times z\)
\(\rightsquigarrow\) interval arithm. is expression-dependent
\(=\) the DEPENDENCY PROBLEM

\section*{Real interval arithmetic}

Definition 3 (Interval arithmetic (IA)). Usual arithmetic-like arithmetic where
handled items are intervals (and no longer reals)

General formula of IA. Let \(\diamond \in\{+,-, \times, /\}\)
\[
\boldsymbol{x} \diamond \boldsymbol{y}=\square\{x \diamond y \mid x \in \boldsymbol{x}, y \in \boldsymbol{y}\}
\]

Properties.
- associativity \(\rightsquigarrow\) No longer valid!
- commutativity
- sub-distributivity: \(x \times(y+z) \subset x \times y+x \times z\)
\(\rightsquigarrow\) interval arithm. is expression-dependent
\(=\) the DEPENDENCY PROBLEM

\section*{Interval extensions}

IA Principle: provides outer approximations of real quantities being looked for
\(\rightsquigarrow\) used for the evaluation of the ranges of functions

\section*{Interval extensions}

IA Principle: provides outer approximations of real quantities being looked for
\(\rightsquigarrow\) used for the evaluation of the ranges of functions
Definition 5 (Interval extension). Let \(f\) be a real function defined over
\(E \subset \mathbb{R}^{n}\). Any interval function \(\phi\) is an interval extension of \(f\) provided that:
\[
\forall \boldsymbol{x} \subset \mathbb{R}^{n},\{f(x) \mid x \in \boldsymbol{x} \cap E\} \subset \boldsymbol{\phi}(\boldsymbol{x})
\]

\section*{Interval extensions}

IA Principle: provides outer approximations of real quantities being looked for
\(\rightsquigarrow\) used for the evaluation of the ranges of functions
Definition 5 (Interval extension). Let \(f\) be a real function defined over
\(E \subset \mathbb{R}^{n}\). Any interval function \(\phi\) is an interval extension of \(f\) provided that:
\[
\forall \boldsymbol{x} \subset \mathbb{R}^{n},\{f(x) \mid x \in \boldsymbol{x} \cap E\} \subset \boldsymbol{\phi}(\boldsymbol{x})
\]

Examples. possibility of an infinite number of interval extensions
\begin{tabular}{lll} 
rough extension: & \(\phi_{\boldsymbol{f}}: \boldsymbol{x} \mapsto[-\infty,+\infty]\) & totally useless \\
ideal extension: & \(\phi_{\boldsymbol{f}}: \boldsymbol{x} \mapsto \square\{f(x) \mid x \in \boldsymbol{x}\}\) & extremely rare \\
natural extension: & \(\phi_{\boldsymbol{f}}: \boldsymbol{x} \mapsto \boldsymbol{f}(\boldsymbol{x})\) & syntactic interval extension
\end{tabular}

\section*{Global optimization}

Definition 1 (Unconstrained and constrained global optimization).



\section*{Optimization: solving methods (1/2)}

Optimality conditions [Fritz, 1948] [Hiriart-Urruty, 1995\&1996]
- Optimization problem \(\rightsquigarrow\) constraint satisfaction problem

\section*{Optimization: solving methods (1/2)}

Optimality conditions [Fritz, 1948] [Hiriart-Urruty, 1995\&1996]
- Optimization problem \(\rightsquigarrow\) constraint satisfaction problem
ex. for unconstrained optimization, slope \(=0\)


\section*{Optimization: solving methods (1/2)}

Optimality conditions [Fritz, 1948] [Hiriart-Urruty, 1995\&1996]
- Optimization problem \(\rightsquigarrow\) constraint satisfaction problem
ex. for unconstrained optimization, slope \(=0\)
\(\leadsto\) not necessarily an optimum, nor a global one (except if the problem is convex)
\(\leadsto\) necessary but not sufficient conditions (Lagrange, Fritz-John, Karush-Kuhn-Tucker)

\section*{Optimization: solving methods (1/2)}

Optimality conditions [Fritz, 1948] [Hiriart-Urruty, 1995\&1996]
- Optimization problem \(\rightsquigarrow\) constraint satisfaction problem

Penalty-based methods [Joines \& Houck, 1994] [Michalewicz \& al., 1995\&1996]
- Constrained optimization problem \(\rightsquigarrow\) unconstrained optimization problem

\section*{Optimization: solving methods (1/2)}

Optimality conditions [Fritz, 1948] [Hiriart-Urruty, 1995\&1996]
- Optimization problem \(\rightsquigarrow\) constraint satisfaction problem

Penalty-based methods [Joines \& Houck, 1994] [Michalewicz \& al., 1995\&1996]
- Constrained optimization problem \(\rightsquigarrow\) unconstrained optimization problem


\section*{Optimization: solving methods (1/2)}

Optimality conditions [Fritz, 1948] [Hiriart-Urruty, 1995\&1996]
- Optimization problem \(\rightsquigarrow\) constraint satisfaction problem

Penalty-based methods [Joines \& Houck, 1994] [Michalewicz \& al., 1995\&1996]
- Constrained optimization problem \(\rightsquigarrow\) unconstrained optimization problem \(\rightsquigarrow\) number of iterations uncontrolled, optimization process to be performed
\(\leadsto\) no guarantee about the globality of the solutions

\section*{Optimization: solving methods (1/2)}

Optimality conditions [Fritz, 1948] [Hiriart-Urruty, 1995\&1996]
- Optimization problem \(\rightsquigarrow\) constraint satisfaction problem

Penalty-based methods [Joines \& Houck, 1994] [Michalewicz \& al., 1995\&1996]
- Constrained optimization problem \(\rightsquigarrow\) unconstrained optimization problem

Meta-heuristics [Goldberg, 1989] [Michalewicz, 1996]
- genetic, evolutionary algorithms, tabu search, simulated annealing, clustering,
etc.

\section*{Optimization: solving methods (1/2)}

Optimality conditions [Fritz, 1948] [Hiriart-Urruty, 1995\&1996]
- Optimization problem \(\rightsquigarrow\) constraint satisfaction problem

Penalty-based methods [Joines \& Houck, 1994] [Michalewicz \& al., 1995\&1996]
- Constrained optimization problem \(\rightsquigarrow\) unconstrained optimization problem

Meta-heuristics [Goldberg, 1989] [Michalewicz, 1996]
- genetic, evolutionary algorithms, tabu search, simulated annealing, clustering,
etc.

i.e., no guarantee about the solution set: minimum, globality, completeness

\section*{Optimization: solving methods (2/2)}

Objective: a complete method = globality, and no loss of solutions

\section*{Optimization: solving methods (2/2)}

Objective: a complete method \(=\) globality, and no loss of solutions

Continuation methods [Chen \& Harker, 1993]
- series of auxiliary problems leading continuously to the initial problem to be solved
* global information, completeness

\section*{Optimization: solving methods (2/2)}

Objective: a complete method = globality, and no loss of solutions

Continuation methods [Chen \& Harker, 1993]
- series of auxiliary problems leading continuously to the initial problem to be solved
* global information, completeness
\(\dagger\) uneffective for high-order problems, and apply only to polynomial expressions

\section*{Optimization: solving methods (2/2)}

Objective: a complete method = globality, and no loss of solutions

Continuation methods [Chen \& Harker, 1993]
- series of auxiliary problems leading continuously to the initial problem
to be solved
* global information, completeness
\(\dagger\) uneffective for high-order problems, and apply only to polynomial expressions

Interval methods [Hansen, 1992] [Kearfott, 1996]
- real quantities bounded by intervals, controlled rounding-errors
* global information, completeness

\section*{Optimization: solving methods (2/2)}

Objective: a complete method = globality, and no loss of solutions

Continuation methods [Chen \& Harker, 1993]
- series of auxiliary problems leading continuously to the initial problem
to be solved
* global information, completeness
\(\dagger\) uneffective for high-order problems, and apply only to polynomial expressions

Interval methods [Hansen, 1992] [Kearfott, 1996]
- real quantities bounded by intervals, controlled rounding-errors
* global information, completeness
\(\dagger\) more expensive computations (higher complexity)
\(\dagger\) loss of accuracy

\section*{Interval optimization}

Classical algorithms. Branch-and-Bound / Prune algorithms
[Hansen, 1992] [Kearfott, 1996] [VanHentenryck et al., 1995\&1997]
= upper-bound update and domain tightening processes

\section*{Interval optimization}

Classical algorithms. Branch-and-Bound / Prune algorithms
[Hansen, 1992] [Kearfott, 1996] [VanHentenryck et al., 1995\&1997]
2 stable traits: (interval) evaluation and constraint solving

\section*{Interval optimization}

Classical algorithms. Branch-and-Bound / Prune algorithms
[Hansen, 1992] [Kearfott, 1996] [VanHentenryck et al., 1995\&1997]
2 stable traits: (interval) evaluation and constraint solving
Interval evaluation.

\[
\omega \quad \operatorname{boxes}\left(\boldsymbol{x}_{\boldsymbol{i}}, \boldsymbol{f}\left(\boldsymbol{x}_{\boldsymbol{i}}\right)\right), i \in\{1,2,3,4\}
\]

\section*{Interval optimization}

Classical algorithms. Branch-and-Bound / Prune algorithms
[Hansen, 1992] [Kearfott, 1996] [VanHentenryck et al., 1995\&1997]
2 stable traits: (interval) evaluation and constraint solving
Interval evaluation.

\(\omega \operatorname{boxes}\left(\boldsymbol{x}_{\boldsymbol{i}}, \boldsymbol{f}\left(\boldsymbol{x}_{\boldsymbol{i}}\right)\right), i \in\{1,2,3,4\}\)

\section*{Interval optimization}

Classical algorithms. Branch-and-Bound / Prune algorithms
[Hansen, 1992] [Kearfott, 1996] [VanHentenryck et al., 1995\&1997]
2 stable traits: (interval) evaluation and constraint solving
Interval evaluation.

\[
\infty \quad \operatorname{boxes}\left(\boldsymbol{x}_{\boldsymbol{i}}, \boldsymbol{f}\left(\boldsymbol{x}_{\boldsymbol{i}}\right)\right), i \in\{1,2,3,4\}
\]

\section*{Interval optimization}

Classical algorithms. Branch-and-Bound / Prune algorithms
[Hansen, 1992] [Kearfott, 1996] [VanHentenryck et al., 1995\&1997]
2 stable traits: (interval) evaluation and constraint solving
Interval evaluation.

\[
\omega \quad \operatorname{boxes}\left(\boldsymbol{x}_{\boldsymbol{i}}, \boldsymbol{f}\left(\boldsymbol{x}_{\boldsymbol{i}}\right)\right), i \in\{1,2,3,4\}
\]

\section*{Interval optimization}

Classical algorithms. Branch-and-Bound / Prune algorithms
[Hansen, 1992] [Kearfott, 1996] [VanHentenryck et al., 1995\&1997]
2 stable traits: (interval) evaluation and constraint solving
Interval evaluation.

