
Approximating Answer Sets of Unitary Lifschitz-Woo
Programs

Victor W. Marek1, Inna Pivkina2, and Mirosław Truszczyński1
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Abstract. We investigate techniques for approximating answer sets ofgeneral
logic programs of Lifschitz and Woo, whose rules have singleliterals as heads.
We propose three different methods of approximation and obtain results on the
relationship between them. Since general logic programs with single literals as
heads are equivalent to revision programs, we obtain results on approximations
of justified revisions of databases by revision programs.

1 Introduction

General logic programs were introduced by Lifschitz and Woo[LW92]. Their syntax
follows closely that of disjunctive logic programs but there is one essential difference.
The operatornot, representing thedefault negationis no longer confined to the bodies
of program rules but may appear in their heads, as well. Lifschitz and Woo [LW92]
showed that the semantics of answer sets introduced for disjunctive logic programs in
[GL91] can be lifted to the class of general logic programs.

In this paper, we study the class of those general programs that do not contain dis-
junctions in the heads of their rules. We call such programsunitary. Unitary general
programs are of interest for two reasons. First, they go beyond the class of normal
logic programs by allowing the default-negation operator in the rule heads. Second, in
a certain precise sense, unitary general programs are equivalent to the class of revision
programs [MT98,MPT02], which provide a formalism for describing and enforcing
database revisions. Consequently, results for unitary general programs extend to the
case of revision programs.

The problem we focus on in this paper is that of approximatinganswer sets of
unitary general programs. The problem to decide whether a unitary logic program has
an answer set is NP-complete3. Consequently, computing answer sets of unitary general
programs is hard and it is important to establish efficient ways to approximate them. On
one hand, such approximations can be sufficient for some reasoning tasks. On the other
hand, they can be used by programs computing answer sets to prune the search space
and can improve their performance significantly.

3 Without the restriction to unitary programs (and assuming that the polynomial hierarchy does
not collapse) the problem is even harder —ΣP

2 -complete.



In the case of normal logic programs the well-founded model [VRS88] provides an
effective approximation to all answer sets4. It can be computed in polynomial time and
is known to provide an effective pruning mechanism for programs computing stable
models [SNV95,SNS02]. An obvious approach to the problem athand seems to be then
to extend the well-founded model and its properties to the class of unitary programs.
However, despite similarities between normal and unitary programs, no counterpart of
the well-founded model has been proposed for the latter class so far, and whether it can
be done remains unresolved.

Thus, we approach the problem not by attempting to generalize the well-founded
semantics but by exploiting this semantics in some other, less direct ways. Namely, we
introduce three operators for unitary general programs anduse them to define the ap-
proximations. The first two operators are antimonotone and are closely related to opera-
tors behind the well-founded semantics of normal logic programs. Iterating them yields
alternatingsequences. We use the limits of these sequences to constructour first two
approximations to answer sets of unitary general programs.The two approximations
we obtain in this way are not comparable (neither is strongerthan the other one). The
third operator is not antimonotone in general. However, in the case of unitary general
programs that have answer sets, iterating this operator results in an alternating sequence
and the limit of this sequence yields yet another approximation to answer sets of unitary
general programs. We show that this third approximation is stronger than the other two.
We also show that all three approaches imply sufficient conditions for thenon-existence
of answer sets of unitary programs.

As we noted, unitary programs are related to revision programs [MT98,MPT99].
Having introduced approximations to answer sets of unitarygeneral programs, we show
that our results apply in a direct way to the case of revision programming.

All programs we consider in the paper arefinite. That assumption simplifies argu-
ments. However, all our results can be extended to the case ofinfinite programs.

2 Preliminaries

Atoms and literals. In the paper we consider a fixed setU of (propositional) atoms.
Expressions of the forma andnot(a), wherea ∈ U , areliterals (overU ). We denote
the set of all literals overU by Lit(U). A set of literalsL ⊆ Lit(U) is coherentif there
is noa ∈ U such that botha ∈ L andnot(a) ∈ L. A set of literalsL ⊆ Lit(U) is
completeif for everya ∈ U , a ∈ L or not(a) ∈ L (it is possible that for somea, both
a ∈ L andnot(a) ∈ L).

For a setM of atoms,M ⊆ U , we define

not(M) = {not(a) : a ∈M} and M c = M ∪ not(U \M).

The mappingM 7→M c is a bijection between subsets ofU and coherent and complete
sets of literals contained inLit(U).

4 In the context of normal logic programming, answer sets are more commonly known asstable
models.



Unitary general programs. A unitary general logic program, or UG-program is a
collection of rules of the form:

α ← α1, . . . , αm (1)

whereα, α1, . . . , αm are literals fromLit(U). The literalα is theheadof the rule. The
set of literals{α1, . . . , αm} is thebodyof the rule.

Let P be a UG-program. We writeP+ (respectively,P−) to denote programs con-
sisting of all rules inP that have an atom (respectively, a negated atom) as the head.
Satisfaction and models. A set of atomsM ⊆ U satisfies(is a modelof) an atom
a ∈ U (respectively, a literalnot(a) ∈ Lit(U)), if a ∈ M (respectively,a /∈ M ).
The concept of satisfaction (being a model of) extends in a standard way to rules and
programs. As usual, we write|= to denote the satisfaction relation.
Sets of literals closed under UG-programs. In addition to models, we also associate
with a UG-programP sets of literals that are closed under rules inP . A setL of literals
is closedunder a UG-programP if for every rule r = α ← Body ∈ P such that
Body ⊆ L, α ∈ L. One can show that every UG-programP has a least set of literals
closed under its rules5. We denote it byP ∗. We observe that ifP is a definite Horn
program,P ∗ consists of atoms only and coincides with the least model ofP .
Stable models of normal logic programs. Models are too weak for knowledge repre-
sentation applications. In the case of normal logic programs, the appropriate semantic
concept is that of a stable model. We recall that according tothe original definition
[GL88], a set of atomsM is a stable model of a normal logic programP if

[PM ]∗ = M, (2)

wherePM is theGelfond-Lifschitzreduct ofP with respect toM . The following char-
acterization of stable models is well known [BTK93]:M is a stable model of a normal
logic programP if and only if

[P ∪ not(U \M)]∗ ∩ U = M. (3)

Answer sets of UG-programs. Lifschitz and Woo [LW92] extended the concept of a
stable model to the case of arbitrary general programs and called the resulting semantic
object ananswer set. Rather than to give the original definition from [LW92], we recall
a basic characterization of answer sets of UG-programs thatwill be of use in the paper.
Its proof can be found in [Lif96,MPT99].

Proposition 1. LetP be a UG-program. A set of atomsM is an answer set toP if and
only if M is a stable model ofP+ and a model ofP−. In particular, if M is an answer
set toP thenM is a model ofP .

Alternating sequences. All approximations to answer sets of UG-programs we study
in this paper are defined in terms of alternating sequences and their limits. A sequence
(Xi) of sets of literals isalternatingif

5 If we treat literalsnot(a) as new atoms,P becomes a Horn program and its least model is the
least set of literals closed underP .



1. X0 ⊆ X2 ⊆ X4 ⊆ . . .
2. X1 ⊇ X3 ⊇ X5 ⊇ . . .
3. X2i ⊆ X2i+1, for every non-negative integeri.

If (Xi) is an alternating sequence, we defineX l =
⋃

∞

i=0
X2i andXu =

⋂

∞

i=0
X2i+1.

We call the pair(X l, Xu) the limit of the alternating sequence(Xi). It follows directly
from the definition that for every non-negative integersi andj,

X2i ⊆ X l ⊆ Xu ⊆ X2j+1

Alternating sequences are often defined by means of operators that are antimono-
tone. An operatorγ defined onLit(U) is antimonotoneif for every two setsX ⊆ Y ⊆
Lit(U), γ(Y ) ⊆ γ(X). Letγ be antimonotone. We defineX0 = ∅ andXi+1 = γ(Xi).
It is well known (and easy to show) that the sequence(Xi) is alternating. We call(Xi)
thealternatingsequence ofγ.

We will consider in the paper the following two operators:

γP,U (X) = [P ∪ not(U \X)]∗ ∩ U and γP (X) = [P ∪ not(U \X)]∗.

Both operators are antimonotone and give rise to alternating sequences, say(Wi) and
(Yi). Let (W l, Wu) and(Y l, Y u) be the limits of these sequences, respectively. One
can verify that these limits formalternating pairs. That is, we have

γP,U (W l) = Wu and γP,U (Wu) = W l (4)

and
γP (Y l) = Y u and γP (Y u) = Y l. (5)

One can show that ifP is a normal logic program then the alternating sequence
of γP,U is precisely the alternating sequence defining the well-founded semantics ofP
[VRS88,Van93].

One can also show that the limit of the alternating sequence of γP is the well-
founded model of the normal logic programP ′ obtained fromP by replacing every
literal not(a) with a newatom, saya′, and adding rules of the forma′ ← not(a) (the
claim holds modulo the correspondencea′ ↔ not(a)). The mappingP 7→ P ′ was
introduced and studied in [PT95] in the context of revision programs.
Approximating sets of atoms. Let M be a set of atoms. Every pair of sets(T, S) that
approximatesM , that is, such thatT ⊆M ⊆ S, implies a lower bound on the complete
representationM c of M :

T ∪ {not(U \ S)} ⊆M c.

Conversely, every setL of literals such thatL ⊆ M c determines anapproximation
(T, S) of M , whereT = U ∩ L andS = {a ∈ U : not(a) /∈ L}. Indeed,

U ∩ L ⊆M ⊆ {a ∈ U : not(a) /∈ L}.

In this way, we establish a bijection between approximations to a set of atomsM and
subsets ofM c. It follows that approximations of answer sets can be represented as
subsets of their complete representations. We have the following fact.



Proposition 2. LetP be a UG-program and letT andS be two sets of atoms. For every
answer setM of P , if T ⊆M ⊆ S then[P ∪ T ∪ not(U \ S)]∗ ⊆M c.

Proof: We haveT ⊆ M ⊆ S. Thus,T ∪ not(U \ S) ⊆ M c. Let r = α ← Body be a
rule in P such thatBody ⊆ M c. It follows thatM satisfies the body ofr. SinceM is
an answer set ofP , M satisfiesα and so,α ∈ M c. Thus,T ∪ not(U \ S) ⊆ M c and
M c is closed underP . Consequently,[P ∪ T ∪ not(U \ S)]∗ ⊆M c. 2

In the case of normal logic programs, the well-founded model, that is, the limit
(W l, Wu) of the alternating sequence(Wi) of the operatorγP,U , approximates every
stable model (if they exist) and, in some cases determines the existence of a unique
stable model.

Theorem 1 ([VRS88,Lif96]). Let (W l, Wu) be the well-founded model of a normal
logic programP .

1. For every stable modelM of P , W l ∪ not(U \Wu) ⊆M c.
2. If W l = Wu, thenW l is a unique stable model forP .

In the remainder of the paper, we will propose approximations to answer sets of
UG-programs generalizing Theorem 1.

3 Approximating answer sets using operators γP,U and γP

Our first approach exploits the fact that every answer set of aUG-programP is a stable
model ofP+ (Proposition 1). LetP be a UG-program and let(W l, Wu) be the limit
of the alternating sequence of the operatorγP+,U . As we observed,(W l, Wu) is the
well-founded model ofP+. We define

Appx 1(P ) = [P ∪ not(U \Wu)]∗.

By (4),W l = [P ∪ not(U \Wu)]∗ ∩ U . Hence,W l ⊆ Appx 1(P ) and so,Appx 1(P )
contains all literals that are true in the well-founded model (W l, Wu).

Theorem 2. LetP be a UG-program. For every answer setM ofP , Appx 1(P ) ⊆M c.
In addition, ifAppx 1(P ) is incoherent thenP has no answer sets.

Proof: LetM be an answer set ofP . By Proposition 1,M is a stable model ofP+. Let
(W l, Wu) be the well-founded model ofP+. By Theorem 1,not(U \Wu) ⊆ M c.
Moreover, sinceM is an answer set ofP , M is a model ofP (Proposition 1, again)
and so,M c is closed underP . SinceAppx 1(P ) is the least set of literals containing
not(U \Wu) and closed underP , Appx 1(P ) ⊆ M c, as claimed. The second part of
the assertion follows from the first one. 2

We will illustrate this approach with an example.

Example 1.Let us consider the following UG-programP :

a← not(b),not(c)

c← c,not(b)

b← not(d)

d← not(b)

not(b)←



All but the last rule belong toP+. The operatorγP+,U determines the following alter-
nating sequence(Wi) of sets:

∅ 7→ {a, b, d} 7→ ∅ . . . .

It follows that the well-founded model ofP+ is (W l, Wu) = (∅, {a, b, d}). Conse-
quently,

Appx 1(P ) = [P ∪ {not(c)}]∗ = {a, d,not(b),not(c)}.

In this case, the well-founded model ofP+ alone provides a weak bound on answer
sets ofP . The improved boundAppx 1(P ), which closes the model underP , pro-
vides a much stronger approximation. In fact, only one setM is approximated by
{a, d,not(b),not(c)}. This set is{a, d} and it happens to be a unique answer set of
P .

Let Q = P ∪ {not(a) ← d}. SinceQ+ = P+, it follows that Appx 1(Q) =
[Q ∪ {not(c)}]∗ = {a, d,not(a),not(b),not(c)}. SinceAppx 1(Q) is incoherent,Q
has no answer sets, a fact that can be verified directly. 2

The approximationAppx 1(P ), whereP is the first program from Example 1, is
complete and coherent, and we noted that the unique set of atoms thatAppx 1(P ) ap-
proximates is a unique answer set ofP . It is a general property extending Theorem
1(2).

Corollary 1. