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• Continuous constraints are... CONSTRAINTS

• Continuous constraints define RELATIONS between variables

⋆ domains of variables: intervals = continuous ranges of possible values

⋆ constraints restrict the possible combinations of values = define a subset

of the search space

• CSP or Constraint systems are defined by:

⋆ a finite set of variables

⋆ a finite set of domains: continuous ranges of possible values

⋆ a finite set of continuous constraints
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Continuous constraints in a nutshell

• Continuous constraints are... CONSTRAINTS

• Continuous constraints define RELATIONS between variables

⋆ domains of variables: intervals = continuous ranges of possible values

⋆ constraints restrict the possible combinations of values = define a subset

of the search space

• CSP or Constraint systems are defined by:

⋆ a finite set of variables

⋆ a finite set of domains: continuous ranges of possible values

⋆ a finite set of continuous constraints

• A solution of a constraint system is:
a complete assignment of all the variables, satisfying all constraints at the

same time
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How to solve continuous
constraints?

• Enumeration is not an option...
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• Enumeration is not an option...

• Algorithms based on intervals (as detailed later)
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How to solve continuous
constraints?

• Enumeration is not an option...

• Algorithms based on intervals (as detailed later)

⋆ Branch and Bound (B&B):

http://www-sop.inria.fr/coprin/logiciels/ALIAS/Movie/film_license.mpg

⋆ More sophisticated consistency algorithms: Box / Hull-consistencies and

their combinations
result in Branch and Prune algorithms (B&P)
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Solving algorithm: a skeleton

Suppose you solve (C,X,D)

S← Initial domain // S is the store of domains to be visited

Solutions← ∅

while (S 6= ∅) {
take D out of S // usually D is the first available domain

D’← narrow(D,C) // apply a consistency technique on D

if (D’ 6= ∅) and (D’ is still too large) then

split(D’,D1,D2) // splitting in halves is not compulsory

S← S ∪{D1, D2}

else store D’ in Solutions
}
return Solutions // What does Solutions contain?
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Solving algorithm: narrow(D,C)

Here we look at the details of narrow(D1 × · · · ×Dn, {c1, . . . , cp})

S← {c1, . . . , cp} // S is the store of constraints, no duplicates

while (S 6= ∅) {
take c out of S // usually c is the first available constraint

for all i ∈ {1, . . . , n} {
D′i ← consistency(Di,c)
// apply a consistency technique on Di w.r.t. c

if (D′i = ∅) then return ∅

if (D′i 6= Di) then

S← S ∪{cj, j ∈ J}

// cj are the constraints that share variable i with c

}
return ×16i6nD

′
i // What is ×16i6nD′

i?
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Recap’

• Continuous constraints: very similar in definition to discrete constraints

• Solving algorithms: quite different to ensure completeness, but similar

structures

• In the following: discussion of different flavors of constraint solving
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Example (1/3)

Problem to be solved: y(t) = f(x, t)
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Example (1/3)

Problem to be solved: y(t) = f(x, t)

⇓

the radioactive decay of radium
[Pierre and Marie Curie (1898)]

y(t) = exp−xt
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Example (1/3)

Problem to be solved: y(t) = f(x, t)

Knowing: y, t, the model (f )

Given: measurements y̌i of f(x, ti) at instants ti

Find: parameter x

0 t1 t2 t3 t4 t5 t6 t7 t8 t9

measurementšyi of f(x, ti) at ti, i = 1, . . . , 9
modelf : (x, t) 7→ 1

(t+x)1.1

Summer School NMSU, 27 July 2008 – p. 9/67



Example (1/3)

Problem to be solved: y(t) = f(x, t)

Knowing: y, t, the model (f )

Given: measurements y̌i of f(x, ti) at instants ti

Find: parameter x

Classical solving method: least squares minx

Pn
i=1(y̌i − f(x, ti))

2

0 t1 t2 t3 t4 t5 t6 t7 t8 t9

measurementšyi of f(x, ti) at ti, i = 1, . . . , 9
modelf : (x, t) 7→ 1

(t+x)1.1

parameterx = 1
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Example (2/3)

Taking inaccuracy into account

0 t1 t2 t3 t4 t5 t6 t7 t8 t9

intervals [y̌i − ei, y̌i + ei] at giventi, i = 1, . . . , 9

Constraint system to be solved:
f (x, ti) ∈ [y̌i − ei, y̌i + ei], i = 1, . . . , 9

Summer School NMSU, 27 July 2008 – p. 10/67



Example (2/3)

Taking inaccuracy into account

0 t1 t2 t3 t4 t5 t6 t7 t8 t9

intervals [y̌i − ei, y̌i + ei] at giventi, i = 1, . . . , 9

functionf (x, t) with parameterx = 1

⇓

NOT A SOLUTION !
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Example (2/3)

Taking inaccuracy into account

0 t1 t2 t3 t4 t5 t6 t7 t8 t9

intervals [y̌i − ei, y̌i + ei] at giventi, i = 1, . . . , 9

functionf (x, t) with parameterx = 0.5

⇓

A SOLUTION

Even an infinite number of possible parametersx
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Example (2/3)

Taking inaccuracy into account

0 t1 t2 t3 t4 t5 t6 t7 t8 t9

intervals [y̌i − ei, y̌i + ei] at giventi, i = 1, . . . , 9

functionf (x, t) with parameterx = 0.5

⇓

A SOLUTION

Even an infinite number of possible parametersx

UNDER-CONSTRAINED PROBLEM
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Example (2/3)

Taking inaccuracy into account

Under-constrained problem
⇓

Definition of an appropriate criterion to be optimized

i.e., discrimination over the solution set
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Example (2/3)

Taking inaccuracy into account

Under-constrained problem
⇓

Definition of an appropriate criterion to be optimized

i.e., discrimination over the solution set

≡

Constrained global optimization
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Example (3/3)

Taking erroneous measurements into account

0 t1 t2 t3 t4 t5 t6 t7 t8 t9

intervals [y̌i − ei, y̌i + ei] at giventi, i = 1, . . . , 9

Inconsistant constraint system !
no parameter value allows to satisfy the constraints
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0 t1 t2 t3 t4 t5 t6 t7 t8 t9
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no parameter value allows to satisfy the constraints
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Example (3/3)

Taking erroneous measurements into account

Over-constrained problem
⇓

Need of solution weaker constraints i.e., need for flexibility
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Example (3/3)

Taking erroneous measurements into account

Over-constrained problem
⇓

Need of solution weaker constraints i.e., need for flexibility

Ex. deletion of the measure at t5

0 t1 t2 t3 t4 t5
t6 t7 t8 t9
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Example (3/3)

Taking erroneous measurements into account

Over-constrained problem
⇓

Need of solution weaker constraints i.e., need for flexibility

Ex. deletion of the measure at t5, i.e., deletion of a constraint

0 t1 t2 t3 t4 t5
t6 t7 t8 t9
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Example (3/3)

Taking erroneous measurements into account

Over-constrained problem
⇓

Need of solution weaker constraints i.e., need for flexibility

≡

Soft constraints

Summer School NMSU, 27 July 2008 – p. 11/67



Outline of the presentation

Continuous constraints: definitions and solving process

An example of under and over-constrained problems

Important notions

Some research directions

Conclusion

Summer School NMSU, 27 July 2008 – p. 12/67



Outline of the presentation

Continuous constraints: definitions and solving process

An example of under and over-constrained problems

Important notions
Intervals

Global optimization

Soft constraints

Some research directions

Conclusion

Summer School NMSU, 27 July 2008 – p. 12/67



Important notions

Intervals

Global optimization

Soft constraints
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Real intervals

Definition 2 (Real interval [Moore, 1966]). A real interval x is a closed and

connected set of real numbers, noted [a, b].

x = {x ∈ R | a 6 x 6 b} x = a x = b

IR is the set of all real intervals.
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Real intervals

Definition 2 (Real interval [Moore, 1966]). A real interval x is a closed and

connected set of real numbers, noted [a, b].

x = {x ∈ R | a 6 x 6 b} x = a x = b

IR is the set of all real intervals.

Some useful notions.

Width of x: w(x) = x− x

Interval hull of ρ ⊂ R: Hull (ρ) = [inf ρ, sup ρ] = �ρ
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Real interval arithmetic

Definition 3 (Interval arithmetic (IA)). Usual arithmetic-like arithmetic where

handled items are intervals (and no longer reals)
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Definition 3 (Interval arithmetic (IA)). Usual arithmetic-like arithmetic where

handled items are intervals (and no longer reals)

General formula of IA. Let ⋄ ∈ {+,−,×, /}

x ⋄ y =� {x ⋄ y | x ∈ x, y ∈ y}
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Real interval arithmetic

Definition 3 (Interval arithmetic (IA)). Usual arithmetic-like arithmetic where

handled items are intervals (and no longer reals)

General formula of IA. Let ⋄ ∈ {+,−,×, /}

x ⋄ y =� {x ⋄ y | x ∈ x, y ∈ y}

Properties.

• associativity

• commutativity

• sub-distributivity: x× (y + z) ⊂ x× y + x× z

 interval arithm. is expression-dependent

= the DEPENDENCY PROBLEM
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Real interval arithmetic

Definition 3 (Interval arithmetic (IA)). Usual arithmetic-like arithmetic where

handled items are intervals (and no longer reals)

General formula of IA. Let ⋄ ∈ {+,−,×, /}

x ⋄ y = � {x ⋄ y | x ∈ x, y ∈ y}

Properties.

• associativity No longer valid!

• commutativity

• sub-distributivity: x× (y + z) ⊂ x× y + x× z

 interval arithm. is expression-dependent

= the DEPENDENCY PROBLEM
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Interval extensions

IA Principle: provides outer approximations of real quantities being looked for

 used for the evaluation of the ranges of functions
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Interval extensions

IA Principle: provides outer approximations of real quantities being looked for

 used for the evaluation of the ranges of functions

Definition 5 (Interval extension). Let f be a real function defined over

E ⊂ R
n. Any interval function φ is an interval extension of f provided that:

∀x ⊂ IR
n, {f(x) | x ∈ x ∩ E} ⊂ φ(x).
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Interval extensions

IA Principle: provides outer approximations of real quantities being looked for

 used for the evaluation of the ranges of functions

Definition 5 (Interval extension). Let f be a real function defined over

E ⊂ R
n. Any interval function φ is an interval extension of f provided that:

∀x ⊂ IR
n, {f(x) | x ∈ x ∩ E} ⊂ φ(x).

Examples. possibility of an infinite number of interval extensions

rough extension: φf : x 7→ [−∞, +∞] totally useless

ideal extension: φf : x 7→ �{f(x) | x ∈ x} extremely rare

natural extension: φf : x 7→ f(x) syntactic interval extension
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Global optimization

Definition 1 (Unconstrained and constrained global optimization).

0
50

f

x∗1

• •
x∗2

x0

•

•
x1

•
x2

•
x3

•
x4

•
x5

•
x6

Local minima: {x0, x1, x2, x3, x4, x5, x6, x
∗
1, x
∗
2}

Global minima: {x∗1, x
∗
2}

functionf to be minimized s.t.c be satisfied

solution set of constraintc

functionh definingc : h ≥ 0

0
50

x∗
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Optimization: solving methods (1/2)

Optimality conditions [Fritz, 1948] [Hiriart-Urruty, 1995&1996]

• Optimization problem constraint satisfaction problem
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Optimization: solving methods (1/2)

Optimality conditions [Fritz, 1948] [Hiriart-Urruty, 1995&1996]

• Optimization problem constraint satisfaction problem

ex. for unconstrained optimization, slope= 0
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Optimization: solving methods (1/2)

Optimality conditions [Fritz, 1948] [Hiriart-Urruty, 1995&1996]

• Optimization problem constraint satisfaction problem

ex. for unconstrained optimization, slope= 0

 not necessarily an optimum, nor a global one (except if the problem is convex)

 necessary but not sufficient conditions (Lagrange, Fritz-John, Karush-Kuhn-Tucker)
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Optimization: solving methods (1/2)

Optimality conditions [Fritz, 1948] [Hiriart-Urruty, 1995&1996]

• Optimization problem constraint satisfaction problem

Penalty-based methods [Joines & Houck, 1994] [Michalewicz & al., 1995&1996]

• Constrained optimization problem unconstrained optimization problem

Summer School NMSU, 27 July 2008 – p. 18/67



Optimization: solving methods (1/2)

Optimality conditions [Fritz, 1948] [Hiriart-Urruty, 1995&1996]

• Optimization problem constraint satisfaction problem

Penalty-based methods [Joines & Houck, 1994] [Michalewicz & al., 1995&1996]

• Constrained optimization problem unconstrained optimization problem

O

f

10 h

wherec : h = 0

Initial problem

O

f + h2

10 h

x∗

First iteration

O

f + 50h2

10 h

x∗∗

Iteration n ◦ k
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Optimization: solving methods (1/2)

Optimality conditions [Fritz, 1948] [Hiriart-Urruty, 1995&1996]

• Optimization problem constraint satisfaction problem

Penalty-based methods [Joines & Houck, 1994] [Michalewicz & al., 1995&1996]

• Constrained optimization problem unconstrained optimization problem

 number of iterations uncontrolled, optimization process to be performed

 no guarantee about the globality of the solutions
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Optimization: solving methods (1/2)

Optimality conditions [Fritz, 1948] [Hiriart-Urruty, 1995&1996]

• Optimization problem constraint satisfaction problem

Penalty-based methods [Joines & Houck, 1994] [Michalewicz & al., 1995&1996]

• Constrained optimization problem unconstrained optimization problem

Meta-heuristics [Goldberg, 1989] [Michalewicz, 1996]

• genetic, evolutionary algorithms, tabu search, simulated annealing, clustering,

etc.
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Optimization: solving methods (1/2)

Optimality conditions [Fritz, 1948] [Hiriart-Urruty, 1995&1996]

• Optimization problem constraint satisfaction problem

Penalty-based methods [Joines & Houck, 1994] [Michalewicz & al., 1995&1996]

• Constrained optimization problem unconstrained optimization problem

Meta-heuristics [Goldberg, 1989] [Michalewicz, 1996]

• genetic, evolutionary algorithms, tabu search, simulated annealing, clustering,

etc.

⇓
Incomplete methods

i.e., no guarantee about the solution set: minimum, globality, completeness
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Optimization: solving methods (2/2)

Objective: a complete method = globality, and no loss of solutions
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Optimization: solving methods (2/2)

Objective: a complete method = globality, and no loss of solutions

Continuation methods [Chen & Harker, 1993]
• series of auxiliary problems leading continuously to the initial problem

to be solved

⋆ global information, completeness
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Optimization: solving methods (2/2)

Objective: a complete method = globality, and no loss of solutions

Continuation methods [Chen & Harker, 1993]
• series of auxiliary problems leading continuously to the initial problem

to be solved

⋆ global information, completeness

† uneffective for high-order problems, and apply only to polynomial expressions
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Optimization: solving methods (2/2)

Objective: a complete method = globality, and no loss of solutions

Continuation methods [Chen & Harker, 1993]
• series of auxiliary problems leading continuously to the initial problem

to be solved

⋆ global information, completeness

† uneffective for high-order problems, and apply only to polynomial expressions

Interval methods [Hansen, 1992] [Kearfott, 1996]

• real quantities bounded by intervals, controlled rounding-errors

⋆ global information, completeness
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Optimization: solving methods (2/2)

Objective: a complete method = globality, and no loss of solutions

Continuation methods [Chen & Harker, 1993]
• series of auxiliary problems leading continuously to the initial problem

to be solved

⋆ global information, completeness

† uneffective for high-order problems, and apply only to polynomial expressions

Interval methods [Hansen, 1992] [Kearfott, 1996]

• real quantities bounded by intervals, controlled rounding-errors

⋆ global information, completeness

† more expensive computations (higher complexity)

† loss of accuracy
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Interval optimization

Classical algorithms. Branch-and-Bound / Prune algorithms

[Hansen, 1992] [Kearfott, 1996] [VanHentenryck et al., 1995&1997]

= upper-bound update and domain tightening processes
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Interval optimization

Classical algorithms. Branch-and-Bound / Prune algorithms

[Hansen, 1992] [Kearfott, 1996] [VanHentenryck et al., 1995&1997]

2 stable traits: (interval) evaluation and constraint solving
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Interval optimization

Classical algorithms. Branch-and-Bound / Prune algorithms

[Hansen, 1992] [Kearfott, 1996] [VanHentenryck et al., 1995&1997]

2 stable traits: (interval) evaluation and constraint solving

Interval evaluation.

x1 x2 x3 x4

Functionf

boxes(xi,f (xi)), i ∈ {1, 2, 3, 4}
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Interval optimization

Classical algorithms. Branch-and-Bound / Prune algorithms

[Hansen, 1992] [Kearfott, 1996] [VanHentenryck et al., 1995&1997]

2 stable traits: (interval) evaluation and constraint solving

Interval evaluation.

x1 x2 x3 x4

Functionf

boxes(xi,f (xi)), i ∈ {1, 2, 3, 4}

x4 removed
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Interval optimization

Classical algorithms. Branch-and-Bound / Prune algorithms

[Hansen, 1992] [Kearfott, 1996] [VanHentenryck et al., 1995&1997]

2 stable traits: (interval) evaluation and constraint solving

Interval evaluation.

x1 x2 x3 x4

Functionf

boxes(xi,f (xi)), i ∈ {1, 2, 3, 4}
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Interval optimization

Classical algorithms. Branch-and-Bound / Prune algorithms

[Hansen, 1992] [Kearfott, 1996] [VanHentenryck et al., 1995&1997]

2 stable traits: (interval) evaluation and constraint solving

Interval evaluation.

x1 x2 x3 x4

Functionf

boxes(xi,f (xi)), i ∈ {1, 2, 3, 4}

no box removed
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Interval optimization

Classical algorithms. Branch-and-Bound / Prune algorithms

[Hansen, 1992] [Kearfott, 1996] [VanHentenryck et al., 1995&1997]

2 stable traits: (interval) evaluation and constraint solving

Interval evaluation.

overestimation = dependency problem
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Interval optimization

Classical algorithms. Branch-and-Bound / Prune algorithms

[Hansen, 1992] [Kearfott, 1996] [VanHentenryck et al., 1995&1997]

2 stable traits: (interval) evaluation and constraint solving

Interval evaluation. dependency problem

Constraint solving.