\section*{overestimation \(=\) dependency problem}

\section*{Interval optimization}

Classical algorithms. Branch-and-Bound / Prune algorithms
[Hansen, 1992] [Kearfott, 1996] [VanHentenryck et al., 1995\&1997]
2 stable traits: (interval) evaluation and constraint solving
Interval evaluation. dependency problem

\section*{Constraint solving.}


\section*{Interval optimization}

Classical algorithms. Branch-and-Bound / Prune algorithms
[Hansen, 1992] [Kearfott, 1996] [VanHentenryck et al., 1995\&1997]
2 stable traits: (interval) evaluation and constraint solving
Interval evaluation. dependency problem

\section*{Constraint solving.}


\section*{Interval optimization}

Classical algorithms. Branch-and-Bound / Prune algorithms
[Hansen, 1992] [Kearfott, 1996] [VanHentenryck et al., 1995\&1997]
2 stable traits: (interval) evaluation and constraint solving
Interval evaluation. dependency problem
Constraint solving.


\section*{Interval optimization}

Classical algorithms. Branch-and-Bound / Prune algorithms
[Hansen, 1992] [Kearfott, 1996] [VanHentenryck et al., 1995\&1997]
2 stable traits: (interval) evaluation and constraint solving
Interval evaluation. dependency problem
Constraint solving.


\section*{Interval optimization}

Classical algorithms. Branch-and-Bound / Prune algorithms
[Hansen, 1992] [Kearfott, 1996] [VanHentenryck et al., 1995\&1997]
2 stable traits: (interval) evaluation and constraint solving
Interval evaluation. dependency problem
Constraint solving.


\section*{Interval optimization}

Classical algorithms. Branch-and-Bound / Prune algorithms
[Hansen, 1992] [Kearfott, 1996] [VanHentenryck et al., 1995\&1997]
2 stable traits: (interval) evaluation and constraint solving
Interval evaluation. dependency problem
Constraint solving.

\[
\begin{gathered}
\begin{array}{c}
c_{1}: \\
c_{2}: \\
\hdashline y=x^{2} \\
\Downarrow \\
\hline c_{1}: \\
c_{2}^{\prime}: \\
\hline
\end{array} x^{2}=x^{2}=1-x^{4} \\
\hline
\end{gathered}
\]

\section*{Interval optimization}

Classical algorithms. Branch-and-Bound / Prune algorithms
[Hansen, 1992] [Kearfott, 1996] [VanHentenryck et al., 1995\&1997]
2 stable traits: (interval) evaluation and constraint solving
Interval evaluation. dependency problem
Constraint solving.

\section*{locality of reasonings}

\section*{Soft constraints}

Definition 6 (Soft constraint). Given a constraint \(c\) over a set of variables \(V\), defining a relation \(\rho\). A soft constraint \(\widehat{c}\) resulting from \(c\) is a constraint defining a relation \(\widehat{\rho}\) over \(V\) s.t. \(\rho \subset \widehat{\rho}\).

\section*{Soft constraints}

Definition 6 (Soft constraint). Given a constraint c over a set of variables \(V\), defining a relation \(\rho\). A soft constraint \(\widehat{c}\) resulting from \(c\) is a constraint defining a relation \(\widehat{\rho}\) over \(V\) s.t. \(\rho \subset \widehat{\rho}\).
Considering softness... some possible treatments

\[
\begin{aligned}
& \text { - Constraint } c_{1}:\left(x-\frac{7}{4}\right)^{2}+y^{2} \leq\left(\frac{3}{2}\right)^{2} \\
& \text { - Constraint } c_{2}: x+2 y^{2} \leq-\frac{1}{4} \\
& \quad \text { Solution set }=\emptyset
\end{aligned}
\]

\section*{Soft constraints}

Definition 6 (Soft constraint). Given a constraint c over a set of variables \(V\), defining a relation \(\rho\). A soft constraint \(\widehat{c}\) resulting from \(c\) is a constraint defining a relation \(\widehat{\rho}\) over \(V\) s.t. \(\rho \subset \widehat{\rho}\).
Considering softness... some possible treatments


\section*{Soft constraints}

Definition 6 (Soft constraint). Given a constraint c over a set of variables \(V\), defining a relation \(\rho\). A soft constraint \(\widehat{c}\) resulting from \(c\) is a constraint defining a relation \(\widehat{\rho}\) over \(V\) s.t. \(\rho \subset \widehat{\rho}\).
Considering softness... some possible treatments

- Constraint \(c_{1}:\left(x-\frac{7}{4}\right)^{2}+y^{2} \leq\left(\frac{3}{2}\right)^{2}\)
- Constraint \(c_{2}: x+2 y^{2} \leq-\frac{1}{4}\)
- Constraint \(c_{3}:\left(x-\frac{3}{2}\right)^{2}+\left(y-\frac{3}{2}\right)^{2} \leq 1\)

\section*{Soft constraints}

Definition 6 (Soft constraint). Given a constraint c over a set of variables \(V\), defining a relation \(\rho\). A soft constraint \(\widehat{c}\) resulting from \(c\) is a constraint defining a relation \(\widehat{\rho}\) over \(V\) s.t. \(\rho \subset \widehat{\rho}\).
Considering softness... some possible treatments

- Constraint \(c_{1}:\left(x-\frac{7}{4}\right)^{2}+y^{2} \leq\left(\frac{3}{2}\right)^{2}\)
- Constraint \(c_{2}: x+2 y^{2} \leq-\frac{1}{4}\)
- Constraint \(c_{3}:\left(x-\frac{3}{2}\right)^{2}+\left(y-\frac{3}{2}\right)^{2} \leq 1\)

\section*{Soft constraints}

Definition 6 (Soft constraint). Given a constraint c over a set of variables \(V\), defining a relation \(\rho\). A soft constraint \(\widehat{c}\) resulting from \(c\) is a constraint defining a relation \(\widehat{\rho}\) over \(V\) s.t. \(\rho \subset \widehat{\rho}\).
Considering softness... some possible treatments

- Constraint \(c_{1}:\left(x-\frac{7}{4}\right)^{2}+y^{2} \leq\left(\frac{3}{2}\right)^{2}\)
- Constraint \(c_{2}: x+2 y^{2} \leq-\frac{1}{4}\)
- Constraint \(c_{3}:\left(x-\frac{3}{2}\right)^{2}+\left(y-\frac{3}{2}\right)^{2} \leq 1\)

\section*{Soft constraints}

Definition 6 (Soft constraint). Given a constraint c over a set of variables \(V\), defining a relation \(\rho\). A soft constraint \(\widehat{c}\) resulting from \(c\) is a constraint defining a relation \(\widehat{\rho}\) over \(V\) s.t. \(\rho \subset \widehat{\rho}\).
Considering softness... some possible treatments


\section*{Soft constraints: frameworks}

Hierarchical CSP [Borning et al., 1988,1989\&1992] [Wilson, 1993]
- the set of constraints is ordered (hierarchical) objective: determining the instanciations satisfying the hierarchy

\section*{Soft constraints: frameworks}

Hierarchical CSP [Borning et al., 1988,1989\&1992] [Wilson, 1993]
- the set of constraints is ordered (hierarchical) objective: determining the instanciations satisfying the hierarchy
* preferences over the constraints and over the search space

\section*{Soft constraints: frameworks}

Hierarchical CSP [Borning et al., 1988,1989\&1992] [Wilson, 1993]
\(\star\) preference over the constraints and over the search space
Partial CSP [Freuder \& Wallace, 1995]
- given \(P\) to be solved, and some distance \(d,(\mathcal{P}, d)\) ordered set of problems objective: determining the closest problem \(P^{\prime}\) and solving it

\section*{Soft constraints: frameworks}

Hierarchical CSP [Borning et al., 1988,1989\&1992] [Wilson, 1993]
\(\star\) preference over the constraints and over the search space
Partial CSP [Freuder \& Wallace, 1995]
- given \(P\) to be solved, and some distance \(d,(\mathcal{P}, d)\) ordered set of problems objective: determining the closest problem \(P^{\prime}\) and solving it
\(\star\) preference over the space of problems

\section*{Soft constraints: frameworks}

Hierarchical CSP [Borning et al., 1988,1989\&1992] [Wilson, 1993]
* preference over the constraints and over the search space

Partial CSP [Freuder \& Wallace, 1995]
* preference over the space of problems

Semiring-based CSP [Bistarelli, Montanari \& Rossi, 1997\&1999]
- each instanciation \(x\) is valuated w.r.t. each constraint valuations are combined, and express the quality of \(x\) objective: determining the best quality instanciation

\section*{Soft constraints: frameworks}

Hierarchical CSP [Borning et al., 1988,1989\&1992] [Wilson, 1993]
\(\star\) preference over the constraints and over the search space
Partial CSP [Freuder \& Wallace, 1995]
\(\star\) preference over the space of problems
Semiring-based CSP [Bistarelli, Montanari \& Rossi, 1997\&1999]
- each instanciation \(x\) is valuated w.r.t. each constraint valuations are combined, and express the quality of \(x\) objective: determining the best quality instanciation
* preference over the search space

\section*{Soft constraints: frameworks}

Hierarchical CSP [Borning et al., 1988,1989\&1992] [Wilson, 1993]
\(\star\) preference over the constraints and over the search space
Partial CSP [Freuder \& Wallace, 1995]
\(\star\) preference over the space of problems
Semiring-based CSP [Bistarelli, Montanari \& Rossi, 1997\&1999]
- each instanciation \(x\) is valuated w.r.t. each constraint valuations are combined, and express the quality of \(x\)
objective: determining the best quality instanciation
* preference over the search space
\(\dagger\) the qualitative aspect is drowned out by the (quantitative) combination

\section*{Soft constraints: frameworks}

Hierarchical CSP [Borning et al., 1988,1989\&1992] [Wilson, 1993]
\(\star\) preference over the constraints and over the search space
Partial CSP [Freuder \& Wallace, 1995]
\(\star\) preference over the space of problems
Semiring-based CSP [Bistarelli, Montanari \& Rossi, 1997\&1999]
\(\star\) preference over the search space
Valued CSP [Bistarelli, Montanari \& Rossi, 1997\&1999]
- constraints are valuated (weighted) instanciations are valued through the constraint valuation objective: determining the best quality instanciation equivalent to SCSP

\section*{Soft constraints: frameworks}

Hierarchical CSP [Borning et al., 1988,1989\&1992] [Wilson, 1993]
\(\star\) preference over the constraints and over the search space
Partial CSP [Freuder \& Wallace, 1995]
\(\star\) preference over the space of problems
Semiring-based CSP [Bistarelli, Montanari \& Rossi, 1997\&1999]
\(\star\) preference over the search space
Valued CSP [Bistarelli, Montanari \& Rossi, 1997\&1999]
- constraints are valuated (weighted)
instanciations are valued through the constraint valuation
objective: determining the best quality instanciation
equivalent to SCSP
* a kind of preferences

\section*{Soft constraints: frameworks}

Hierarchical CSP [Borning et al., 1988,1989\&1992] [Wilson, 1993]
\(\star\) preference over the constraints and over the search space
Partial CSP [Freuder \& Wallace, 1995]
\(\star\) preference over the space of problems
Semiring-based CSP [Bistarelli, Montanari \& Rossi, 1997\&1999]
\(\star\) preference over the search space
Valued CSP [Bistarelli, Montanari \& Rossi, 1997\&1999]
* equivalent to SCSP

Fuzzy CSP [Dubois, Fargier \& Prade, 1996] [Moura Pires, 2000]
- integrated in the SCSP framework

\section*{Soft constraints: frameworks}

Hierarchical CSP [Borning et al., 1988,1989\&1992] [Wilson, 1993]
\(\star\) preference over the constraints and over the search space
Partial CSP [Freuder \& Wallace, 1995]
* preference over the space of problems

Semiring-based CSP [Bistarelli, Montanari \& Rossi, 1997\&1999]
\(\star\) preference over the search space
Valued CSP [Bistarelli, Montanari \& Rossi, 1997\&1999]
\(\star\) equivalent to SCSP
Fuzzy CSP [Dubois, Fargier \& Prade, 1996] [Moura Pires, 2000]
- integrated in the SCSP framework
ex: priorities, discrimin (leximin)

\section*{Soft constraints: frameworks}

Hierarchical CSP [Borning et al., 1988,1989\&1992] [Wilson, 1993]
\(\star\) preference over the constraints and over the search space
Partial CSP [Freuder \& Wallace, 1995]
* preference over the space of problems

Semiring-based CSP [Bistarelli, Montanari \& Rossi, 1997\&1999]
\(\star\) preference over the search space
Valued CSP [Bistarelli, Montanari \& Rossi, 1997\&1999]
* equivalent to SCSP

Fuzzy CSP [Dubois, Fargier \& Prade, 1996] [Moura Pires, 2000]
- integrated in the SCSP framework
* allows to express priorities and preferences

\section*{Recap}

There is room for improvement:
© the dependency problem of interval computations;
6 the locality of reasonings arising in constraint solving;
In the following, we also present:
© a unifying framework for modeling and solving soft constraints.
G and a way to address some problems in distributed constraint solving

\section*{Outline of the presentation}

G Continuous constraints: definitions and solving process
© An example of under and over-constrained problems
6 Important notions
© Some research directions
© Conclusion

\section*{Outline of the presentation}

G Continuous constraints: definitions and solving process
G An example of under and over-constrained problems
6 Important notions
๑ Some research directions
- Interval evaluation: the dependency problem
\(\Delta\) Constraint solving: the locality of reasonings
\(\Delta\) Soft constraints: a unifying hard framework
\(\Delta\) Distributed constraints: speculating to solve faster
© Conclusion

\section*{Some research directions}

The dependency problem
The locality of reasonings
A unifying framework for soft constraints
Distributed constraints: speculations

\title{
1. The dependency problem
}

The workings of this problem
Classical treatments and their limits
Another factorization method

\section*{The workings}
1. Independency of the occurrences.

2 occurrences of the same variable "behave" as if they were different variables

\section*{The workings}
1. Independency of the occurrences.

2 occurrences of the same variable "behave" as if they were different variables
\[
\begin{gathered}
\boldsymbol{x}=[-1,1] \rightsquigarrow \boldsymbol{x} \times \boldsymbol{x}=[-1,1] \text { instead of }[0,1] \\
=[\underline{\boldsymbol{x}} \overline{\boldsymbol{x}}, \overline{\boldsymbol{x}} \boldsymbol{x}] \\
=\boldsymbol{x} \times \boldsymbol{y}, \text { where } \boldsymbol{y}=\boldsymbol{x}
\end{gathered}
\]

\section*{The workings}

\section*{1. Independency of the occurrences.}

2 occurrences of the same variable "behave" as if they were different variables
* limiting the number of occurrences [Hong \& Stahl, 1994][Ceberio \& Granvilliers, 2000]

\section*{The workings}
1. Independency of the occurrences.

2 occurrences of the same variable "behave" as if they were different variables
* limiting the number of occurrences [Hong \& Stahl, 1994][Ceberio \& Granvilliers, 2000]
2. Monotonicities.
occurrences are independent \(\rightsquigarrow\) respecting monotonicities is crucial for the computations to be performed on the proper bounds

\section*{The workings}

\section*{1. Independency of the occurrences.}

2 occurrences of the same variable "behave" as if they were different variables
* limiting the number of occurrences [Hong \& Stahl, 1994][Ceberio \& Granvilliers, 2000]
2. Monotonicities.



\section*{The workings}
1. Independency of the occurrences.

2 occurrences of the same variable "behave" as if they were different variables
\(\star\) limiting the number of occurrences [Hong \& Stahl, 1994]ICeberio \& Granvilifers, 2000]
2. Monotonicities.
occurrences are independent \(\rightsquigarrow\) monotony is to be respected so that computations are performed on the proper bounds
\(\dagger\) difficult to determine the monotonicities
* at least, we try to respect some properties:
multiplications are easier to handle and control, sub-distributivity of IA

\section*{The workings}
1. Independency of the occurrences.

2 occurrences of the same variable "behave" as if they were different variables
* limiting the number of occurrences [Hong \& Stahl, 1994][Ceberio \& Granvilliers, 2000]

\section*{2. Monotonicities.}
occurrences are independent \(\rightsquigarrow\) monotony is to be respected so that computations are performed on the proper bounds
\(\dagger\) difficult to determine the monotonicities
* at least, we try to respect some properties:
multiplications are easier to handle and control, sub-distributivity of \(I A\)
\(\rightsquigarrow\) factorized forms

\section*{Classical treatments and their limits} for univariate polynomials

Interval Horner form. [Shih-Chieh, 1303][Horner, 1819][Stahl, 1995]
Let \(p\) be a polynomial defined by: \(a_{0}+\sum_{i=1}^{n} a_{i} x^{\alpha_{i}}\)
\[
\boldsymbol{h}_{\boldsymbol{p}}(\boldsymbol{x})=\boldsymbol{a}_{0}+\boldsymbol{x}^{d_{1}}\left(\cdots+\boldsymbol{x}^{d_{n-1}}\left(\boldsymbol{a}_{n-1}+\boldsymbol{a}_{n} \boldsymbol{x}^{d_{n}}\right) \cdots\right)
\]

Def. Intermediate polynomials:
\[
\left\{\begin{array}{l}
p_{n}(x)=a_{n} \\
p_{i}(x)=x^{d_{i+1}} p_{i+1}(x)+a_{i} \quad i=n-1, n-2, \ldots, 0
\end{array}\right.
\]

\section*{Classical treatments and their limits} for univariate polynomials

Interval Horner form. [Shih-Chieh, 1303][Horner, 1819][Stahl, 1995]
Let \(p\) be a polynomial defined by: \(a_{0}+\sum_{i=1}^{n} a_{i} x^{\alpha_{i}}\)
\[
\boldsymbol{h}_{\boldsymbol{p}}(\boldsymbol{x})=\boldsymbol{a}_{0}+\boldsymbol{x}^{d_{1}}\left(\cdots+\boldsymbol{x}^{d_{n-1}}\left(\boldsymbol{a}_{n-1}+\boldsymbol{a}_{n} \boldsymbol{x}^{d_{n}}\right) \cdots\right)
\]
= optimal w.r.t. factorization:
1. made of only multiplications and additions of constants \(\rightsquigarrow\) monotonicity
2. completely nested \(\rightsquigarrow\) sub-distributivity

\section*{Classical treatments and their limits} for univariate polynomials

Interval Horner form. [Shih-Chieh, 1303][Horner, 1819][Stahl, 1995]
Let \(p\) be a polynomial defined by: \(a_{0}+\sum_{i=1}^{n} a_{i} x^{\alpha_{i}}\)
\[
\boldsymbol{h}_{\boldsymbol{p}}(\boldsymbol{x})=\boldsymbol{a}_{0}+\boldsymbol{x}^{d_{1}}\left(\cdots+\boldsymbol{x}^{d_{n-1}}\left(\boldsymbol{a}_{n-1}+\boldsymbol{a}_{n} \boldsymbol{x}^{d_{n}}\right) \cdots\right)
\]
1. Monotonicity.

Let \(O_{p}=\square\left\{\right.\) all the zeros of the intermediate polynomials of \(\left.h_{p} \cup\{0\}\right\}\)
\[
\forall \boldsymbol{x} \in \mathbb{R}^{n} \text { s.t. } \stackrel{\circ}{\boldsymbol{x}} \cap O_{p}=\varnothing, h_{p}(\boldsymbol{x})=\{p(x) \mid x \in \boldsymbol{x}\}
\]

\section*{Classical treatments and their limits} for univariate polynomials

Interval Horner form. [Shih-Chieh, 1303][Horner, 1819][Stahl, 1995]
Let \(p\) be a polynomial defined by: \(a_{0}+\sum_{i=1}^{n} a_{i} x^{\alpha_{i}}\)
\[
\boldsymbol{h}_{\boldsymbol{p}}(\boldsymbol{x})=\boldsymbol{a}_{0}+\boldsymbol{x}^{d_{1}}\left(\cdots+\boldsymbol{x}^{d_{n-1}}\left(\boldsymbol{a}_{n-1}+\boldsymbol{a}_{n} \boldsymbol{x}^{d_{n}}\right) \cdots\right)
\]
1. Monotonicity.

Let \(O_{p}=\square\left\{\right.\) all the zeros of the intermediate polynomials of \(\left.h_{p} \cup\{0\}\right\}\)
\[
\forall \boldsymbol{x} \in \mathbb{R}^{n} \text { s.t. } \stackrel{\circ}{\boldsymbol{x}} \cap O_{p}=\varnothing, h_{p}(\boldsymbol{x})=\{p(x) \mid x \in \boldsymbol{x}\}
\]
\(\dagger\) beyond this condition, no guarantee.

\section*{Horner}


\section*{Classical treatments and their limits} for univariate polynomials

Interval Horner form. [Shih-Chieh, 1303][Horner, 1819][Stahl, 1995]
Let \(p\) be a polynomial defined by: \(a_{0}+\sum_{i=1}^{n} a_{i} x^{\alpha_{i}}\)
\[
\boldsymbol{h}_{\boldsymbol{p}}(\boldsymbol{x})=\boldsymbol{a}_{0}+\boldsymbol{x}^{d_{1}}\left(\cdots+\boldsymbol{x}^{d_{n-1}}\left(\boldsymbol{a}_{n-1}+\boldsymbol{a}_{n} \boldsymbol{x}^{d_{n}}\right) \cdots\right)
\]
1. Monotonicity.

Let \(O_{p}=\square\left\{\right.\) all the zeros of the intermediate polynomials of \(\left.h_{p} \cup\{0\}\right\}\)
\[
\forall \boldsymbol{x} \in \mathbb{R}^{n} \text { s.t. } \stackrel{\circ}{\boldsymbol{x}} \cap O_{p}=\varnothing, h_{p}(\boldsymbol{x})=\{p(x) \mid x \in \boldsymbol{x}\}
\]
\(\dagger\) beyond this condition, no guarantee.
\(\dagger p b\). with the decomposition of powers

\section*{Classical treatments and their limits} for univariate polynomials

Interval Horner form. [Shih-Chieh, 1303][Horner, 1819][Stahl, 1995]
Let \(p\) be a polynomial defined by: \(a_{0}+\sum_{i=1}^{n} a_{i} x^{\alpha_{i}}\)
\[
\boldsymbol{h}_{\boldsymbol{p}}(\boldsymbol{x})=\boldsymbol{a}_{0}+\boldsymbol{x}^{d_{1}}\left(\cdots+\boldsymbol{x}^{d_{n-1}}\left(\boldsymbol{a}_{n-1}+\boldsymbol{a}_{n} \boldsymbol{x}^{d_{n}}\right) \cdots\right)
\]
2. Sub-distributivity.
\[
\boldsymbol{a}_{0}+\overbrace{\boldsymbol{x} \cdots \boldsymbol{x}}^{d_{1} \text { times }}(\cdots+\overbrace{\boldsymbol{x} \cdots \boldsymbol{x}}^{d_{n-1}}(\boldsymbol{a}_{n-1}+\boldsymbol{a}_{n} \overbrace{\boldsymbol{x} \cdots \boldsymbol{x}}^{d_{n} \text { times }}) \cdots) \subseteq \boldsymbol{a}_{0}+\sum_{i=1}^{n} \boldsymbol{a}_{i} \overbrace{\boldsymbol{x} \cdot \cdots \boldsymbol{x}}^{\beta_{i} \text { times }}
\]

\section*{Classical treatments and their limits} for univariate polynomials

Interval Horner form. [Shih-Chieh, 1303][Horner, 1819][Stahl, 1995]
Let \(p\) be a polynomial defined by: \(a_{0}+\sum_{i=1}^{n} a_{i} x^{\alpha_{i}}\)
\[
\boldsymbol{h}_{\boldsymbol{p}}(\boldsymbol{x})=\boldsymbol{a}_{0}+\boldsymbol{x}^{d_{1}}\left(\cdots+\boldsymbol{x}^{d_{n-1}}\left(\boldsymbol{a}_{n-1}+\boldsymbol{a}_{n} \boldsymbol{x}^{d_{n}}\right) \cdots\right)
\]
2. Sub-distributivity.
\[
\boldsymbol{a}_{0}+\overbrace{\boldsymbol{x} \cdots \boldsymbol{x}}^{d_{1} \text { times }}(\cdots+\overbrace{\boldsymbol{x} \cdots \boldsymbol{x}}^{d_{n-1}}(\boldsymbol{a}_{n-1}+\boldsymbol{a}_{n} \overbrace{\boldsymbol{x} \cdots \boldsymbol{x}}^{d_{n} \text { times }}) \cdots) \subseteq \boldsymbol{a}_{0}+\sum_{i=1}^{n} \boldsymbol{a}_{i} \overbrace{\boldsymbol{x} \cdots \boldsymbol{x}}^{\beta_{i} \text { times }}
\]
\[
\boldsymbol{a}_{0}+\boldsymbol{x}^{d_{1}}\left(\cdots+\boldsymbol{x}^{d_{n-1}}\left(\boldsymbol{a}_{n-1}+\boldsymbol{a}_{n} \boldsymbol{x}^{d_{n}}\right) \cdots\right) \stackrel{?}{\subseteq} \boldsymbol{a}_{0}+\sum_{i=1}^{n} \boldsymbol{a}_{i} \boldsymbol{x}^{\alpha_{i}}
\]

\section*{Classical treatments and their limits} for univariate polynomials

Interval Horner form. [Shih-Chieh, 1303][Horner, 1819][Stahl, 1995]
Let \(p\) be a polynomial defined by: \(a_{0}+\sum_{i=1}^{n} a_{i} x^{\alpha_{i}}\)
\[
\boldsymbol{h}_{\boldsymbol{p}}(\boldsymbol{x})=\boldsymbol{a}_{0}+\boldsymbol{x}^{d_{1}}\left(\cdots+\boldsymbol{x}^{d_{n-1}}\left(\boldsymbol{a}_{n-1}+\boldsymbol{a}_{n} \boldsymbol{x}^{d_{n}}\right) \cdots\right)
\]
2. Sub-distributivity.
\[
\begin{array}{lll}
p(x) & =x+x^{4} & h_{p}(x) \\
q(x) & =x+x x x x \quad r(x) & =x\left(x^{3}+1\right) \\
\text { Let } \boldsymbol{x}=[-2,1]: & \boldsymbol{p}(\boldsymbol{x})=[-2,17] & \boldsymbol{h}_{\boldsymbol{p}}(\boldsymbol{x})=[-7,14] \\
& \boldsymbol{q}(\boldsymbol{x})=[-10,17] & \boldsymbol{r}(\boldsymbol{x}) \quad=[-10,14]
\end{array}
\]

\section*{Classical treatments and their limits} for univariate polynomials

Interval Horner form. [Shih-Chieh, 1303][Horner, 1819][Stahl, 1995]
Let \(p\) be a polynomial defined by: \(a_{0}+\sum_{i=1}^{n} a_{i} x^{\alpha_{i}}\)
\[
\boldsymbol{h}_{\boldsymbol{p}}(\boldsymbol{x})=\boldsymbol{a}_{0}+\boldsymbol{x}^{d_{1}}\left(\cdots+\boldsymbol{x}^{d_{n-1}}\left(\boldsymbol{a}_{n-1}+\boldsymbol{a}_{n} \boldsymbol{x}^{d_{n}}\right) \cdots\right)
\]

Limits of Horner's form.
\(\dagger\) when intersecting the overestimation set: no guarantee
\(\dagger\) does not benefit from the sub-distributivity property
\(\rightsquigarrow\) Another factorization scheme

\title{
Another factorization scheme
}

\section*{for univariate polynomials}

\section*{Objectives: 1. controlled decomposition of powers \\ 2. priority to even powers}

\section*{Another factorization scheme} for univariate polynomials

\section*{Objectives: 1. controlled decomposition of powers}
2. priority to even powers

Elementary scheme. Given \(p(x)=a x^{\alpha+\gamma}+b x^{\alpha}\),
\[
\operatorname{Mcr}_{p}(x)=a x^{\alpha-\gamma}\left[\left(x^{\gamma}+\frac{b}{2 a}\right)^{2}-\left(\frac{b}{2 a}\right)^{2}\right]
\]
with: \(a, b \in \mathbb{R}^{*}, \alpha \geqslant \gamma\) and \(\alpha+\gamma\) even.
Horner form of the same binomial: \(h_{p}(x)=x^{\alpha}\left(b+a x^{\gamma}\right)\)

\section*{Another factorization scheme} for univariate polynomials

\section*{Objectives: 1. controlled decomposition of powers}
2. priority to even powers

Elementary scheme. Given \(p(x)=a x^{\alpha+\gamma}+b x^{\alpha}\),
\[
\operatorname{Mcr}_{p}(x)=a x^{\alpha-\gamma}\left[\left(x^{\gamma}+\frac{b}{2 a}\right)^{2}-\left(\frac{b}{2 a}\right)^{2}\right]
\]
with: \(a, b \in \mathbb{R}^{*}, \alpha \geqslant \gamma\) and \(\alpha+\gamma\) even.

