Approximating Answer Sets of Unitary Lifschitz-Woo
Programs

Victor W. Marek!, Inna Pivkin&, and Mirostaw Truszczyhski

! Department of Computer Science, University of Kentucky
Lexington, KY 40506-0046, USA
2 Department of Computer Science, New Mexico State Universit
P.O. Box 30001, MSC CS, Las Cruces, NM 88003, USA

Abstract. We investigate techniques for approximating answer setgenéral

logic programs of Lifschitz and Woo, whose rules have sitiggeals as heads.
We propose three different methods of approximation andinbesults on the
relationship between them. Since general logic progrants single literals as
heads are equivalent to revision programs, we obtain sesaliapproximations
of justified revisions of databases by revision programs.

1 Introduction

General logic programs were introduced by Lifschitz and \la&92]. Their syntax
follows closely that of disjunctive logic programs but tés one essential difference.
The operatonot, representing thdefault negatioris no longer confined to the bodies
of program rules but may appear in their heads, as well. hitsand Woo [LW92]
showed that the semantics of answer sets introduced famdisye logic programs in
[GL91] can be lifted to the class of general logic programs.

In this paper, we study the class of those general prograatsithnot contain dis-
junctions in the heads of their rules. We call such programitary. Unitary general
programs are of interest for two reasons. First, they go baybe class of normal
logic programs by allowing the default-negation operatathie rule heads. Second, in
a certain precise sense, unitary general programs areadgepuiivo the class of revision
programs [MT98,MPT02], which provide a formalism for debtrg and enforcing
database revisions. Consequently, results for unitargmgémprograms extend to the
case of revision programs.

The problem we focus on in this paper is that of approximatingwer sets of
unitary general programs. The problem to decide whetheitaryriogic program has
an answer set is NP-complét€onsequently, computing answer sets of unitary general
programs is hard and it is important to establish efficientssta approximate them. On
one hand, such approximations can be sufficient for somemésggtasks. On the other
hand, they can be used by programs computing answer setarte fire search space
and can improve their performance significantly.

3 Without the restriction to unitary programs (and assumirag the polynomial hierarchy does
not collapse) the problem is even harderS£-complete.

In the case of normal logic programs the well-founded modB®%$88] provides an
effective approximation to all answer sétht can be computed in polynomial time and
is known to provide an effective pruning mechanism for pamgs computing stable
models [SNV95,SNS02]. An obvious approach to the problehaatl seems to be then
to extend the well-founded model and its properties to thssbf unitary programs.
However, despite similarities between normal and unitaogmms, no counterpart of
the well-founded model has been proposed for the lattes slagar, and whether it can
be done remains unresolved.

Thus, we approach the problem not by attempting to generttie well-founded
semantics but by exploiting this semantics in some othss, dérect ways. Namely, we
introduce three operators for unitary general programsusedthem to define the ap-
proximations. The first two operators are antimonotone aadlasely related to opera-
tors behind the well-founded semantics of normal logic paaggs. lterating them yields
alternatingsequences. We use the limits of these sequences to cormtinuitst two
approximations to answer sets of unitary general progrdine.two approximations
we obtain in this way are not comparable (neither is strotiggm the other one). The
third operator is not antimonotone in general. Howeverhi ¢ase of unitary general
programs that have answer sets, iterating this operataltsés an alternating sequence
and the limit of this sequence yields yet another approXondb answer sets of unitary
general programs. We show that this third approximatiotrémger than the other two.
We also show that all three approaches imply sufficient dardi for thenon-existence
of answer sets of unitary programs.

As we noted, unitary programs are related to revision progreMT98,MPT99].
Having introduced approximations to answer sets of unganeral programs, we show
that our results apply in a direct way to the case of revisimgmmming.

All programs we consider in the paper digte. That assumption simplifies argu-
ments. However, all our results can be extended to the canérife programs.

2 Preiminaries

Atoms and literals. In the paper we consider a fixed gétof (propositional) atoms.
Expressions of the form andnot(a), wherea € U, areliterals (overU). We denote
the set of all literals ovel’ by Lit(U). A set of literalsL C Lit(U) is coherentif there
is noa € U such that botlu € L andnot(a) € L. A set of literalsL C Lit(U) is
completef for everya € U, a € L ornot(a) € L (it is possible that for some, both
a € L andnot(a) € L).

For a setM of atoms,M C U, we define

not(M) = {not(a): a € M} and M° = M Unot(U \ M).

The mappingV/ — M€ is a bijection between subsetsldéfand coherent and complete
sets of literals contained ibit (U).

4 In the context of normal logic programming, answer sets aseernommonly known astable
models

Unitary general programs. A unitary general logic programor UG-programis a
collection of rules of the form:

QO — Q1,0 (1)
whereq, aq, . . ., ay, are literals fromLit (U). The literalo is theheadof the rule. The
set of literals{a, . . ., a;, } is thebodyof the rule.

Let P be a UG-program. We writ&* (respectively,P~) to denote programs con-
sisting of all rules inP that have an atom (respectively, a negated atom) as the head.
Satisfaction and models. A set of atomsM C U satisfies(is a modelof) an atom
a € U (respectively, a literahot(a) € Lit(U)), if a € M (respectivelya ¢ M).
The concept of satisfaction (being a model of) extends iraad#rd way to rules and
programs. As usual, we write: to denote the satisfaction relation.

Sets of literals closed under UG-programs. In addition to models, we also associate
with a UG-programP sets of literals that are closed under rule®inA setL of literals

is closedunder a UG-progran® if for every ruler = o «— Body € P such that
Body C L, a € L. One can show that every UG-progrdfrhas a least set of literals
closed under its rulésWe denote it byP*. We observe that i? is a definite Horn
program,P* consists of atoms only and coincides with the least modél.of

Stable models of normal logic programs. Models are too weak for knowledge repre-
sentation applications. In the case of normal logic progsdire appropriate semantic
concept is that of a stable model. We recall that accordintp¢ooriginal definition
[GL88], a set of atom4d/ is a stable model of a normal logic prograrif

[PM]" = M, (2)

whereP™ is theGelfond-Lifschitzeduct of P with respect taV/. The following char-
acterization of stable models is well known [BTK93} is a stable model of a normal
logic programP if and only if

[P Unot(U\ M)* N U = M. 3)

Answer sets of UG-programs. Lifschitz and Woo [LW92] extended the concept of a
stable model to the case of arbitrary general programs diedid¢he resulting semantic
object ananswer setRather than to give the original definition from [LW92], wecall

a basic characterization of answer sets of UG-programsiifidie of use in the paper.
Its proof can be found in [Lif96,MPT99].

Proposition 1. Let P be a UG-program. A set of atondg is an answer set t& if and
only if M is a stable model oP* and a model of”~. In particular, if M is an answer
set toP then) is a model ofP.

Alternating sequences. All approximations to answer sets of UG-programs we study
in this paper are defined in terms of alternating sequenakshair limits. A sequence
(X,) of sets of literals islternatingif

5 If we treat literalsnot (a) as new atomsP becomes a Horn program and its least model is the
least set of literals closed undgr.

1. XoC Xo C X4 C...
2.X12X32X5D...
3. X2; € X941, fOr every non-negative integeér

If (X;)is an alternating sequence, we defixie= J;°, Xo; andX* = (72, Xoi+1.
We call the pair X!, X*) thelimit of the alternating sequen¢g;). It follows directly

from the definition that for every non-negative integeasd;,
X2 C X' C X" C Xojia

Alternating sequences are often defined by means of opsridiatr are antimono-
tone. An operatoty defined onLit(U) is antimonotonéf for every two setsX C Y C
Lit(U),v(Y) C v(X). Lety be antimonotone. We definé, = 0 and X ;1 = v(X;).

It is well known (and easy to show) that the sequefiXg) is alternating. We call X;)
thealternatingsequence of.

We will consider in the paper the following two operators:

vpu(X)=[PUnot(U\ X)]*NU and yp(X) =[P Unot(U \ X)]*.

Both operators are antimonotone and give rise to alterpatuences, sayV;) and
(Y;). Let (W', W) and (Y, Y") be the limits of these sequences, respectively. One
can verify that these limits forralternating pairs That is, we have

yru (W) =W*" and ypy (W) = W' (4)

and
yp(Y) =Y" and yp(Y") = Y. (5)

One can show that i” is a normal logic program then the alternating sequence
of vp s is precisely the alternating sequence defining the welhdimd semantics of
[VRS88,Van93].

One can also show that the limit of the alternating sequeficgrois the well-
founded model of the normal logic prograRi obtained fromP by replacing every
literal not(a) with anewatom, say’, and adding rules of the foraf < not(a) (the
claim holds modulo the correspondencde«— not(a)). The mappingP — P’ was
introduced and studied in [PT95] in the context of revisioograms.

Approximating sets of atoms. Let M be a set of atoms. Every pair of séf S) that
approximates\/, thatis, such thdf’ C M C S, implies a lower bound on the complete
representatiod/© of M:

TU{not(U\ S)} C M*.

Conversely, every sel of literals such that. C M¢ determines armapproximation
(T,S) of M,wherel' =U N LandS = {a € U: not(a) ¢ L}. Indeed,

UNLCMC{a€cU:not(a) ¢ L}.

In this way, we establish a bijection between approximatitona set of atoma/ and
subsets ofA/¢. It follows that approximations of answer sets can be repriesl as
subsets of their complete representations. We have treiol fact.

Proposition 2. Let P be a UG-program and Ief’ and.S be two sets of atoms. For every
answer seff of P, if T'C M C Sthen[PUT Unot(U \ S)]* C M°.

Proof: We have" C M C S. Thus,T Unot(U \ S) C M°€. Letr = o < Body be a
rule in P such thatBody C M*. It follows that M satisfies the body of. SincelM is
an answer set aP, M satisfiese and so € M€. Thus,T Unot(U \ S) C M*° and
M¢ is closed undeP. Consequently,P UT Unot(U \ S)]* C M°. O

In the case of normal logic programs, the well-founded mottedt is, the limit
(Wi, Wu) of the alternating sequenc¢®;) of the operatoryp 7, approximates every
stable model (if they exist) and, in some cases determiregiistence of a unique
stable model.

Theorem 1 ([VRS88,Lif96]). Let (W' W) be the well-founded model of a normal
logic programP.

1. For every stable modél/ of P, W! Unot(U \ W) C M¢.
2. IfW! =W, thenW! is a unique stable model fa?.

In the remainder of the paper, we will propose approximatittnanswer sets of
UG-programs generalizing Theorem 1.

3 Approximating answer setsusing operators~yp and vp

Our first approach exploits the fact that every answer selibgprogramp is a stable
model of P (Proposition 1). LetP be a UG-program and I€tV!, W*) be the limit
of the alternating sequence of the operatpr ;. As we observed(W!, W) is the
well-founded model of°™. We define

Appz,(P) = [PUnot(U \ W")]*.

By (4), W! = [PUnot(U \ W¥)]* " U. Hence W' C Appz,(P) and so,Appz,(P)
contains all literals that are true in the well-founded mqdg!, W+).

Theorem 2. Let P be a UG-program. For every answer setof P, Appz,(P) C M°.
In addition, if Appz, (P) is incoherent ther has no answer sets.

Proof: LetM be an answer set @. By Proposition 1M is a stable model oP*. Let

(W, W) be the well-founded model aP*. By Theorem 1not(U \ W*) C M¢.

Moreover, sincel/ is an answer set aP, M is a model ofP (Proposition 1, again)

and so,M¢ is closed undef. Since Appz,(P) is the least set of literals containing

not(U \ W*) and closed undeP, Appz,(P) C M¢, as claimed. The second part of

the assertion follows from the first one. a
We will illustrate this approach with an example.

Example 1.Let us consider the following UG-prograft
a «— not(b), not(c) d «— not(b)

¢ «— ¢,not(b) not(b) —
b «— not(d)

All but the last rule belong t@*. The operatotyp+ ;; determines the following alter-
nating sequenc@V;) of sets:

O {a,b,d} —0....

It follows that the well-founded model aP* is (W!, W) = (0, {a,b,d}). Conse-
quently,
Appz,(P) = [P U {not(c)}]* = {a,d, not(b), not(c)}.

In this case, the well-founded model £f" alone provides a weak bound on answer
sets of P. The improved boundppz,(P), which closes the model undé?, pro-
vides a much stronger approximation. In fact, only one /gefs approximated by
{a,d,not(b), not(c)}. This set is{a, d} and it happens to be a unique answer set of
P.

Let @ = P U {not(a) < d}. SinceQ* = PT, it follows that Appz,(Q) =
[Q U {not(c)}]* = {a,d,not(a), not(b), not(c)}. SinceAppz,(Q) is incoherentQ)
has no answer sets, a fact that can be verified directly. |

The approximatiodppz, (P), whereP is the first program from Example 1, is
complete and coherent, and we noted that the unique setmkat@atAppz, (P) ap-
proximates is a unique answer set/ef It is a general property extending Theorem
1(2).

Coroallary 1. Let P be a UG-program. IfAppz,(P) is coherent and complete then
Appz,(P) NU is a unique answer set @t.

Proof: Sincedppz, (P) is coherent and complete, Theorem 2 implies fhhs at most
one answer set. To prove the assertion it is then enough wothlao N/ = Appz,(P)N
U is an answer set aP.

Let (W', W) be the well-founded model d**. SinceAppz, (P) = [PUnot (U \
W)*, [P Unot(U \ W*)]* is coherent and complete. Consequently,

M =[PUnot(U\ W)™

It follows thatnot(U \ W*) C not(U \ M). Thus,M° C [P Unot(U \ M)]*.
It also follows thatM/¢ is closed under the rules iR. Sincenot(U \ M) C M¢,
[PUnot(U \ M)]* C M¢c. Thus,

M® = [P Unot(U\ M)]*.

It follows now thatM/ is a model ofP~. Moreover, it also follows thad/ = [P+ U
not(U \ M)|* and so,M is a stable model aP*. Thus,M is an answer set @P. O

We will now introduce another approximation to answer séis 0G-programpP.
This time, we will use the operatop. LetY; be the alternating sequence of the operator
~vp and let(Y'!, Y'*) be the limit of(Y;). We define

Appz,(P) =Y.

Theorem 3. Let P be a UP-program. IfM is an answer-set foP then Appz,(P) C
Me. In addition, if Appz, is incoherent, thed® has no answer sets.

Proof: LetM be an answer set d? and let(Y;) be the alternating sequence for the
operatoryp. We will show by induction that for every> 0, Yo, N U C M C Y3;41.

SinceYy = 0, Yo N U C M. We will now assume thdty; N U C M and show that
M C Ya;y 1. Our assumption implies thatot (U \ M) C not(U \ Ya;). Thus, since
M is a stable model oP T, it follows from (3) that

M = [PTUnot(U\ M)]*NU C [PUnot(U\ M)]* C [PUnot(U\ Ya;)]* = Ya;s1.

Next, we assume that/ C Y51 and show thats; o N U C M. The assumption
implies thatnot(U \ Y2;4+1) C not(U \ M). Thus,

Y2i+2 NnNU = [P @] not(U \ }éi+1)]* nU Q [PU not(U \ M)]* nU
=[Pt Unot(U\ M)]*NU = M.

The last but one equality follows from the fact tht is a model of P~ and the last
inequality follows from the fact that/ is a stable model of*.

From the claim it follows thafl/ C Y. Thus,not(U \ Y*) C M*. SinceM is a
model of P, M€ is closed undeP. Thus,Y'! = [P Unot(U \ Y*)]* C M°. O

As before, if the approximation provided bippz,(P) is complete and coherent,
P has a unique answer set.

Corollary 2. Let P be a UG-program such that ppz, (P) is complete and coherent.
Then,Appz,(P) N U is a unique answer set df.

The following example illustrates our second approach.

Example 2.LetU = {a, b}. Let P be a UG-program consisting of rules:
not(a) < not(b)
b < not(a)
a <—
Iterating the operatoyp results in the following alternating sequence:
0 +— {a,b,not(a),not(b)} — {a} — {a,b,not(a),not(b)} —
Its limitis ({a}, {a, b, not(a), not(b)}) and so,Appz,(P) = {a}. O

We conclude this section by showing that the approximatibpgr, and Appz,
are, in general, not comparable.

The following example shows that there is a UG-progi@rauch thatd ppz, (P)
and Appz,(P) are coherent and ppz,(P) is apropersubset ofdppz, (P).

Example 3.LetU = {a, b, ¢, d, e} and letP be a UG-program consisting of the rules:

a « not(a) d — not(c),not(e)
b« not(a) e —
¢ < not(d) a+—c,e

not(e) < a,b

Computing Appz,(P). The programP* consists of all rules of except the last one.
The alternating sequence¢f+ ;; starts as follows:

0 — {a,b,c,d,e} — {e} — {a,b,c,e} — {a,c,e} — {a,c,e} —
Thus, its limitis({a, ¢, e}, {a, c,e}) and
Appz,(P) = [P U{a,c,e} U{not(b),not(d)}]* = {a,c, e, not(b), not(d)}.
Computing Appz,(P). lterating the operatoyp yields the following sequence:
0 Lit(U) — {e} — Lit(U) —
Thus, the limitis({e}, Lit(U)) and so,Appz,(P) = {e}. O

The next example shows that for some programs the oppositeeiand the second
approximation is strictly more precise.

Example 4.LetU = {a, b, ¢} and letP be a UG-program consisting of the rules:
a < not(b) c—a,b
b« not(a) not(a) «—
Computing Appz,(P). The alternating sequence of the operatpr ; is
0 {a,b,c}—0—....

Thus,
Appz,(P) = P* = {not(a), b}.

Computing Appz,(P). lteratingyp yields:
0+ Lit(U) — {not(a),b} — {not(a),b,not(c)} — {not(a),b,not(c)} —
Thus,Appz,(P) = {not(a), b, not(c)}. O

4 Strong approximation

Let P be a UG-program and C Lit(U) a set of literals (not necessaritphereny. By
theweak reducbf P with respect taZ we mean the program? obtained fromP by:

1. removing all rules that contain in the body a literalt(a) such thata € Z and
not(a) ¢ Z;
2. removing from the bodies of the remaining rules all litersot(a) such that ¢ Z.

Let us note that it: € Z andnot(a) € Z, not(a) will not be removed from the rules
that remain after Step 1.
Let Z be a set of literalsZ C Lit(U). We define

18(2) = [PI]".

In general, the operator is not antimonotone. Thus, the seque(£g) obtained by
iteratingyy (starting with the empty set) in general is not alternating.

Example 5.Let P be a UG-program consisting of the rules:

a — not(b) ¢ < not(d)
b — d —

not(b) « not(c)

By the definition,Z, = (). When computing®Z°, no rule is removed in Step 1 of the
definition of the weak reduct, and every literal of the forrat(a) is removed from
the bodies of rules iP. Thus,Z; = {a,b,¢c,d,not(b)}. When computing??:, we
observe thanot(b) € Z;. Thus, the first rule is not removed despite the fact that
b € Z,. Hence, we have:

a < not(b)
P2 = b , andso,Z, = {b,d}.

w
d «—

In the next step, we compute:

b —
Pf2 — not(b) — , andso,Z3 = {b, d, nOt(b)}'
d —

When computing??:, the rulea « not(b) is againnotremoved in Step 1. Thus,

w

a < not(b)
b «—

not(b) — ’
d

pZs — and so,Z, = {a,b,d,not(b)}.

We note thatZ, is nota subset ofZs. Thus, for this progran®, the sequencé?;) is
not alternating. a

In the remainder of this section we show that under some tiondithe sequence
(Z,) is alternating and may be used to approximate answer set&efrdgrams. We
first establish a lemma providing conditions, under whig}Y |* is antimonotone ir¥ .

Lemmal. Let P be a UG-program X and X’ be sets of literals such that C X".
Moreover, let at least one of the following conditions hold:

1. X' is coherent
2. X C [PX']* and[PX']* is coherent.
3. [PX]*cXx
4. X C [PX]* and[PX]* is coherent.
Then[PX']* C [PX]*.
The next lemma describes two properties@f]* under the assumption that is
coherent.

Lemma 2. Let P be a UG-program and a coherent set of literalsY C Lit(U).

L [Py] = [Py"Y]

2. [PY]" = [(P)3"Y]* Unot(X') = [(P*)X"Y]* Unot(X'),
whereX' is the set of atoms such thae X' if and only if there is a ruleot(a) «
Body in (P~)X such thaf(P)X"U]* |= Body.

w

We can now prove the following characterization of answé&s e€UG-programs.

Lemma3. Let P be a UG-programM C U a set of atoms, an&V a set of atoms
consisting of all atoma € U such thata ¢ M and there is a ruleot(a) < Body
in P such thatM = Body. ThenM is an answer set of if and only if [PM]* =
M Unot(N).

Proof: (=) By Proposition 1M is a stable model oP* and a model of”~. In partic-
ular,[(PT)M]* = M. Let X' be the set specified in Lemma 2(2), defined Xor= M.
Since[(PT)M]* = M and M is a model ofP—, for everya € X', a ¢ M. Thus,
X'’ = N and the assertion follows from Lemma 2(2).
(«=) It follows from Lemma 2(2) that\/ = [(P+)M]*. Thus, M is stable model of
P*. Let us consider a ruleot(a) < Body from P~ such thatM satisfiesBody.
Let Body' consist of all atoms iBody. It follows thatnot(a) « Body' is a rule in
(P7)M_SinceM |= Body, M |= Body'. Thus, by Lemma 2(2jot(a) € [PM]*.
Since[PM]* = M Unot(N), a € not(N) which, in turn, impliesz ¢ M. It follows
that M/ is a model ofP~ and so, an answer set 6t i
The results we presented above allow us to prove that as btigedower (even)
terms of the sequend¢’;) are coherent, the sequence behaves as an alternating one.

Proposition 3. Leti be an integer; > 0, such thatZ,; is coherent. Then

1. 20 C 7y C...C Zoi
2. Z12 232 ...2 Zoiy1
3. Z2; C Zojt1.

This last proposition is crucial for the definition of ourrthiapproximation. Let us
consider the sequencé&,). If for everyi, Zs; is coherent, Proposition 3 implies that
the sequenceZ;) is alternating. LetZ!, Z*) be the limit of(Z;). We define

Apprs(P) = Z' U{not(a): a € U\ Z"}.

Otherwise, there i$ such thatZ,; is incoherent. In this case, we say thigipz;(P) is
undefined.

Theorem 4. Let P be a UG-program. If\ is an answer set oP then Appz4(P) is
defined anddppz5(P) C Me. If Appzs(P) is not defined, the® has no answer sets.

Proof: The second part of the assertion follows from the din&. To prove the first part
of the assertion, we will show that for eveiry> 0, Z5; C M€, andM C Zg;11.

We proceed by induction oh If i = 0, thenZy = () C M¢. We now assume that
Za; € M€ and prove thatl C Z5;41.

SinceZy; € M¢ andM¢€ is coherentZs; is coherent, too. By Lemma 1 (applied
to X = Zo; and X’ = M¢, under the assumption (4))PM°]* C [PZ2]*. Thus,
[PM“)* C Zyiy1. By Lemma 2(1),[PM]* C Zyiy 1. By Lemma 3,M C [PM]*.
Therefore M C Zs;41.