1

1

4

1−1

4
x

y

c1 : y = x2

c2 : y = 1− x
4
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Interval optimization

Classical algorithms. Branch-and-Bound / Prune algorithms

[Hansen, 1992] [Kearfott, 1996] [VanHentenryck et al., 1995&1997]

2 stable traits: (interval) evaluation and constraint solving

Interval evaluation. dependency problem

Constraint solving.

1

1

4

1−1

4
x

y

c1 : y = x2

c2 : y = 1− x
4

0.5
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Interval optimization

Classical algorithms. Branch-and-Bound / Prune algorithms

[Hansen, 1992] [Kearfott, 1996] [VanHentenryck et al., 1995&1997]

2 stable traits: (interval) evaluation and constraint solving

Interval evaluation. dependency problem

Constraint solving.

1

1

4

1−1

4
x

y

c1 : y = x2

c2 : y = 1− x
4

0.5
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Interval optimization

Classical algorithms. Branch-and-Bound / Prune algorithms

[Hansen, 1992] [Kearfott, 1996] [VanHentenryck et al., 1995&1997]

2 stable traits: (interval) evaluation and constraint solving

Interval evaluation. dependency problem

Constraint solving.

1

1

4

1−1

4
x

y

c1 : y = x2

c2 : y = 1− x
4

0.5
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Interval optimization

Classical algorithms. Branch-and-Bound / Prune algorithms

[Hansen, 1992] [Kearfott, 1996] [VanHentenryck et al., 1995&1997]

2 stable traits: (interval) evaluation and constraint solving

Interval evaluation. dependency problem

Constraint solving.

1

1

4

1−1

4
x

y

c1 : y = x2

c2 : y = 1− x
4

0.5
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Interval optimization

Classical algorithms. Branch-and-Bound / Prune algorithms

[Hansen, 1992] [Kearfott, 1996] [VanHentenryck et al., 1995&1997]

2 stable traits: (interval) evaluation and constraint solving

Interval evaluation. dependency problem

Constraint solving.

x2 + x4

1

1
4

1−1
4

x

y

y0 = 0.618
Reduction

of y

Reduction
of x

x0 = 0.786

c1 : y = x2

c2 : y = 1 − x4

⇓

c1 : y = x2

c′
2

: x2
= 1 − x4
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Interval optimization

Classical algorithms. Branch-and-Bound / Prune algorithms

[Hansen, 1992] [Kearfott, 1996] [VanHentenryck et al., 1995&1997]

2 stable traits: (interval) evaluation and constraint solving

Interval evaluation. dependency problem

Constraint solving.

locality of reasonings
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Soft constraints

Definition 6 (Soft constraint). Given a constraint c over a set of variables V ,

defining a relation ρ. A soft constraint ĉ resulting from c is a constraint defining

a relation ρ̂ over V s.t. ρ ⊂ ρ̂.
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Soft constraints

Definition 6 (Soft constraint). Given a constraint c over a set of variables V ,

defining a relation ρ. A soft constraint ĉ resulting from c is a constraint defining

a relation ρ̂ over V s.t. ρ ⊂ ρ̂.

Considering softness... some possible treatments

Constraintc1 : (x− 7
4)

2 + y
2 ≤

(
3
2

)2

Constraintc2 : x + 2y2 ≤ −1
4

Solution set= ∅
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Soft constraints

Definition 6 (Soft constraint). Given a constraint c over a set of variables V ,

defining a relation ρ. A soft constraint ĉ resulting from c is a constraint defining

a relation ρ̂ over V s.t. ρ ⊂ ρ̂.

Considering softness... some possible treatments

Constraintc′1 : (x− 7
4)

2 + y
2 ≤

(
9
4

)2

Constraintc′2 : x + 2y2 ≤ 1
2

Solution set= ∅  “Extended” solution set
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Soft constraints

Definition 6 (Soft constraint). Given a constraint c over a set of variables V ,

defining a relation ρ. A soft constraint ĉ resulting from c is a constraint defining

a relation ρ̂ over V s.t. ρ ⊂ ρ̂.

Considering softness... some possible treatments

Constraintc1 : (x− 7
4)

2 + y
2 ≤

(
3
2

)2

Constraintc2 : x + 2y2 ≤ −1
4

Constraintc3 : (x− 3
2)

2 + (y − 3
2)

2 ≤ 1

Preference order:c1 > c2 > c3

Summer School NMSU, 27 July 2008 – p. 21/67



Soft constraints

Definition 6 (Soft constraint). Given a constraint c over a set of variables V ,

defining a relation ρ. A soft constraint ĉ resulting from c is a constraint defining
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defining a relation ρ. A soft constraint ĉ resulting from c is a constraint defining

a relation ρ̂ over V s.t. ρ ⊂ ρ̂.

Considering softness... some possible treatments
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4
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Soft constraints: frameworks

Hierarchical CSP [Borning et al., 1988,1989&1992] [Wilson, 1993]

• the set of constraints is ordered (hierarchical)

objective: determining the instanciations satisfying the hierarchy
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Soft constraints: frameworks

Hierarchical CSP [Borning et al., 1988,1989&1992] [Wilson, 1993]

• the set of constraints is ordered (hierarchical)

objective: determining the instanciations satisfying the hierarchy

⋆ preferences over the constraints and over the search space
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Soft constraints: frameworks

Hierarchical CSP [Borning et al., 1988,1989&1992] [Wilson, 1993]

⋆ preference over the constraints and over the search space

Partial CSP [Freuder & Wallace, 1995]

• given P to be solved, and some distance d, (P, d) ordered set of problems

objective: determining the closest problem P ′ and solving it
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Soft constraints: frameworks

Hierarchical CSP [Borning et al., 1988,1989&1992] [Wilson, 1993]

⋆ preference over the constraints and over the search space

Partial CSP [Freuder & Wallace, 1995]

• given P to be solved, and some distance d, (P, d) ordered set of problems

objective: determining the closest problem P ′ and solving it

⋆ preference over the space of problems
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Soft constraints: frameworks

Hierarchical CSP [Borning et al., 1988,1989&1992] [Wilson, 1993]

⋆ preference over the constraints and over the search space

Partial CSP [Freuder & Wallace, 1995]

⋆ preference over the space of problems

Semiring-based CSP [Bistarelli, Montanari & Rossi, 1997&1999]

• each instanciation x is valuated w.r.t. each constraint

valuations are combined, and express the quality of x

objective: determining the best quality instanciation
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Soft constraints: frameworks

Hierarchical CSP [Borning et al., 1988,1989&1992] [Wilson, 1993]

⋆ preference over the constraints and over the search space

Partial CSP [Freuder & Wallace, 1995]

⋆ preference over the space of problems

Semiring-based CSP [Bistarelli, Montanari & Rossi, 1997&1999]

• each instanciation x is valuated w.r.t. each constraint

valuations are combined, and express the quality of x

objective: determining the best quality instanciation

⋆ preference over the search space
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Soft constraints: frameworks

Hierarchical CSP [Borning et al., 1988,1989&1992] [Wilson, 1993]

⋆ preference over the constraints and over the search space

Partial CSP [Freuder & Wallace, 1995]

⋆ preference over the space of problems

Semiring-based CSP [Bistarelli, Montanari & Rossi, 1997&1999]

• each instanciation x is valuated w.r.t. each constraint

valuations are combined, and express the quality of x

objective: determining the best quality instanciation

⋆ preference over the search space

† the qualitative aspect is drowned out by the (quantitative) combination
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Soft constraints: frameworks

Hierarchical CSP [Borning et al., 1988,1989&1992] [Wilson, 1993]

⋆ preference over the constraints and over the search space

Partial CSP [Freuder & Wallace, 1995]

⋆ preference over the space of problems

Semiring-based CSP [Bistarelli, Montanari & Rossi, 1997&1999]

⋆ preference over the search space

Valued CSP [Bistarelli, Montanari & Rossi, 1997&1999]

• constraints are valuated (weighted)

instanciations are valued through the constraint valuation

objective: determining the best quality instanciation

equivalent to SCSP
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Soft constraints: frameworks

Hierarchical CSP [Borning et al., 1988,1989&1992] [Wilson, 1993]