Main properties.
- \(\forall \boldsymbol{x} \in \mathbb{R}, 0 \notin \boldsymbol{x} \rightarrow w\left(\operatorname{Mcr}_{p}(\boldsymbol{x})\right) \leqslant w\left(\boldsymbol{h}_{p}(\boldsymbol{x})\right)\)
- \(\left\{\begin{array}{l}\left(a b>0 \text { and }\left(\underline{\boldsymbol{x}} \geqslant 0 \text { or } \overline{\boldsymbol{x}}^{\gamma} \leqslant-\frac{b}{a}\right)\right) \\ \operatorname{or}\left(a b<0 \text { and }\left(\overline{\boldsymbol{x}} \leqslant 0 \text { or } \underline{\boldsymbol{x}}^{\gamma} \geqslant \frac{b}{a}\right)\right)\end{array} \rightarrow \operatorname{Mcr}_{p}(\boldsymbol{x})=\{p(x) \mid x \in \boldsymbol{x}\}\right.\)

\section*{Mcr \(_{p}\) vs. Horner}


\title{
Another factorization scheme
}

\section*{for univariate polynomials}

Generalization. Given \(p(x)=\sum_{i=1}^{n} a_{i} x^{i}\), we define:
\[
\begin{gathered}
I=\left\{(i, j) \in\{0, \cdots, n\}^{2} \mid a_{i} \neq 0, a_{j} \neq 0, i<j<2 i, j \text { is even }\right\} \\
\text { and } I^{\prime} \subset I \text { without shared monomials }
\end{gathered}
\]

Generalization. Given \(p(x)=\sum_{i=1}^{n} a_{i} x^{i}\), we define:
\[
\begin{gathered}
I=\left\{(i, j) \in\{0, \cdots, n\}^{2} \mid a_{i} \neq 0, a_{j} \neq 0, i<j<2 i, j \text { is even }\right\} \\
\text { and } I^{\prime} \subset I \text { without shared monomials }
\end{gathered}
\]
\(\leadsto\) we can rewrite \(p\) as follows:
\[
p(x)=r(x)+\sum_{(i, j) \in I^{\prime}}\left(a_{i} x^{i}+a_{j} x^{j}\right)=r(x)+\sum_{(i, j) \in I^{\prime}} p_{i, j}(x)
\]

Generalization. Given \(p(x)=\sum_{i=1}^{n} a_{i} x^{i}\), we define:
\[
\begin{gathered}
I=\left\{(i, j) \in\{0, \cdots, n\}^{2} \mid a_{i} \neq 0, a_{j} \neq 0, i<j<2 i, j \text { is even }\right\} \\
\text { and } I^{\prime} \subset I \text { without shared monomials }
\end{gathered}
\]
\(\leadsto\) we can rewrite \(p\) as follows:
\[
p(x)=r(x)+\sum_{(i, j) \in I^{\prime}}\left(a_{i} x^{i}+a_{j} x^{j}\right)=r(x)+\sum_{(i, j) \in I^{\prime}} p_{i, j}(x)
\]
and we finally factorize:
\[
\operatorname{Mcr}_{p}(x)=r(x)+\sum_{(i, j) \in I^{\prime}} \operatorname{Mcr}_{p_{i, j}}(x)
\]

Generalization. Given \(p(x)=\sum_{i=1}^{n} a_{i} x^{i}\), we define:
\[
\begin{gathered}
I=\left\{(i, j) \in\{0, \cdots, n\}^{2} \mid a_{i} \neq 0, a_{j} \neq 0, i<j<2 i, j \text { is even }\right\} \\
\text { and } I^{\prime} \subset I \text { without shared monomials }
\end{gathered}
\]
\(\leadsto\) we can rewrite \(p\) as follows:
\[
p(x)=r(x)+\sum_{(i, j) \in I^{\prime}}\left(a_{i} x^{i}+a_{j} x^{j}\right)=r(x)+\sum_{(i, j) \in I^{\prime}} p_{i, j}(x)
\]
and we finally factorize:
\[
\operatorname{Mcr}_{p}(x)=r(x)+\sum_{(i, j) \in I^{\prime}} \operatorname{Mcr}_{p_{i, j}}(x)
\]
many possibilities \(\rightsquigarrow\) strategies are defined

\section*{Strategies and tests}

\section*{Main principles.}
- No decomposition of odd powers
- No decomposition of even powers into odd ones
- No introduction of odd powers / deletion of odd powers

\section*{Strategies and tests}

\section*{Main principles.}
- No decomposition of odd powers
- No decomposition of even powers into odd ones
- No introduction of odd powers / deletion of odd powers

Two classes of strategies. parsing the expressions in the increasing order of their powers
1. given a power \(i\), another one is looked for between \(i+1\) and \(2 i\)
2. priority to the factorization of odd powers, i.e., schemes \((i, j)\) where \(i\) is odd

\section*{Strategies and tests}

\section*{Main principles.}
- No decomposition of odd powers
- No decomposition of even powers into odd ones
- No introduction of odd powers / deletion of odd powers

Two classes of strategies. parsing the expressions in the increasing order of their powers
\[
p(x)=x^{2}+x^{3}+x^{4}+x^{5}+x^{6}+x^{7}+x^{9}+x^{12}
\]
1. given a power \(i\), another one is looked for between \(i+1\) and \(2 i\)
\(\{(2,4),(3,6),(7,12), 5,9\} \quad\{(2,4),(3,6), 5,7,9,12\}\)
2. priority to the factorization of odd powers, i.e., schemes \((i, j)\) where \(i\) is odd \(\{(3,4),(5,6),(7,12), 2,9\}\)

\section*{Strategies and tests}

\section*{Main principles.}
- No decomposition of odd powers
- No decomposition of even powers into odd ones
- No introduction of odd powers / deletion of odd powers

Tests and results.
Sparse polynomials: the greater \(\alpha\), the sparser \(P_{\alpha, n}\)
\[
P_{\alpha, n}(x)=\left(x^{\alpha}-1\right)^{n}=\sum_{k=0}^{n}(-1)^{n-k} C_{n}^{k} x^{k \alpha}
\]

Comparison of several forms to the exact range of \(P_{\alpha, n}\) over \(\boldsymbol{x}=[-0.5,0.3]\)
\begin{tabular}{|crrrrr|}
\hline\(\alpha\) & 1 & 2 & 3 & 4 & 5 \\
\hline\(s_{1} \& s_{2}\) & 1.11 & 2.57 & 1.02 & 1.00 & 1.00 \\
\(s_{1}^{\prime}\) & 1.11 & 4.86 & 1.07 & 1.05 & 1.00 \\
horner & 1.49 & 2.92 & 1.10 & 1.34 & 1.09 \\
natural & 1.15 & 2.92 & 1.08 & 1.34 & 1.05 \\
\hline
\end{tabular}

\section*{Strategies and tests}

\section*{Main principles.}
- No decomposition of odd powers
- No decomposition of even powers into odd ones
- No introduction of odd powers / deletion of odd powers

\section*{Tests and results.}

Sparse polynomials: the greater \(\alpha\), the sparser \(P_{\alpha, n}\)
\[
P_{\alpha, n}(x)=\left(x^{\alpha}-1\right)^{n}=\sum_{k=0}^{n}(-1)^{n-k} C_{n}^{k} x^{k \alpha}
\]

Randomly generated polynomials: 500-polynomial basis
interval evaluations using Mcr are globally better than Horner's

\section*{Recap}

\section*{Best strategy:}
- second strategy \((\boldsymbol{\varphi})\) when \(\stackrel{\circ}{\boldsymbol{x}} \cap O_{p} \neq \varnothing \quad \approx 25 \%\)-improvement (w.r.t. our tests)
- Horner otherwise
\(\rightarrow\) globally composition of Horner with our strategy on average

\section*{Properties.}
- beyond the overestimation interval, \(\boldsymbol{h} \circ \varphi\) is equivalent to \(\boldsymbol{p}\)
- otherwise, \(h \circ \varphi_{b}\) globally improves the Horner form (w.r.t. our tests), while always keeping equivalent to \(\boldsymbol{p}\)

\section*{Research directions}

The dependency problem
The locality of reasonings
A unifying framework for soft constraints
Distributed constraints: speculations

\section*{2. The locality of reasonings}

The workings of this problem
Classical treatments and their limits
Triangularization is an idea

\section*{The workings}
- the propagation stage only communicates locally consistent domains
- pieces of information are lost between constraints
for instance the correspondance of bounds is lost, drowned out in the local reasonings

\title{
\(\rightsquigarrow\) a new symbolic representation to enhance the propagation stage
}

\section*{Classical treatments and their limits}

Redundant constraints [Marti \& Rueher, 1995] [Benhamou \& Granvilliers, 1998]
[Van Emden, 1999]

\section*{Classical treatments and their limits}

Redundant constraints [Marti \& Rueher, 1995] [Benhamou \& Granvilliers, 1998]
[Van Emden, 1999]
Linear constraint solving and introduction of nonlinear constraints when their nonlinear variables are determined [Colmerauer, 1993]

Linearization of the nonlinear terms [Yamamura et al., 1998]
* these methods aim at improving the propagation stage
\(\dagger\) no control of the accuracy of interval computations
\(\dagger\) or no stopping control \(\rightsquigarrow\) exponential in time and memory

\section*{Classical treatments and their limits}

Redundant constraints [Marti \& Rueher, 1995] [Benhamou \& Granvilliers, 1998]
[Van Emden, 1999]
Linear constraint solving [Colmerauer, 1993]
Linearization of the nonlinear terms [Yamamura et al., 1998]

\section*{Gaussian elimination}
* generation of triangular systems, information totally shared is the system is totally triangular
\(\dagger\) only for linear systems

\section*{Classical treatments and their limits}

Redundant constraints [Marti \& Rueher, 1995] [Benhamou \& Granvilliers, 1998]
[Van Emden, 1999]
Linear constraint solving [Colmerauer, 1993]
Linearization of the nonlinear terms [Yamamura et al., 1998]
Gaussian elimination
control of the amount of transformations
+ control of the interval computations accuracy
\(=\) A new triangularization scheme

\section*{Triangularization is an option}

Consider the following nonlinear constraint system:
\[
C:\left\{\begin{array}{llll|}
c_{1}: & x+y+x^{2}+x y+y^{2} & =0 \\
c_{2}: & x+t+x y+t^{2}+x^{2} & =0 \\
c_{3}: & y+z+x^{2}+z^{2} & =0 \\
c_{4}: & x+z+x^{2}+y^{2}+z^{2}+x y & =0 \\
\hline
\end{array}\right.
\]
defined over \(E=[-100,100]^{4}\),
4 solutions reached in 140 ms using realpaver [Granvilliers, 2002].
- difficult to remove nonlinear terms \(\rightsquigarrow\) the nonlinear terms are abstracted