Next, we assume that/ C 7,1 and prove that/,; o C M¢. Let us note that
Zyivo = [P,f”“]* and that by Lemma 3PM]* C M¢. Thus, it will suffice to show
that[PZ>+']* C [PM]*. To this end, we note that by LemmaZ®, C [PM]* and so
Lemma 1 applies (under the condition (4))X0= M and X' = Z,;.1, and implies
the required inclusion.

It follows that Z! C M€ and thatM C Z“. If a ¢ Z“, thena ¢ M and so,
not(a) € M¢. Thus,Appz4(P) = Z' Unot(U \ Z*) C M°©. O

Example 6.Let P be a UG-program consisting of the rules:

not(a) < not(d) < not(c)
a < not(b) d «— not(e)
b «— not(a) e < not(d)
c—a,b f—de

Iterating the operatoyy results in the following sequence:

0+ {a,b,c,d, e, f,not(a),not(d)} — {not(a),b} — {b,d, e, f,not(a),not(d)}
— {b,e,not(a),not(d)} — {b,e,not(a),not(d)} —

Thus, the sequend¢;) is alternating. Its limit i Z!, Z*), whereZ! = Z* = {b, e,
not(a),not(d)}. Thus,

Appzs(P) = Z' Unot(U \ Z%) = {b, e, not(a), not(c), not(d), not(f)}.
Since Appz4(P) is coherent and complet® has a unique answer s, e}. This

example also demonstrates ti#t can improve on the bound provided By itself. O

5 Propertiesof Appx,

In this section we will show that il ppz 5 is defined then it is stronger than the other
two approximations. We recall that ppz5(P) is undefined, the® has no answer
sets, that isP is inconsistentlt follows that for allconsistentUG-programsAppz 5 is
stronger than the the other two approximations.

Theorem 5. LetP be a UG-program. I[fAppz4(P) is defined then
Appz,(P) U Appzy(P) C Appzy(P)

There are programs which show tHaipz 4 is strictly stronger.

Example 7.Let P be the UG-program from Example 4. We recall thigtpz, (P) =
{not(a),b}. Let us computed ppz,(P). By iterating the operatoy’, we obtain the
following sequence:

Zy =0+ Z; = {a,b,c,not(a)} — Zy = {not(a),b} — Z3 = {not(a),b}....

Hence,Appz4(P) = {not(a), b, not(c)} andAppz, (P) is apropersubset ofd ppz,(P).
O

Example 8.Let P be the UG-program from Example 3. We recall thigtpz,(P) =
{e}. To computed ppz,(P), we note that by iterating the operatgf we get the fol-
lowing sequence:

Zy=0+— Z1 ={a,b,c,d,e,not(e)} — Zo = {e} —
Z3 ={a,b,c,e,not(e)} — Zy = {a,c,e} — Zs ={a,c,e}....
Hence,Appz4(P) = {a,not(b), c,not(d), e} and Appz,(P) is a proper subset of
Appzs(P). |

Finally, we show that ifAppzs(P) is defined and complete thdh has a unique
answer set.

Corollary 3. Let P be a UG-program such thatppz;(P) is defined and complete.
ThenAppzs(P) N U is an answer set aP and P has no other answer sets.

6 Corollariesfor the case of revision programs

Revision programming [MT98] is a formalism for describingdeenforcing constraints
on databases. The main concepts in the formalism are aalidétabase, a revision
program, and justified revisions.

Expressions of the forim(a) andout(a) (a € U) arerevision literals Intuitively,
in(a) (respectivelyput(a)) means that atoma is in (respectively, is not in) a database.

A revision programconsists of rulesx «— ay,...,a,, Wherea, «;,...,a, are
revision literals. Given a revision prografhand an initial databasg [MT98] defined
P-justified revisionf I to represent revisions that satisfy the constraint®’pfire
“grounded” inP andI, and differ minimally from the initial database.

As we mentioned earlier, unitary general programs are adpnv to revision pro-
grams. The equivalence is established by the so csli#ting theorenfiMPT99], which
allows us to reduce any pajP, I), whereP is a revision program anflis an initial
database, to a unitary general program so thdustified revisions off correspond to
answer sets of the unitary general program. Consequetitigsalts of our paper im-
ply results about approximations of justified revisionstriral descriptions o ppz,
Appz,, and Appz 4 for revision programs can be found in [Piv05]. Approximato
Appz, and Appz, for revision programs were originally described in [Piv01]

Acknowledgments. Inna Pivkina was supported by the NSF-funded ADVANCE Insti-
tutional Transformation Program at New Mexico State Ursitgr Grant No. 0123690,
and NMSU College of Arts and Sciences Research Center GramIN3-43891. The
other two authors were supported by the NSF Grants No. 0@&2d 0325063.

References

[BTK93] A. Bondarenko, F. Toni, and R.A. Kowalski. An assutop-based framework for
non-monotonic reasoning. In A. Nerode and L. Pereira, eslitmgic programming and
non-monotonic reasoning (Lisbon, 199ages 171-189, Cambridge, MA, 1993. MIT
Press.

[GL88] M. Gelfond and V. Lifschitz. The stable semanticslfagic programs. IrProceedings of
the 5th International Conference on Logic Programmipgges 1070-1080. MIT Press,
1988.

[GL91] M. Gelfond and V. Lifschitz. Classical negation ingioc programs and disjunctive
databasedNew Generation Computing:365-385, 1991.

[Lif96] V. Lifschitz. Foundations of logic programming. Rrinciples of Knowledge Represen-
tation, pages 69-127. CSLI Publications, 1996.

[LW92] V. Lifschitz and T.Y.C. Woo. Answer sets in generalnmeonotonic reasoning. IRro-
ceedings of the 3rd international conference on princigle&nowledge representation
and reasoning, KR '92pages 603-614, San Mateo, CA, 1992. Morgan Kaufmann.

[MPT99] V. W. Marek, I. Pivkina, and M. Truszczyhski. Reidn programming = logic pro-
gramming + integrity constraints. In G. Gottlob, E. Grargjeand K. Seyr, editors,
Computer Science Logic, 12th International Workshop, @&Wolume 1584 of.ecture
Notes in Computer Scienggages 73—89. Springer, 1999.

[MPT02] V.W. Marek, I. Pivkina, and M. Truszczyhski. Anrdéd revision programdirtificial
Intelligence Journal138:149-180, 2002.

[MT98] W. Marek and M. Truszczyhski. Revision programmifigneoretical Computer Science
190(2):241-277, 1998.

[Piv01] I. Pivkina. Revision programming: a knowledge regentation formalism. PhD disser-
tation, University of Kentucky, 2001.

[Piv05] I. Pivkina. Defining well-founded semantics for ig@n programming Technical Report
NMSU-CS-2005-001, New Mexico State University, ComputeieSce Department,
2005.

[PT95] T.C. Przymusifski and H. Turner. Update by meansference rules. Iihogic pro-
gramming and nonmonotonic reasoning (Lexington, KY, 1988ume 928 ofLecture
Notes in Computer Scienggages 156—174, Berlin, 1995. Springer.

[SNS02] P. Simons, I. Niemela, and T. Soininen. Extendimdjisnplementing the stable model
semanticsAtrtificial Intelligence 138:181-234, 2002.

[SNV95] V.S. Subrahmanian, D. Nau, and C. Vago. WFSranch bound= stable models.
IEEE Transactions on Knowledge and Data Engineerin62—377, 1995.

[Van93] A. Van Gelder. The alternating fixpoint of logic prams with negation.Journal of
Computer and System Sciencé$(1):185-221, 1993.

[VRS88] A.Van Gelder, K.A. Ross, and J.S. Schlipf. Unfouthdets and well-founded seman-
tics for general logic programs. BCM Symposium on Principles of Database Systems
pages 221-230, 1988.