⋆ preference over the constraints and over the search space

Partial CSP [Freuder & Wallace, 1995]

⋆ preference over the space of problems

Semiring-based CSP [Bistarelli, Montanari & Rossi, 1997&1999]

⋆ preference over the search space

Valued CSP [Bistarelli, Montanari & Rossi, 1997&1999]

• constraints are valuated (weighted)

instanciations are valued through the constraint valuation

objective: determining the best quality instanciation

equivalent to SCSP

⋆ a kind of preferences
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Soft constraints: frameworks

Hierarchical CSP [Borning et al., 1988,1989&1992] [Wilson, 1993]

⋆ preference over the constraints and over the search space

Partial CSP [Freuder & Wallace, 1995]

⋆ preference over the space of problems

Semiring-based CSP [Bistarelli, Montanari & Rossi, 1997&1999]

⋆ preference over the search space

Valued CSP [Bistarelli, Montanari & Rossi, 1997&1999]

⋆ equivalent to SCSP

Fuzzy CSP [Dubois, Fargier & Prade, 1996] [Moura Pires, 2000]

• integrated in the SCSP framework
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Soft constraints: frameworks

Hierarchical CSP [Borning et al., 1988,1989&1992] [Wilson, 1993]

⋆ preference over the constraints and over the search space

Partial CSP [Freuder & Wallace, 1995]

⋆ preference over the space of problems

Semiring-based CSP [Bistarelli, Montanari & Rossi, 1997&1999]

⋆ preference over the search space

Valued CSP [Bistarelli, Montanari & Rossi, 1997&1999]

⋆ equivalent to SCSP

Fuzzy CSP [Dubois, Fargier & Prade, 1996] [Moura Pires, 2000]

• integrated in the SCSP framework

ex: priorities, discrimin (leximin)
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Soft constraints: frameworks

Hierarchical CSP [Borning et al., 1988,1989&1992] [Wilson, 1993]

⋆ preference over the constraints and over the search space

Partial CSP [Freuder & Wallace, 1995]

⋆ preference over the space of problems

Semiring-based CSP [Bistarelli, Montanari & Rossi, 1997&1999]

⋆ preference over the search space

Valued CSP [Bistarelli, Montanari & Rossi, 1997&1999]

⋆ equivalent to SCSP

Fuzzy CSP [Dubois, Fargier & Prade, 1996] [Moura Pires, 2000]

• integrated in the SCSP framework

⋆ allows to express priorities and preferences
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Recap’

There is room for improvement:

the dependency problem of interval computations;

the locality of reasonings arising in constraint solving;

In the following, we also present:

a unifying framework for modeling and solving soft constraints.

and a way to address some problems in distributed constraint

solving
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Outline of the presentation

Continuous constraints: definitions and solving process

An example of under and over-constrained problems

Important notions

Some research directions

Conclusion
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Outline of the presentation

Continuous constraints: definitions and solving process

An example of under and over-constrained problems

Important notions

Some research directions
Interval evaluation: the dependency problem

Constraint solving: the locality of reasonings

Soft constraints: a unifying hard framework

Distributed constraints: speculating to solve faster

Conclusion
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Some research directions

The dependency problem

The locality of reasonings

A unifying framework for soft constraints

Distributed constraints: speculations
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1. The dependency problem

The workings of this problem

Classical treatments and their limits

Another factorization method
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The workings

1. Independency of the occurrences.

2 occurrences of the same variable “behave” as if they were different variables
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The workings

1. Independency of the occurrences.

2 occurrences of the same variable “behave” as if they were different variables

x = [−1, 1] x×x = [−1, 1] instead of [0, 1]

= [xx,xx]

= x× y, where y = x
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The workings

1. Independency of the occurrences.

2 occurrences of the same variable “behave” as if they were different variables

⋆ limiting the number of occurrences [Hong & Stahl, 1994][Ceberio & Granvilliers, 2000]
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The workings

1. Independency of the occurrences.

2 occurrences of the same variable “behave” as if they were different variables

⋆ limiting the number of occurrences [Hong & Stahl, 1994][Ceberio & Granvilliers, 2000]

2. Monotonicities.

occurrences are independent respecting monotonicities is crucial for the

computations to be performed on the proper bounds
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The workings

1. Independency of the occurrences.

2 occurrences of the same variable “behave” as if they were different variables

⋆ limiting the number of occurrences [Hong & Stahl, 1994][Ceberio & Granvilliers, 2000]

2. Monotonicities.

f
O

1

f : x 7→ x3 − x4 = f1(x) + f2(x)

f1 : x 7→ x3

f2 : x 7→ −x4

Addition

O
1

f : x 7→ x3 − x4 = g1(x)× g2(x)

g1 : x 7→ x2

g2 : x 7→ −(x− 1
2)

2 + 1
4

Multiplication
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The workings

1. Independency of the occurrences.

2 occurrences of the same variable “behave” as if they were different variables

⋆ limiting the number of occurrences [Hong & Stahl, 1994][Ceberio & Granvilliers, 2000]

2. Monotonicities.

occurrences are independent monotony is to be respected so that

computations are performed on the proper bounds

† difficult to determine the monotonicities

⋆ at least, we try to respect some properties:

multiplications are easier to handle and control,

sub-distributivity of IA
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The workings

1. Independency of the occurrences.

2 occurrences of the same variable “behave” as if they were different variables

⋆ limiting the number of occurrences [Hong & Stahl, 1994][Ceberio & Granvilliers, 2000]

2. Monotonicities.

occurrences are independent monotony is to be respected so that

computations are performed on the proper bounds

† difficult to determine the monotonicities

⋆ at least, we try to respect some properties:

multiplications are easier to handle and control,

sub-distributivity of IA

 factorized forms
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Classical treatments and their limits
for univariate polynomials

Interval Horner form. [Shih-Chieh, 1303][Horner, 1819][Stahl, 1995]

Let p be a polynomial defined by: a0 +
∑n

i=1 aix
αi

hp(x) = a0 + xd1
(
· · ·+ xdn−1(an−1 + anxdn) · · ·

)

Def. Intermediate polynomials:



pn(x) = an

pi(x) = xdi+1pi+1(x) + ai i = n− 1, n− 2, . . . , 0
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Classical treatments and their limits
for univariate polynomials

Interval Horner form. [Shih-Chieh, 1303][Horner, 1819][Stahl, 1995]

Let p be a polynomial defined by: a0 +
∑n

i=1 aix
αi

hp(x) = a0 + xd1
(
· · ·+ xdn−1(an−1 + anxdn) · · ·

)

= optimal w.r.t. factorization:

1. made of only multiplications and additions of constants monotonicity

2. completely nested sub-distributivity
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Classical treatments and their limits
for univariate polynomials

Interval Horner form. [Shih-Chieh, 1303][Horner, 1819][Stahl, 1995]

Let p be a polynomial defined by: a0 +
∑n

i=1 aix
αi

hp(x) = a0 + xd1
(
· · ·+ xdn−1(an−1 + anxdn) · · ·

)

1. Monotonicity.

Let Op = �{ all the zeros of the intermediate polynomials of hp ∪{0} }

∀x ∈ IR
n s.t.

◦
x ∩Op = ∅, hp(x) = {p(x) | x ∈ x}
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Classical treatments and their limits
for univariate polynomials

Interval Horner form. [Shih-Chieh, 1303][Horner, 1819][Stahl, 1995]

Let p be a polynomial defined by: a0 +
∑n

i=1 aix
αi

hp(x) = a0 + xd1
(
· · ·+ xdn−1(an−1 + anxdn) · · ·

)

1. Monotonicity.

Let Op = �{ all the zeros of the intermediate polynomials of hp ∪{0} }

∀x ∈ IR
n s.t.

◦
x ∩Op = ∅, hp(x) = {p(x) | x ∈ x}

† beyond this condition, no guarantee.

Summer School NMSU, 27 July 2008 – p. 28/67



Horner

0
1 1.1

p : x 7→ 2x5 + x3 − 3x2

hp : x 7→ x2(−3 + x(1 + 2x2))
evaluation ofp

evaluation ofhp

p, hp
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Classical treatments and their limits
for univariate polynomials

Interval Horner form. [Shih-Chieh, 1303][Horner, 1819][Stahl, 1995]

Let p be a polynomial defined by: a0 +
∑n

i=1 aix
αi

hp(x) = a0 + xd1
(
· · ·+ xdn−1(an−1 + anxdn) · · ·

)

1. Monotonicity.

Let Op = �{ all the zeros of the intermediate polynomials of hp ∪{0} }

∀x ∈ IR
n s.t.

◦
x ∩Op = ∅, hp(x) = {p(x) | x ∈ x}

† beyond this condition, no guarantee.

† pb. with the decomposition of powers
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Classical treatments and their limits
for univariate polynomials

Interval Horner form. [Shih-Chieh, 1303][Horner, 1819][Stahl, 1995]

Let p be a polynomial defined by: a0 +
∑n

i=1 aix
αi

hp(x) = a0 + xd1
(
· · ·+ xdn−1(an−1 + anxdn) · · ·

)

2. Sub-distributivity.

a0 +

d1 times︷ ︸︸ ︷
x · · ·x(· · ·+

dn−1 times
︷ ︸︸ ︷
x · · ·x (an−1 + an

dn times︷ ︸︸ ︷
x · · ·x) · · · ) ⊆ a0 +

n∑
i=1

ai

βi times︷ ︸︸ ︷
x · · ·x

Summer School NMSU, 27 July 2008 – p. 30/67



Classical treatments and their limits
for univariate polynomials

Interval Horner form. [Shih-Chieh, 1303][Horner, 1819][Stahl, 1995]

Let p be a polynomial defined by: a0 +
∑n

i=1 aix
αi

hp(x) = a0 + xd1
(
· · ·+ xdn−1(an−1 + anxdn) · · ·

)

2. Sub-distributivity.

a0 +

d1 times︷ ︸︸ ︷
x · · ·x(· · ·+

dn−1 times
︷ ︸︸ ︷
x · · ·x (an−1 + an

dn times︷ ︸︸ ︷
x · · ·x) · · · ) ⊆ a0 +

n∑
i=1

ai

βi times︷ ︸︸ ︷
x · · ·x

a0 + xd1
(
· · ·+ xdn−1(an−1 + anxdn) · · ·

) ?
⊆ a0 +

n∑
i=1

aix
αi
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Classical treatments and their limits
for univariate polynomials

Interval Horner form. [Shih-Chieh, 1303][Horner, 1819][Stahl, 1995]

Let p be a polynomial defined by: a0 +
∑n

i=1 aix
αi

hp(x) = a0 + xd1
(
· · ·+ xdn−1(an−1 + anxdn) · · ·

)

2. Sub-distributivity.

p(x) = x + x4 hp(x) = x(x3 + 1)

q(x) = x + xxxx r(x) = x(xxx + 1)

Let x = [−2, 1]:
p(x) = [−2, 17] hp(x) = [−7, 14]

q(x) = [−10, 17] r(x) = [−10, 14]
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Classical treatments and their limits
for univariate polynomials

Interval Horner form. [Shih-Chieh, 1303][Horner, 1819][Stahl, 1995]

Let p be a polynomial defined by: a0 +
∑n

i=1 aix
αi

hp(x) = a0 + xd1
(
· · ·+ xdn−1(an−1 + anxdn) · · ·

)

Limits of Horner’s form.

† when intersecting the overestimation set: no guarantee

† does not benefit from the sub-distributivity property

 Another factorization scheme
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Another factorization scheme
for univariate polynomials

Objectives: 1. controlled decomposition of powers

2. priority to even powers
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Another factorization scheme
for univariate polynomials

Objectives: 1. controlled decomposition of powers

2. priority to even powers

Elementary scheme. Given p(x) = axα+γ + bxα,

Mcrp(x) = axα−γ
[(

xγ + b
2a

)2
−

(
b
2a

)2
]

with: a, b ∈ R
∗, α > γ and α + γ even.

Horner form of the same binomial: hp(x) = xα(b + axγ)
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Another factorization scheme
for univariate polynomials

Objectives: 1. controlled decomposition of powers

2. priority to even powers

Elementary scheme. Given p(x) = axα+γ + bxα,

Mcrp(x) = axα−γ
[(

xγ + b
2a

)2
−

(
b
2a

)2
]

with: a, b ∈ R
∗, α > γ and α + γ even.

Main properties.

• ∀x ∈ IR, 0 6∈ x → w(Mcrp(x)) 6w(hp(x))

•

8

<

:

(ab > 0 and (x> 0 or xγ 6− b
a
))

or (ab < 0 and (x6 0 or xγ > b
a
))
→ Mcrp(x) = {p(x) | x ∈ x}
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Mcrp vs. Horner

0
1 1.4

p : x 7→ x8 − 2x5

hp : x 7→ x5(x3 − 2)

Mcrp : x 7→ x2((x3 − 1)2 − 1)

evaluation ofhp

evaluation ofMcrp

p
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Another factorization scheme
for univariate polynomials

Generalization. Given p(x) =
∑n

i=1 aix
i, we define:

I = {(i, j) ∈ {0, · · · , n}2 | ai 6= 0, aj 6= 0, i < j < 2i, j is even}

and I′ ⊂ I without shared monomials
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Another factorization scheme
for univariate polynomials

Generalization. Given p(x) =
∑n

i=1 aix
i, we define:

I = {(i, j) ∈ {0, · · · , n}2 | ai 6= 0, aj 6= 0, i < j < 2i, j is even}

and I′ ⊂ I without shared monomials

 we can rewrite p as follows:

p(x) = r(x) +
P

(i,j)∈I′

`

aix
i + ajxj

´

= r(x) +
P

(i,j)∈I′ pi,j(x)
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Another factorization scheme
for univariate polynomials

Generalization. Given p(x) =
∑n

i=1 aix
i, we define:

I = {(i, j) ∈ {0, · · · , n}2 | ai 6= 0, aj 6= 0, i < j < 2i, j is even}

and I′ ⊂ I without shared monomials

 we can rewrite p as follows:

p(x) = r(x) +
P

(i,j)∈I′

`

aix
i + ajxj

´

= r(x) +
P

(i,j)∈I′ pi,j(x)

and we finally factorize:

Mcrp(x) = r(x) +
∑

(i,j)∈I′ Mcrpi,j
(x)
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Another factorization scheme
for univariate polynomials

Generalization. Given p(x) =
∑n

i=1 aix
i, we define:

I = {(i, j) ∈ {0, · · · , n}2 | ai 6= 0, aj 6= 0, i < j < 2i, j is even}

and I′ ⊂ I without shared monomials

 we can rewrite p as follows:

p(x) = r(x) +
P

(i,j)∈I′

`

aix
i + ajxj

´

= r(x) +
P

(i,j)∈I′ pi,j(x)

and we finally factorize:

Mcrp(x) = r(x) +
∑

(i,j)∈I′ Mcrpi,j
(x)

many possibilities strategies are defined
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Strategies and tests

Main principles.

• No decomposition of odd powers

• No decomposition of even powers into odd ones

• No introduction of odd powers / deletion of odd powers
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Strategies and tests

Main principles.

• No decomposition of odd powers

• No decomposition of even powers into odd ones

• No introduction of odd powers / deletion of odd powers

Two classes of strategies. parsing the expressions in the increasing order of their powers

1. given a power i, another one is looked for between i + 1 and 2i

2. priority to the factorization of odd powers, i.e., schemes (i, j) where i is odd
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Strategies and tests

Main principles.

• No decomposition of odd powers

• No decomposition of even powers into odd ones

• No introduction of odd powers / deletion of odd powers

Two classes of strategies. parsing the expressions in the increasing order of their powers

p(x) = x2 + x3 + x4 + x5 + x6 + x7 + x9 + x12

1. given a power i, another one is looked for between i + 1 and 2i

{(2, 4), (3, 6), (7, 12), 5, 9} {(2, 4), (3, 6), 5, 7, 9, 12}

2. priority to the factorization of odd powers, i.e., schemes (i, j) where i is odd

{(3, 4), (5, 6), (7, 12), 2, 9}
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Strategies and tests

Main principles.

• No decomposition of odd powers

• No decomposition of even powers into odd ones

• No introduction of odd powers / deletion of odd powers

Tests and results.

Sparse polynomials: the greater α, the sparser Pα,n

Pα,n(x) = (xα − 1)n =
∑n

k=0
(−1)n−kCk

nxkα

Comparison of several forms to the exact range of Pα,n over x = [−0.5, 0.3]

α 1 2 3 4 5

s1&s2 1.11 2.57 1.02 1.00 1.00

s′1 1.11 4.86 1.07 1.05 1.00

horner 1.49 2.92 1.10 1.34 1.09

natural 1.15 2.92 1.08 1.34 1.05
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Strategies and tests

Main principles.

• No decomposition of odd powers

• No decomposition of even powers into odd ones

• No introduction of odd powers / deletion of odd powers

Tests and results.

Sparse polynomials: the greater α, the sparser Pα,n

Pα,n(x) = (xα − 1)n =
∑n

k=0
(−1)n−kCk

nxkα

Randomly generated polynomials: 500-polynomial basis

interval evaluations using Mcr are globally better than Horner’s
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Recap’

Best strategy:

• second strategy (ϕ) when
◦

x∩Op 6= ∅ ≈ 25%-improvement (w.r.t. our tests)

• Horner otherwise

→ globally composition of Horner with our strategy on average

Properties.

• beyond the overestimation interval, h ◦ ϕ is equivalent to p

• otherwise, h ◦ ϕb globally improves the Horner form (w.r.t. our tests),
while always keeping equivalent to p
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Research directions

The dependency problem

The locality of reasonings

A unifying framework for soft constraints

Distributed constraints: speculations
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2. The locality of reasonings

The workings of this problem

Classical treatments and their limits

Triangularization is an idea

Summer School NMSU, 27 July 2008 – p. 37/67



The workings

• the propagation stage only communicates locally consistent domains

• pieces of information are lost between constraints

for instance the correspondance of bounds is lost, drowned out in the local reasonings

 a new symbolic representation
to enhance the propagation stage
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Classical treatments and their limits

Redundant constraints [Marti & Rueher, 1995] [Benhamou & Granvilliers, 1998]

[Van Emden, 1999]
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Classical treatments and their limits

Redundant constraints [Marti & Rueher, 1995] [Benhamou & Granvilliers, 1998]

[Van Emden, 1999]

Linear constraint solving and introduction of nonlinear constraints when their nonlinear

variables are determined [Colmerauer, 1993]

Linearization of the nonlinear terms [Yamamura et al., 1998]

⋆ these methods aim at improving the propagation stage

† no control of the accuracy of interval computations

† or no stopping control exponential in time and memory
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Classical treatments and their limits

Redundant constraints [Marti & Rueher, 1995] [Benhamou & Granvilliers, 1998]

[Van Emden, 1999]

Linear constraint solving [Colmerauer, 1993]

Linearization of the nonlinear terms [Yamamura et al., 1998]

Gaussian elimination

⋆ generation of triangular systems, information totally shared is the system is totally triangular

† only for linear systems
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Classical treatments and their limits

Redundant constraints [Marti & Rueher, 1995] [Benhamou & Granvilliers, 1998]

[Van Emden, 1999]

Linear constraint solving [Colmerauer, 1993]

Linearization of the nonlinear terms [Yamamura et al., 1998]

Gaussian elimination

control of the amount of transformations

+ control of the interval computations accuracy

= A new triangularization scheme
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Triangularization is an option

Consider the following nonlinear constraint system:

C :

8

>

>

>

>

>

<

>

>

>

>

>

:

c1 : x + y + x2 + xy + y2 = 0

c2 : x + t + xy + t2 + x2 = 0

c3 : y + z + x2 + z2 = 0

c4 : x + z + x2 + y2 + z2 + xy = 0

defined over E = [−100, 100]4,

4 solutions reached in 140ms using realpaver [Granvilliers, 2002].

• difficult to remove nonlinear terms the nonlinear terms are abstracted
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Triangularization is an option

Abstraction phase: equivalent system

8

>

>

>

>

>

<

>

>

>

>

>

:

lc1 : x +y +u1 +u2 +u3 = 0

lc2 : x +t +u1 +u2 +u4 = 0

lc3 : y +z +u1 +u5 = 0

lc4 : x +z +u1 +u2 +u3 +u5 = 0

and the abstracted system:

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

u1 = x2

u2 = xy

u3 = y2

u4 = t2

u5 = z2
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Triangularization is an option

Gaussian elimination phase:

8

>

>

>

>

>

<

>

>

>

>

>

:

lc1 : u1 +y +x +u2 + u3 = 0

lc′2 : y −t −u4 + u3 = 0

lc′3 : −z −u5 +x +u2 + u3 = 0

lc′4 : −t −u4 +x +u2 +2u3 = 0
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Triangularization is an option

Gaussian elimination phase:

8

>

>

>

>

>

<

>

>

>

>

>

:

lc1 : u1 +y +x +u2 + u3 = 0

lc′2 : y −t −u4 + u3 = 0

lc′3 : −z −u5 +x +u2 + u3 = 0

lc′4 : −t −u4 +x +u2 +2u3 = 0

• nonlinear terms are restored
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Triangularization is an option

Concretization phase:

8

>

>

>

>

>

<

>

>

>

>

>

:

lc1 : x2 +y +x +xy + y2 = 0

lc′2 : y −t −t2 + y2 = 0

lc′3 : −z −z2 +x +xy + y2 = 0

lc′4 : −t −t2 +x +xy +2y2 = 0

The new system is solved in 240ms!!
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Triangularization is an option

Concretization phase:

8

>

>

>

>

>

<

>

>

>

>

>

:

lc1 : x2 +y +x +xy + y2 = 0

lc′2 : y −t −t2 + y2 = 0

lc′3 : −z −z2 +x +xy + y2 = 0

lc′4 : −t −t2 +x +xy +2y2 = 0

The new system is solved in 240ms!!

Strategies are designed
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A triangularization method
Strategies

Let us consider again the previous problem. We begin with the linearized
system:

8

>

>

>

>

>

<

>

>

>

>

>

:

lc1 : x +y +u1 +u2 +u3 = 0

lc2 : x +t +u1 +u2 +u4 = 0

lc3 : y +z +u1 +u5 = 0

lc4 : x +z +u1 +u2 +u3 +u5 = 0

Pivot. (lc3, u5)
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A triangularization method
Strategies

First step of elimination
8

>

>

>

>

>

<

>

>

>

>

>

:

lc3 : y +z +u1 +u5 = 0

lc1 : x +y +u1 +u2 +u3 = 0

lc2 : x +t +u1 +u2 +u4 = 0

lc′4 : −x +y −u2 −u3 = 0

Control criterion: controls the densification of the “linear” system

User linear part: 0

Abstracted linear part: −2

Pivot. (lc′4, u3)
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A triangularization method
Strategies

Second step of elimination
8

>

>

>

>

>

<

>

>

>

>

>

:

lc3 : y +z +u1 +u5 = 0

lc′
4

: −x +y −u2 −u3 = 0

lc′1 : 2y +u1 = 0

lc2 : x +t +u1 +u2 +u4 = 0

Control criterion: controls the densification of the “linear” system

User linear part: 0

Abstracted linear part: −1

Pivot. (lc′1, u1)
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A triangularization method
Strategies

Third step of elimination
8

>

>

>

>

>

<

>

>

>

>

>

:

lc3 : y +z +u1 +u5 = 0

lc′4 : −x +y −u2 −u3 = 0

lc′
1

: 2y +u1 = 0

lc′2 : −x +2y −t −u2 −u4 = 0

Control criterion: controls the densification of the “linear” system

User linear part: +1

Abstracted linear part: −1

End of the elimination stage.
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A triangularization method
Strategies

Triangularized system
8

>

>

>

>

>

<

>

>

>

>

>

:

lc′2 : −t −x −u2 −u4 +2y = 0

lc′4 : −x −u2 −u3 +y = 0

lc3 : +u5 +z +u1 + y = 0

lc′1 : +u1 +2y = 0

Concretization: nonlinear terms are restored, using the abstracted system
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A triangularization method
Strategies

Concretization phase
8

>

>

>

>

>

<

>

>

>

>

>

:

c′1 : −t −x −xy −t2 +2y = 0

c′2 : −x −xy −y2 +y = 0

c′3 : z2 +z +x2 + y = 0

c′4 : x2 +2y = 0

Post-processing: simplification of the system using specific constraints

xi = f(x1, . . . , xi−1, xi+1, . . . , xn)

c′4 : −2y = x2 is eligible for post-processing

−2y is substituted for x2
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A triangularization method
Strategies

Post-processing: x2 = −2y

CT :

8

>

>

>

>

>

<

>

>

>

>

>

:

cT
1 : −t −x −xy −t2 +2y = 0

cT
2 : −x −xy −y2 +y = 0

cT ′

3 : z2 +z − y = 0

cT
4 : +x2 +2y = 0

Solving stage: 4 solutions reached in 10ms!
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Tests and results

Bratu’s problem.

xk−1 − 2xk + xk+1 + h exp(xk) = 0, 1 6 k 6 n

defined over [−108,+108]n, with x0 = xn+1 = 0 and h = 1
(n+1)2

.
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Tests and results

Bratu’s problem.

xk−1 − 2xk + xk+1 + h exp(xk) = 0, 1 6 k 6 n

defined over [−108,+108]n, with x0 = xn+1 = 0 and h = 1
(n+1)2

.

The initial problem is transformed as follows into a dense triangular system :

−(k + 1)xk + (k + 2)xk+1 + h
k∑

i=1

i exp(xi) = 0, 1 6 k 6 n
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Tests and results

Bratu’s problem.

xk−1 − 2xk + xk+1 + h exp(xk) = 0, 1 6 k 6 n

defined over [−108,+108]n, with x0 = xn+1 = 0 and h = 1
(n+1)2

.

Problem v Initial Pb. Triangul. Pb.

Time Sol. Time Sol.

Bratu 7 1.10 3 0.60 4

8 0.70 2 0.10 2

10 2.30 2 0.10 2

13 20.50 6 0.10 2

14 46.40 11 0.20 2

15 94.40 12 0.20 2
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Recap’

Symbolic pre-processing of constraint systems is efficient :

Triangularization through abstraction and elimination

Related work

• triangularization methods that cross even more sub-expres sions
• elimination based on the tree representation

Summer School NMSU, 27 July 2008 – p. 43/67



Research directions

The dependency problem

The locality of reasonings

A unifying framework for soft constraints

Distributed constraints: speculations
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3. Soft constraints

A unifying framework

Interval solving process

Applications
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A unifying framework

Motivation.