\section*{Triangularization is an option}

Abstraction phase: equivalent system
\(\left\{\begin{array}{lllllllll|}l c_{1}: & x & +y & & & +u_{1} & +u_{2} & +u_{3} & \\ l c_{2}: & x & & & +t & +u_{1} & +u_{2} & & +u_{4} \\ l c_{3}: & & y & +z & & +u_{1} & & & =0 \\ l c_{4}: & x & & +z & & +u_{1} & +u_{2} & +u_{3} & \\ l\end{array}\right.\)
\[
\text { and the abstracted system: }\left\{\begin{array}{lll}
u_{1} & = & x^{2} \\
u_{2} & = & x y \\
u_{3} & = & y^{2} \\
u_{4} & = & t^{2} \\
u_{5} & = & z^{2}
\end{array}\right.
\]

\section*{Triangularization is an option}

Gaussian elimination phase:
\[
\left\{\begin{array}{lcccccccccc}
l c_{1}: & u_{1} & +y & & & & +x & +u_{2} & + & u_{3} & =0 \\
l c_{2}^{\prime}: & & y & & & -t & -u_{4} & & & + & u_{3} \\
l c_{3}^{\prime}: & & & -z & -u_{5} & & & & =0 \\
l c_{4}^{\prime}: & & & & & -t & -u_{4} & +x & +u_{2} & +2 u_{3} & =0
\end{array}\right.
\]

\section*{Triangularization is an option}

Gaussian elimination phase:
\[
\left\{\begin{array}{lccllllllllll}
l c_{1}: & u_{1} & +y & & & & & +x & +u_{2} & +u_{3} & =0 \\
l c_{2}^{\prime}: & & y & & & -t & -u_{4} & & & + & u_{3} & =0 \\
l c_{3}^{\prime}: & & & -z & -u_{5} & & & & +x & +u_{2} & + & u_{3} & =0 \\
l c_{4}^{\prime}: & & & & & -t & -u_{4} & +x & +u_{2} & +2 u_{3} & =0
\end{array}\right.
\]
- nonlinear terms are restored

\section*{Triangularization is an option}

Concretization phase:

The new system is solved in 240 ms !!

\section*{Triangularization is an option}

Concretization phase:
\[
\left\{\begin{array}{llllllllllll}
l c_{1}: & x^{2} & +y & & & & & +x & +x y & + & y^{2} & =0 \\
l c_{2}^{\prime}: & & y & & & -t & -t^{2} & & & + & y^{2} & =0 \\
l c_{3}^{\prime}: & & & -z & -z^{2} & & & & & & \\
l c_{4}^{\prime}: & & & & & -t & -t^{2} & +x & +x y & + & y^{2} & =0 \\
\end{array}\right.
\]

The new system is solved in 240 ms !!

Strategies are designed

Let us consider again the previous problem. We begin with the linearized system:
\[
\left\{\begin{array}{lllllllll}
l c_{1}: & x & +y & & & +u_{1} & +u_{2} & +u_{3} & \\
l c_{2}: & x & & & +t & +u_{1} & +u_{2} & & +u_{4} \\
l c_{3}: & & y & +z & & +u_{1} & & & =0 \\
l c_{4}: & x & & +z & & +u_{1} & +u_{2} & +u_{3} & +u_{5}
\end{array}=0\right.
\]

Pivot. \(\left(l c_{3}, u_{5}\right)\)

First step of elimination
\[
\left\{\begin{array}{cccccccccc}
\boldsymbol{l} \boldsymbol{c}_{\mathbf{3}}: & & y & +z & & +u_{1} & & +\boldsymbol{u}_{\mathbf{5}} & = & 0 \\
l c_{1}: & x & +y & & & +u_{1} & +u_{2} & +u_{3} & & \\
l c_{2}: & x & & & +t & +u_{1} & +u_{2} & & +u_{4} & \\
l c_{4}^{\prime}: & -x & +y & & & & -u_{2} & -u_{3} & 0 \\
& & & = & 0
\end{array}\right.
\]

Control criterion: controls the densification of the "linear" system
User linear part: 0
Abstracted linear part: -2
Pivot. \(\left(l c_{4}^{\prime}, u_{3}\right)\)

\section*{A triangularization method}

Second step of elimination


Control criterion: controls the densification of the "linear" system
User linear part: 0
Abstracted linear part: - 1
Pivot. \(\left(l c_{1}^{\prime}, u_{1}\right)\)

Third step of elimination


Control criterion: controls the densification of the "linear" system
User linear part: +1
Abstracted linear part: - 1
End of the elimination stage.

Triangularized system
\[
\left\{\begin{array}{lllllllll|}
l c_{2}^{\prime}: & -t & -x & -u_{2} & & -u_{4} & & +2 y & = \\
l c_{4}^{\prime}: & & -x & -u_{2} & -u_{3} & & & 0 \\
l c_{3}: & & & & & & & & \\
l c_{1}^{\prime}: & & & & & +u_{5} & +z & +u_{1} & +y \\
l & & = & 0 \\
l & & & & & +u_{1} & +2 y & = & 0
\end{array}\right.
\]

Concretization: nonlinear terms are restored, using the abstracted system

A triangularization method Strategies

Concretization phase
\[
\left\{\begin{array}{lllllllllllll}
c_{1}^{\prime}: & -t & -x & -x y & & -t^{2} & & & & +2 y & = & 0 \\
c_{2}^{\prime}: & & -x & -x y & -y^{2} & & & & & & \\
c_{3}^{\prime}: & & & & & & z^{2} & & +z & & +x^{2} & +y & = \\
c_{4}^{\prime}: & & & & & & & & x^{2} & & +2 y & = & 0 \\
\hline
\end{array}\right.
\]

Post-processing: simplification of the system using specific constraints
\[
x_{i}=f\left(x_{1}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{n}\right)
\]
\(c_{4}^{\prime}:-2 y=x^{2}\) is eligible for post-processing
\(-2 y\) is substituted for \(x^{2}\)

Post-processing: \(x^{2}=-2 y\)

Solving stage: 4 solutions reached in 10 ms !

\section*{Tests and results}

\section*{Bratu's problem.}
\[
x_{k-1}-2 x_{k}+x_{k+1}+h \exp \left(x_{k}\right)=0, \quad 1 \leqslant k \leqslant n
\]
defined over \(\left[-10^{8},+10^{8}\right]^{n}\), with \(x_{0}=x_{n+1}=0\) and \(h=\frac{1}{(n+1)^{2}}\).

\section*{Tests and results}

Bratu's problem.
\[
x_{k-1}-2 x_{k}+x_{k+1}+h \exp \left(x_{k}\right)=0, \quad 1 \leqslant k \leqslant n
\]
defined over \(\left[-10^{8},+10^{8}\right]^{n}\), with \(x_{0}=x_{n+1}=0\) and \(h=\frac{1}{(n+1)^{2}}\).
The initial problem is transformed as follows into a dense triangular system:
\[
-(k+1) x_{k}+(k+2) x_{k+1}+h \sum_{i=1}^{k} i \exp \left(x_{i}\right)=0, \quad 1 \leqslant k \leqslant n
\]

\section*{Tests and results}

\section*{Bratu's problem.}
\[
x_{k-1}-2 x_{k}+x_{k+1}+h \exp \left(x_{k}\right)=0, \quad 1 \leqslant k \leqslant n
\]
defined over \(\left[-10^{8},+10^{8}\right]^{n}\), with \(x_{0}=x_{n+1}=0\) and \(h=\frac{1}{(n+1)^{2}}\).
\begin{tabular}{|lc|cc|cc|}
\hline Problem & \(v\) & \multicolumn{2}{|c|}{ Initial Pb. } & \multicolumn{2}{c|}{ Triangul. Pb. } \\
& & Time & Sol. & Time & Sol. \\
\hline Bratu & 7 & 1.10 & 3 & 0.60 & 4 \\
& 8 & 0.70 & 2 & 0.10 & 2 \\
& 10 & 2.30 & 2 & 0.10 & 2 \\
& 13 & 20.50 & 6 & 0.10 & 2 \\
& 14 & 46.40 & 11 & 0.20 & 2 \\
& 15 & 94.40 & 12 & 0.20 & 2 \\
\hline
\end{tabular}

\section*{Recap}

Symbolic pre-processing of constraint systems is efficient:
Triangularization through abstraction and elimination

Related work
- triangularization methods that cross even more sub-expressions
- elimination based on the tree representation

\section*{Research directions}

The dependency problem
The locality of reasonings
A unifying framework for soft constraints
Distributed constraints: speculations

\section*{3. Soft constraints}

\section*{A unifying framework \\ Interval solving process}

Applications

\section*{A unifying framework}

\section*{Motivation.}
- providing a general framework, allowing to model explicitly the required flexibility
- exploiting the properties of well-known algorithms for classical problems (i.e., \(\neq\) soft)

\section*{Framework.}
- based on distances/flexibility measures: the smallest flexibility is sought
- also integrates an order over the constraints

Given a constraint \(c\) defined over \(E \subset \mathbb{R}^{n}\), a soft constraint resulting from \(c\) is defined by a pair
\[
\widehat{c}=(c, d)
\]
where: \(d\) defines a distance between \(c\) and the elements of the search space.

Given a constraint \(c\) defined over \(E \subset \mathbb{R}^{n}\), a soft constraint resulting from \(c\) is defined by a pair
\[
\widehat{c}=(c, d)
\]
where: \(d\) defines a distance between \(c\) and the elements of the search space.
Properties of \(d\) : increasing function s.t. \(d(0)=0\). interprets the rough distance to \(c\).

A unifying framework soft constraints

Given a constraint \(c\) defined over \(E \subset \mathbb{R}^{n}\), a soft constraint resulting from \(c\) is defined by a pair
\[
\widehat{c}=(c, d)
\]
where: \(d\) defines a distance between \(c\) and the elements of the search space.
Properties of \(d\) :


A unifying framework soft constraints

Given a constraint \(c\) defined over \(E \subset \mathbb{R}^{n}\), a soft constraint resulting from \(c\) is defined by a pair
\[
\widehat{c}=(c, d)
\]
where: \(d\) defines a distance between \(c\) and the elements of the search space.
Properties of \(d\) :


A unifying framework soft constraints

Given a constraint \(c\) defined over \(E \subset \mathbb{R}^{n}\), a soft constraint resulting from \(c\) is defined by a pair
\[
\widehat{c}=(c, d)
\]
where: \(d\) defines a distance between \(c\) and the elements of the search space.
Properties of \(d\) :


Given a constraint \(c\) defined over \(E \subset \mathbb{R}^{n}\), a soft constraint resulting from \(c\) is defined by a pair
\[
\widehat{c}=(c, d)
\]
where: \(d\) defines a distance between \(c\) and the elements of the search space.
Properties of \(d\) : increasing function s.t. \(d(0)=0\). interprets the rough distance to \(c\). instanciations \(\leftrightarrow\) quality: to be maximized.

Given a constraint \(c\) defined over \(E \subset \mathbb{R}^{n}\), a soft constraint resulting from \(c\) is defined by a pair
\[
\widehat{c}=(c, d)
\]
where: \(d\) defines a distance between \(c\) and the elements of the search space.
Solution set of \(\widehat{c}=\) the closest to \(c\) (w.r.t. d) subset of \(E\).
\[
=\{x \in E \mid \forall y \in E, d(x, c) \leqslant d(y, c)\}
\]

Given a constraint \(c\) defined over \(E \subset \mathbb{R}^{n}\), a soft constraint resulting from \(c\) is defined by a pair
\[
\widehat{c}=(c, d)
\]
where: \(d\) defines a distance between \(c\) and the elements of the search space.
Solution set of \(\widehat{c}=\) the closest to \(c\) (w.r.t. d) subset of \(E\).
\[
=\{x \in E \mid \forall y \in E, d(x, c) \leqslant d(y, c)\}
\]

Preferences over the search space

\section*{A unifying framework}

\section*{soft CSP}

Given a \(\operatorname{CSP} C=\left\{c_{1}, \cdots, c_{p}\right\}\) defined over \(E \subset \mathbb{R}^{n}\), a soft CSP resulting from \(C\) is defined by a tuple
\[
\widehat{C}=(C, d, D, \succ)
\]
where: \(D\) is a set of distances corresponding to each constraint \(c_{i}\)
\(d\) is a operator combining the values of the distances of \(D\)
\(\succ\) is an order over the set of constraints.

\section*{A unifying framework}

\section*{soft CSP}

Given a \(\operatorname{CSP} C=\left\{c_{1}, \cdots, c_{p}\right\}\) defined over \(E \subset \mathbb{R}^{n}\), a soft CSP resulting from \(C\) is defined by a tuple
\[
\widehat{C}=(C, d, D, \succ)
\]

Properties of \(d\) : defined over \(\left(\mathbb{R}^{+}\right)^{p}=\) combination of distances the same as those of each distance to a single constraint increasing function w.r.t. each parameter

Given a \(\operatorname{CSP} C=\left\{c_{1}, \cdots, c_{p}\right\}\) defined over \(E \subset \mathbb{R}^{n}\), a soft CSP resulting from \(C\) is defined by a tuple
\[
\widehat{C}=(C, d, D, \succ)
\]

Properties of \(d\) : defined over \(\left(\mathbb{R}^{+}\right)^{p}=\) combination of distances the same as those of each distance to a single constraint: increasing function w.r.t. each parameter
Remark concerning \(D\) : up to now, all the distances are of the same type
= commensurability problem

Given a \(\operatorname{CSP} C=\left\{c_{1}, \cdots, c_{p}\right\}\) defined over \(E \subset \mathbb{R}^{n}\), a soft CSP resulting from \(C\) is defined by a tuple
\[
\widehat{C}=(C, d, D, \succ)
\]

Properties of \(d\) : defined over \(\left(\mathbb{R}^{+}\right)^{p}=\) combination of distances the same as those of each distance to a single constraint: increasing function w.r.t. each parameter
Remark concerning \(D\) : up to now, all the distances are of the same type
= commensurability problem
Order \(\succ: ~ e s t a b l i s h ~ t h e ~ o r d e r ~ i n s t a n c i a t i o n s ~ a r e ~ t o ~ s a t i s f y ~\)
\(\star\) may be trivial
- otherwise, states new constraints \(C_{\succ}\)

\section*{soft CSP}

Given a \(\operatorname{CSP} C=\left\{c_{1}, \cdots, c_{p}\right\}\) defined over \(E \subset \mathbb{R}^{n}\), a soft CSP resulting from \(C\) is defined by a tuple
\[
\widehat{C}=(C, d, D, \succ)
\]

- Fuzzy/normalized distance corresponding to \(\left(c_{1}, c_{2}, c_{3}\right)\)

Given a \(\operatorname{CSP} C=\left\{c_{1}, \cdots, c_{p}\right\}\) defined over \(E \subset \mathbb{R}^{n}\), a soft CSP resulting from \(C\) is defined by a tuple
\[
\widehat{C}=(C, d, D, \succ)
\]


Given a \(\operatorname{CSP} C=\left\{c_{1}, \cdots, c_{p}\right\}\) defined over \(E \subset \mathbb{R}^{n}\), a soft CSP resulting from \(C\) is defined by a tuple
\[
\widehat{C}=(C, d, D, \succ)
\]

Solution set of \(\widehat{C}=\) the closest to \(C\) (w.r.t. d) subset of \(E\) satisfying \(C_{\succ}\).
\[
\begin{aligned}
= & \left\{x \in E \mid C_{\succ} \text { holds on } x\right. \\
& \text { and } \forall y \in E, d(x, C) \leqslant d(y, C)\}
\end{aligned}
\]

Given a \(\operatorname{CSP} C=\left\{c_{1}, \cdots, c_{p}\right\}\) defined over \(E \subset \mathbb{R}^{n}\), a soft CSP resulting from \(C\) is defined by a tuple
\[
\widehat{C}=(C, d, D, \succ)
\]

Solution set of \(\widehat{C}=\) the closest to \(C\) (w.r.t. d) subset of \(E\) satisfying \(C_{\succ}\).
\[
=\left\{x \in E \mid C_{\succ} \text { holds on } x \text { and } \forall y \in E, d(x, C) \leqslant d(y, C)\right\}
\]

For instance, preferences over the constraints establish an order over the satisfaction/violation of the constraints: \(C_{\succ}\) expresses this order.

On the other hand, when trivial, \(C_{\succ}\) holds on any \(x \in E\)

Preferences over the search space and over the constraints

\section*{Solving process}

Given a soft CSP \(\widehat{C}=(C, d, D, \succ)\) defined over \(E \subset \mathbb{R}^{n}\), the solution set of \(\widehat{C}\) is the solution set of the following hard problem:
\[
\begin{aligned}
& \min _{x \in E} d\left(d_{1}(x), \cdots, d_{p}(x)\right) \\
& \text { s.t. } x \text { satisfies } C_{\succ}
\end{aligned}
\]

\section*{Solving process}

Given a soft CSP \(\widehat{C}=(C, d, D, \succ)\) defined over \(E \subset \mathbb{R}^{n}\), the solution set of \(\widehat{C}\) is the solution set of the following hard problem:
\[
\begin{aligned}
& \min _{x \in E} d\left(d_{1}(x), \cdots, d_{p}(x)\right) \\
& \text { s.t. } x \text { satisfies } C_{\succ}
\end{aligned}
\]

Interval solving process: distance functions are extended in the usual way.
\(\dagger\) Pbs. with normalized distances:
1. maximum value of the rough distance = another optimization process!
\(\rightsquigarrow\) interval upper bound
2. but may be \(\infty\)
\(\rightsquigarrow\) variation of the normalized distance

\section*{Solving process}


\section*{Applications}

\section*{Camera positioning problem.}
- given a camera, find a position and angle allowing to visualize given objects
- inconsistent (over-constrained) problem: solved using several soft models


Possible locations of the camera

\section*{Applications}

\section*{Camera positioning problem.}
- given a camera, find a position and angle allowing to visualize given objects
- inconsistent (over-constrained) problem: solved using several soft models

\section*{Results.}
- 1. soft positioning are easily reached using an optimization process
- 2. some positioning are useless w.r.t. the camera problem:
no object is in the camera's scope

\section*{Applications}

\section*{Camera positioning problem.}
- given a camera, find a position and angle allowing to visualize given objects
- inconsistent (over-constrained) problem: solved using several soft models

\section*{Results.}
- 1. soft positioning are easily reached using an optimization process
- 2. some positioning are useless w.r.t. the camera problem:


\section*{Applications}

\section*{Camera positioning problem.}
- given a camera, find a position and angle allowing to visualize given objects
- inconsistent (over-constrained) problem: solved using several soft models

\section*{Results.}
- 1. soft positioning are easily reached using an optimization process
- 2. some positioning are useless w.r.t. the camera problem:


\section*{Applications}

\section*{Camera positioning problem.}
- given a camera, find a position and angle allowing to visualize given objects
- inconsistent (over-constrained) problem: solved using several soft models

\section*{Results.}
- 1. soft positioning are easily reached using an optimization process
- 2. some positioning are useless w.r.t. the camera problem:

Conclusions.
- soft constraints allowing violation degrees are useless when violated constraints are meaningless
- for specific problems, a priori knowledge is crucial to guarantee exploitable solutions
- the user is essential in the modelling stage

\section*{Research directions}

The dependency problem
The locality of reasonings
A unifying framework for soft constraints
Distributed constraints: speculations

\section*{What is a speculation?}

Speculation = a hypothesis that has been formed by speculating or conjecturing (usually with little hard evidence)

\section*{What is a speculation?}

Speculation \(=\) a hypothesis that has been formed by speculating or conjecturing (usually with little hard evidence)
e.g., "speculations about the outcome of the election"

\section*{What is a speculation? (2)}

\section*{Examples:}

\section*{What is a speculation? (2)}

\section*{Examples:}
© you invite people at home, and you give them a choice among possible dates, but they don't reply immediately when they can come

\section*{What is a speculation? (2)}

\section*{Examples:}

G you invite people at home, and you give them a choice among possible dates, but they don't reply immediately when they can come
\(\Delta\) instead of waiting for their replies, you may have a clue about the chosen date, and begin to prepare the party, based on this speculation

\section*{What is a speculation? (2)}

\section*{Examples:}
© you invite people at home, and you give them a choice among possible dates, but they don't reply immediately when they can come
\(\Delta \quad\) instead of waiting for their replies, you may have a clue about the chosen date, and begin to prepare the party, based on this speculation
© you plan a trip and ask Rose to take care about this, but you may not specify all your preferences: e.g., only the date, and destination

\section*{What is a speculation? (2)}

\section*{Examples:}
© you invite people at home, and you give them a choice among possible dates, but they don't reply immediately when they can come
\(\Delta \quad\) instead of waiting for their replies, you may have a clue about the chosen date, and begin to prepare the party, based on this speculation
© you plan a trip and ask Rose to take care about this, but you may not specify all your preferences: e.g., only the date, and destination
\(\Delta\) the travel agency will not wait until you specify your time preferences to begin and look for air fares

\section*{Why perform speculative computations?}
© Most studies on multi-agent systems (MAS) assume that the communication between agents is guaranteed

\section*{Why perform speculative} computations?
© Most studies on multi-agent systems (MAS) assume that the communication between agents is guaranteed
© When an agent asks a question to another one, the process depending on the answer is suspended until some response is sent

\section*{Why perform speculative} computations?
© Most studies on multi-agent systems (MAS) assume that the communication between agents is guaranteed
- When an agent asks a question to another one, the process depending on the answer is suspended until some response is sent

However...