• providing a general framework, allowing to model explicitly the required

flexibility

• exploiting the properties of well-known algorithms for classical problems

(i.e., 6= soft)

Framework.

• based on distances/flexibility measures: the smallest flexibility is sought
• also integrates an order over the constraints
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A unifying framework
soft constraints

Given a constraint c defined over E ⊂ R
n, a soft constraint resulting from c is

defined by a pair

ĉ = (c, d)
where: d defines a distance between c and the elements of the search space.
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A unifying framework
soft constraints

Given a constraint c defined over E ⊂ R
n, a soft constraint resulting from c is

defined by a pair

ĉ = (c, d)
where: d defines a distance between c and the elements of the search space.

Properties of d: increasing function s.t. d(0) = 0.

interprets the rough distance to c.
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A unifying framework
soft constraints

Given a constraint c defined over E ⊂ R
n, a soft constraint resulting from c is

defined by a pair

ĉ = (c, d)
where: d defines a distance between c and the elements of the search space.

Properties of d:

O

10
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A unifying framework
soft constraints

Given a constraint c defined over E ⊂ R
n, a soft constraint resulting from c is

defined by a pair

ĉ = (c, d)
where: d defines a distance between c and the elements of the search space.

Properties of d:

O

10

rough distance
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A unifying framework
soft constraints

Given a constraint c defined over E ⊂ R
n, a soft constraint resulting from c is

defined by a pair

ĉ = (c, d)
where: d defines a distance between c and the elements of the search space.

Properties of d:

0

10

fuzzy/normalized distance

1
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A unifying framework
soft constraints

Given a constraint c defined over E ⊂ R
n, a soft constraint resulting from c is

defined by a pair

ĉ = (c, d)
where: d defines a distance between c and the elements of the search space.

Properties of d: increasing function s.t. d(0) = 0.

interprets the rough distance to c.

instanciations↔ quality: to be maximized.
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A unifying framework
soft constraints

Given a constraint c defined over E ⊂ R
n, a soft constraint resulting from c is

defined by a pair

ĉ = (c, d)
where: d defines a distance between c and the elements of the search space.

Solution set of ĉ = the closest to c (w.r.t. d) subset of E.

= {x ∈ E | ∀y ∈ E, d(x, c) 6 d(y, c)}
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A unifying framework
soft constraints

Given a constraint c defined over E ⊂ R
n, a soft constraint resulting from c is

defined by a pair

ĉ = (c, d)
where: d defines a distance between c and the elements of the search space.

Solution set of ĉ = the closest to c (w.r.t. d) subset of E.

= {x ∈ E | ∀y ∈ E, d(x, c) 6 d(y, c)}

Preferences over the search space
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A unifying framework
soft CSP

Given a CSP C = {c1, · · · , cp} defined over E ⊂ R
n, a soft CSP resulting

from C is defined by a tuple

Ĉ = (C, d, D, ≻)
where: D is a set of distances corresponding to each constraint ci

d is a operator combining the values of the distances of D

≻ is an order over the set of constraints.
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A unifying framework
soft CSP

Given a CSP C = {c1, · · · , cp} defined over E ⊂ R
n, a soft CSP resulting

from C is defined by a tuple

Ĉ = (C, d, D, ≻)

Properties of d: defined over (R+)p = combination of distances

the same as those of each distance to a single constraint

increasing function w.r.t. each parameter
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A unifying framework
soft CSP

Given a CSP C = {c1, · · · , cp} defined over E ⊂ R
n, a soft CSP resulting

from C is defined by a tuple

Ĉ = (C, d, D, ≻)

Properties of d: defined over (R+)p = combination of distances

the same as those of each distance to a single constraint:

increasing function w.r.t. each parameter

Remark concerning D: up to now, all the distances are of the same type

= commensurability problem
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A unifying framework
soft CSP

Given a CSP C = {c1, · · · , cp} defined over E ⊂ R
n, a soft CSP resulting

from C is defined by a tuple

Ĉ = (C, d, D, ≻)

Properties of d: defined over (R+)p = combination of distances

the same as those of each distance to a single constraint:

increasing function w.r.t. each parameter

Remark concerning D: up to now, all the distances are of the same type

= commensurability problem

Order ≻: establish the order instanciations are to satisfy

⋆ may be trivial

• otherwise, states new constraints C≻
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A unifying framework
soft CSP

Given a CSP C = {c1, · · · , cp} defined over E ⊂ R
n, a soft CSP resulting

from C is defined by a tuple

Ĉ = (C, d, D, ≻)

c1

c2

c3/1.4

c3

sol1 sol2 sol3

0.8

1

Fuzzy/normalized distance corresponding to(c1, c2, c3)
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A unifying framework
soft CSP

Given a CSP C = {c1, · · · , cp} defined over E ⊂ R
n, a soft CSP resulting

from C is defined by a tuple

Ĉ = (C, d, D, ≻)

c1

c2

c3/1.4

c3

solsol1 sol2

Distance associated to(c1, c2, c3)

Smooth variation
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A unifying framework
soft CSP

Given a CSP C = {c1, · · · , cp} defined over E ⊂ R
n, a soft CSP resulting

from C is defined by a tuple

Ĉ = (C, d, D, ≻)

Solution set of Ĉ = the closest to C (w.r.t. d) subset of E satisfying C≻.

= {x ∈ E | C≻ holds on x

and ∀y ∈ E, d(x,C) 6 d(y,C)}
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A unifying framework
soft CSP

Given a CSP C = {c1, · · · , cp} defined over E ⊂ R
n, a soft CSP resulting

from C is defined by a tuple

Ĉ = (C, d, D, ≻)

Solution set of Ĉ = the closest to C (w.r.t. d) subset of E satisfying C≻.

= {x ∈ E | C≻ holds on xand ∀y ∈ E, d(x, C) 6 d(y, C)}

For instance, preferences over the constraints establish an order over the

satisfaction/violation of the constraints: C≻ expresses this order.

On the other hand, when trivial, C≻ holds on any x ∈ E

Preferences over the search space and over the constraints
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Solving process

Given a soft CSP Ĉ = (C, d,D,≻) defined over E ⊂ R
n, the solution set

of Ĉ is the solution set of the following hard problem :

min
x∈E

d(d1(x), · · · , dp(x))

s.t. x satisfies C≻
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Solving process

Given a soft CSP Ĉ = (C, d,D,≻) defined over E ⊂ R
n, the solution set

of Ĉ is the solution set of the following hard problem :

min
x∈E

d(d1(x), · · · , dp(x))

s.t. x satisfies C≻

Interval solving process: distance functions are extended in the usual way.

† Pbs. with normalized distances:

1. maximum value of the rough distance = another optimization process!

 interval upper bound

2. but may be∞

 variation of the normalized distance
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Solving process

x∗

x∗ = 0.54

0.76

x∗∗

x∗∗ = 0.99

0.43

c2

c3

c1

Interval function (distance)

= sum of normalized distances

A smooth variation
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Applications

Camera positioning problem.

• given a camera, find a position and angle allowing to visualize given objects

• inconsistent (over-constrained) problem: solved using several soft models

A

B

C θc

Possible locations of the camera
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Applications

Camera positioning problem.

• given a camera, find a position and angle allowing to visualize given objects

• inconsistent (over-constrained) problem: solved using several soft models

Results.

• 1. soft positioning are easily reached using an optimization process

• 2. some positioning are useless w.r.t. the camera problem:

no object is in the camera’s scope
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Applications

Camera positioning problem.

• given a camera, find a position and angle allowing to visualize given objects

• inconsistent (over-constrained) problem: solved using several soft models

Results.

• 1. soft positioning are easily reached using an optimization process

• 2. some positioning are useless w.r.t. the camera problem:

A

B

θc

camera’s scope
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Applications

Camera positioning problem.

• given a camera, find a position and angle allowing to visualize given objects

• inconsistent (over-constrained) problem: solved using several soft models

Results.

• 1. soft positioning are easily reached using an optimization process

• 2. some positioning are useless w.r.t. the camera problem:

A

B

C

θc

camera’s scope
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Applications

Camera positioning problem.

• given a camera, find a position and angle allowing to visualize given objects

• inconsistent (over-constrained) problem: solved using several soft models

Results.

• 1. soft positioning are easily reached using an optimization process

• 2. some positioning are useless w.r.t. the camera problem:

Conclusions.

• soft constraints allowing violation degrees are useless when violated

constraints are meaningless

• for specific problems, a priori knowledge is crucial to guarantee exploitable

solutions
• the user is essential in the modelling stage

Summer School NMSU, 27 July 2008 – p. 51/67



Research directions

The dependency problem

The locality of reasonings

A unifying framework for soft constraints

Distributed constraints: speculations
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What is a speculation?

Speculation = a hypothesis that has been formed by speculating or

conjecturing (usually with little hard evidence)
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What is a speculation?

Speculation = a hypothesis that has been formed by speculating or

conjecturing (usually with little hard evidence)

e.g., ”speculations about the outcome of the election”
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What is a speculation? (2)

Examples:
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What is a speculation? (2)

Examples:

you invite people at home, and you give them a choice

among possible dates, but they don’t reply immediately

when they can come
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What is a speculation? (2)

Examples:

you invite people at home, and you give them a choice

among possible dates, but they don’t reply immediately

when they can come

instead of waiting for their replies, you may have a clue about the

chosen date, and begin to prepare the party, based on this

speculation
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What is a speculation? (2)

Examples:

you invite people at home, and you give them a choice

among possible dates, but they don’t reply immediately

when they can come

instead of waiting for their replies, you may have a clue about the

chosen date, and begin to prepare the party, based on this

speculation

you plan a trip and ask Rose to take care about this, but you

may not specify all your preferences: e.g., only the date, and

destination
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What is a speculation? (2)

Examples:

you invite people at home, and you give them a choice

among possible dates, but they don’t reply immediately

when they can come

instead of waiting for their replies, you may have a clue about the

chosen date, and begin to prepare the party, based on this

speculation

you plan a trip and ask Rose to take care about this, but you

may not specify all your preferences: e.g., only the date, and

destination

the travel agency will not wait until you specify your time preferences

to begin and look for air fares
Summer School NMSU, 27 July 2008 – p. 54/67



Why perform speculative
computations?

Most studies on multi-agent systems (MAS) assume
that the communication between agents is
guaranteed
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Why perform speculative
computations?

Most studies on multi-agent systems (MAS) assume
that the communication between agents is
guaranteed

When an agent asks a question to another one, the
process depending on the answer is suspended until
some response is sent
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Why perform speculative
computations?

Most studies on multi-agent systems (MAS) assume
that the communication between agents is
guaranteed

When an agent asks a question to another one, the
process depending on the answer is suspended until
some response is sent

However...
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Why perform speculative
computations?

Most studies on multi-agent systems (MAS) assume
that the communication between agents is
guaranteed

When an agent asks a question to another one, the
process depending on the answer is suspended until
some response is sent

However...

In real settings (e.g. internet), communication may fail
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Why perform speculative
computations?

Most studies on multi-agent systems (MAS) assume
that the communication between agents is
guaranteed

When an agent asks a question to another one, the
process depending on the answer is suspended until
some response is sent

However...

In real settings (e.g. internet), communication may fail

Agents may take time to send back a reply
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What kind of problems can be
considered?

In the Constraint Logic Programming (CLP) world
e.g., organize a meeting, and determine when, where, and with
whom

organize(large_room, [a, b, c], D) ← meeting([a, b, c], D)

organize(small_room, [X, Y ], D) ← meeting([X,Y ], D)

meeting([a, b], D) ← available(a,D), available(b,D), not_available(c,D)

meeting([b, c], D) ← not_available(a,D), available(b,D), available(c,D)

meeting([a, c], D) ← available(a,D), not_available(b,D), available(c,D)

meeting([a, b, c], D) ← available(a,D), available(b,D), available(c,D)

available(P,D) ← free(P )@D

not_available(P,D) ← busy(P )@D

9

=

;

questions sent to agents

?− organize(R,L, D).
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What kind of problems can be
considered?

In the Constraint Logic Programming (CLP) world

In the Constraint Solving world
e.g., determine the geographical zone a robot can cover

(x− x0)
2 + (y − y0)

2 6 (t0 · s0)
2

x, y, ∈ [−108, 108]

x0 = location(X)

y0 = location(Y )

s0 = speed(S)

d0 = duration(D)






questions sent to agents

and transmitted to sensors
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SCP in a Master-Slave environment

Basic idea [Satoh, Prima 2003]:

The program (constraint problem, denoted by P) is centralized at
the master’s level (denoted by M)
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Basic idea [Satoh, Prima 2003]:

The program (constraint problem, denoted by P) is centralized at
the master’s level (denoted by M)

M begins to run the program / solve the constraint system

When specific information is needed:
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SCP in a Master-Slave environment

Basic idea [Satoh, Prima 2003]:

The program (constraint problem, denoted by P) is centralized at
the master’s level (denoted by M)

M begins to run the program / solve the constraint system

When specific information is needed: e.g.,

is person a available on day D? free(a)@D

where is the robot located? x0 = location(X),

y0 = location(Y )

etc.
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SCP in a Master-Slave environment

Basic idea [Satoh, Prima 2003]:

The program (constraint problem, denoted by P) is centralized at
the master’s level (denoted by M)

M begins to run the program / solve the constraint system

When specific information is needed: M asks a slave S the
corresponding question
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SCP in a Master-Slave environment

Before S answers, M continue the processing of P with
some default value/constraint δ:
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SCP in a Master-Slave environment

Before S answers, M continue the processing of P with

some default value/constraint δ: e.g.,

← D ∈ {1, 2}||free(a)@D

x0 ∈ [1, 100], y0 ∈ [10, 25]
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SCP in a Master-Slave environment

Before S answers, M continue the processing of P with
some default value/constraint δ: no time is wasted
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SCP in a Master-Slave environment

Before S answers, M continue the processing of P with

some default value/constraint δ: no time is wasted

When answers α come from S, M updates or reinforces its

belief depending on whether:

α entails δ: α ⊂ δ

α contradicts δ: α ∩ δ = ∅

α is consistent with δ but does not entail it: α ∩ δ 6= ∅ but α 6⊂ δ
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MA belief revision in the case of
yes/no questions

What is speculative computation with MA belief
revision?
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MA belief revision in the case of
yes/no questions

What is speculative computation with MA belief
revision?

each agent can perform speculative computations
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MA belief revision in the case of
yes/no questions

What is speculative computation with MA belief
revision?

each agent can perform speculative computations

therefore, answers from slaves may not be certified: they are
now likely to be default too
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MA belief revision in the case of
yes/no questions

Speculative computations with MA belief revision for
yes/no questions [Satoh, AAMAS’03]
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MA belief revision in the case of
yes/no questions

Speculative computations with MA belief revision for
yes/no questions [Satoh, AAMAS’03]

when S sends an answer δs, it may be a default S uses, instead
of the actual certified answer from a person, or a sensor
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MA belief revision in the case of
yes/no questions

Speculative computations with MA belief revision for
yes/no questions [Satoh, AAMAS’03]

when S sends an answer δs, it may be a default S uses, instead
of the actual certified answer from a person, or a sensor

therefore: different process management when answers come
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MA belief revision in the case of
yes/no questions (2)

There are only two possible cases:
Entailment: default = answer

Contradiction: default = ¬ answer
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MA belief revision in the case of
yes/no questions (2)

There are only two possible cases:
Entailment: default = answer

Contradiction: default = ¬ answer

When certified information comes, same situation as in
[Satoh, Prima 2003]
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MA belief revision in the case of
yes/no questions (2)

There are only two possible cases:
Entailment: default = answer

Contradiction: default = ¬ answer

When certified information comes, same situation as in
[Satoh, Prima 2003]

Otherwise, complementary processes must not be
killed:

in case later answers contradicts the current one

instead, they are recorded
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Recap on speculative computations
in MA systems

Frameworks for speculative computations exist

In master-slave, we can perform speculative constraint
processing

In general hierarchical systems, all agents can perform
spec. computations in the case of yes/no questions
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How to improve this?

Make it possible to:

solve general constraints (or ask more general questions)...
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How to improve this?

Make it possible to:

solve general constraints (or ask more general questions)...

... in a general hierarchical MA system...
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How to improve this?

Make it possible to:

solve general constraints (or ask more general questions)...

... in a general hierarchical MA system...

... where all agents are enabled to perform
speculations.
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Outline of the presentation

Continuous constraints: definitions and solving process

An example of under and over-constrained problems

Important notions

Some research directions

Conclusion
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Conclusion

Now you know about:

• Continuous constraints

• Variations: optimization, soft constraints

• Some issue about distributed constraint solving

• and their limitations / open problems

You’re ready to:

• find new methods to address them
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Some ideas for doing this

Dependency problems: Extension of factorization schemes

• to more generalized rules: elementary scheme greater than binomials

• to more general terms (sin, cos), integrated in schemes (more in-depth

parsing)

• to more general terms: linearization, loss of accuracy needs to be evaluated

Locality of Reasonings: Cooperation of linearization processes

or: Class of suitable problems

Soft constraints: More expressivity

Speculations: Other social group organizations
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The end

Thank you for your attention

QUESTIONS?

Martine Ceberio

mceberio@utep.edu

www.constraintsolving.com

http://www.martineceberio.fr

University of Texas at El Paso
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