\section*{Why perform speculative} computations?
© Most studies on multi-agent systems (MAS) assume that the communication between agents is guaranteed
- When an agent asks a question to another one, the process depending on the answer is suspended until some response is sent

However...
๑ In real settings (e.g. internet), communication may fail

\section*{Why perform speculative} computations?
© Most studies on multi-agent systems (MAS) assume that the communication between agents is guaranteed
© When an agent asks a question to another one, the process depending on the answer is suspended until some response is sent

However...
© In real settings (e.g. internet), communication may fail
© Agents may take time to send back a reply
© In the Constraint Logic Programming (CLP) world e.g., organize a meeting, and determine when, where, and with whom
```

organize(large_room, [a,b,c],D) \leftarrow meeting([a,b,c],D)
organize(small_room, [X,Y],D)}\leftarrow\operatorname{meeting}([X,Y],D
meeting ([a,b],D) \leftarrow available (a,D),available(b,D), not_available (c,D)
meeting}([b,c],D)\leftarrownot_available (a,D),available (b,D),available(c,D
meeting}([a,c],D)\leftarrow\operatorname{available}(a,D),not_available(b,D),available (c,D
meeting ([a,b,c],D) \leftarrow available (a,D),available (b,D),available (c,D)

```

```

 ? - organize(R,L,D).
    ```

What kind of problems can be considered?
© In the Constraint Logic Programming (CLP) world
© In the Constraint Solving world
e.g., determine the geographical zone a robot can cover
\[
\begin{aligned}
& \left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2} \leqslant\left(t_{0} \cdot s_{0}\right)^{2} \\
& x, y, \in\left[-10^{8}, 10^{8}\right] \\
& \left.\begin{array}{l}
x_{0}=\operatorname{location}(X) \\
y_{0}=\operatorname{location}(Y) \\
s_{0}=\operatorname{speed}(S) \\
d_{0}=\operatorname{duration}(D)
\end{array}\right\} \quad \begin{array}{l}
\text { questions sent to agents } \\
\text { and transmitted to sensors }
\end{array}
\end{aligned}
\]

\section*{SCP in a Master-Slave environment}

\section*{Basic idea [Satoh, Prima 2003]:}
© The program (constraint problem, denoted by \(P\) ) is centralized at the master's level (denoted by M)

\section*{SCP in a Master-Slave environment}

\section*{Basic idea [Satoh, Prima 2003]:}
© The program (constraint problem, denoted by \(P\) ) is centralized at the master's level (denoted by M)
© M begins to run the program / solve the constraint system

\section*{SCP in a Master-Slave environment}

\section*{Basic idea [Satoh, Prima 2003]:}

6 The program (constraint problem, denoted by \(P\) ) is centralized at the master's level (denoted by M)
© M begins to run the program / solve the constraint system
\({ }^{6}\) When specific information is needed:

\section*{SCP in a Master-Slave environment}

\section*{Basic idea [Satoh, Prima 2003]:}

6 The program (constraint problem, denoted by \(P\) ) is centralized at the master's level (denoted by M)
© M begins to run the program / solve the constraint system
© When specific information is needed: e.g.,
\(\Delta \quad\) is person a available on day \(D\) ? free \((a) @ D\)
\(\Delta \quad\) where is the robot located? \(x_{0}=\operatorname{location}(X)\),
\[
y_{0}=\operatorname{location}(Y)
\]
\(\Delta\) etc.

\section*{SCP in a Master-Slave environment}

\section*{Basic idea [Satoh, Prima 2003]:}

6 The program (constraint problem, denoted by \(P\) ) is centralized at the master's level (denoted by M)
© M begins to run the program / solve the constraint system
© When specific information is needed: M asks a slave S the corresponding question

\section*{SCP in a Master-Slave environment}
© Before \(S\) answers, \(M\) continue the processing of \(P\) with some default value/constraint \(\delta\) :

\section*{SCP in a Master-Slave environment}
© Before \(S\) answers, \(M\) continue the processing of \(P\) with some default value/constraint \(\delta\) : e.g.,
\[
\begin{array}{ll}
\Delta & \leftarrow D \in\{1,2\} \| \text { free }(a) @ D \\
\Delta & x_{0} \in[1,100], y_{0} \in[10,25]
\end{array}
\]

\section*{SCP in a Master-Slave environment}
© Before \(S\) answers, \(M\) continue the processing of \(P\) with some default value/constraint \(\delta\) : no time is wasted

\section*{SCP in a Master-Slave environment}
© Before \(S\) answers, \(M\) continue the processing of \(P\) with some default value/constraint \(\delta\) : no time is wasted
© When answers \(\alpha\) come from \(\mathrm{S}, \mathrm{M}\) updates or reinforces its belief depending on whether:
- \(\alpha\) entails \(\delta: \alpha \subset \delta\)
\(\Delta \alpha\) contradicts \(\delta: \alpha \cap \delta=\varnothing\)
\(\Delta \alpha\) is consistent with \(\delta\) but does not entail it: \(\alpha \cap \delta \neq \varnothing\) but \(\alpha \not \subset \delta\)

\section*{MA belief revision in the case of \\ yes/no questions}
© What is speculative computation with MA belief revision?

\section*{MA belief revision in the case of \\ yes/no questions}
© What is speculative computation with MA belief revision?
\(\Delta\) each agent can perform speculative computations

\section*{MA belief revision in the case of}

\section*{yes/no questions}
© What is speculative computation with MA belief revision?
s each agent can perform speculative computations
- therefore, answers from slaves may not be certified: they are now likely to be default too

\section*{MA belief revision in the case of \\ yes/no questions}
© Speculative computations with MA belief revision for yes/no questions [Satoh, AAMAS'03]

\section*{MA belief revision in the case of \\ yes/no questions}
© Speculative computations with MA belief revision for yes/no questions [Satoh, AAMAS'03]
\(\Delta \quad\) when \(S\) sends an answer \(\delta_{s}\), it may be a default \(S\) uses, instead of the actual certified answer from a person, or a sensor

\section*{MA belief revision in the case of \\ yes/no questions}
© Speculative computations with MA belief revision for yes/no questions [Satoh, AAMAS'03]
\(\Delta \quad\) when \(S\) sends an answer \(\delta_{s}\), it may be a default \(S\) uses, instead of the actual certified answer from a person, or a sensor
- therefore: different process management when answers come

\section*{MA belief revision in the case of yes/no questions (2)}
© There are only two possible cases:
- Entailment: default = answer
- Contradiction: default \(=\neg\) answer

\section*{MA belief revision in the case of yes/no questions (2)}

๑ There are only two possible cases:
- Entailment: default = answer
- Contradiction: default \(=\neg\) answer
© When certified information comes, same situation as in [Satoh, Prima 2003]

\section*{MA belief revision in the case of} yes/no questions (2)
© There are only two possible cases:
- Entailment: default = answer
- Contradiction: default \(=\neg\) answer
© When certified information comes, same situation as in [Satoh, Prima 2003]

๑ Otherwise, complementary processes must not be killed:
- in case later answers contradicts the current one
\(\Delta\) instead, they are recorded

\section*{Recap on speculative computations in MA systems}
© Frameworks for speculative computations exist
© In master-slave, we can perform speculative constraint processing
© In general hierarchical systems, all agents can perform spec. computations in the case of yes/no questions

\section*{How to improve this?}

Make it possible to:
๑ solve general constraints (or ask more general questions)...

\section*{How to improve this?}

Make it possible to:
© solve general constraints (or ask more general questions)...
© ... in a general hierarchical MA system...

\section*{How to improve this?}

Make it possible to:
© solve general constraints (or ask more general questions)...

G ... in a general hierarchical MA system...

G ... where all agents are enabled to perform speculations.

\section*{Outline of the presentation}
© Continuous constraints: definitions and solving process
© An example of under and over-constrained problems
6 Important notions
© Some research directions
© Conclusion

\section*{Outline of the presentation}

G Continuous constraints: definitions and solving process
© An example of under and over-constrained problems
6 Important notions
6 Some research directions
© Conclusion

\section*{Conclusion}

\section*{Now you know about:}
- Continuous constraints
- Variations: optimization, soft constraints
- Some issue about distributed constraint solving
- and their limitations / open problems

You're ready to:
- find new methods to address them

\section*{Some ideas for doing this}

Dependency problems: Extension of factorization schemes
- to more generalized rules: elementary scheme greater than binomials
- to more general terms (sin, cos), integrated in schemes (more in-depth parsing)
- to more general terms: linearization, loss of accuracy needs to be evaluated

Locality of Reasonings: Cooperation of linearization processes or: Class of suitable problems

Soft constraints: More expressivity

Speculations: Other social group organizations

\section*{The end}

\title{
Thank you for your attention
}

\section*{QUESTIONS?}

Martine Ceberio
mceberio@utep.edu
www.constraintsolving.com
http://www.martineceberio.fr
University of Texas at El Paso```

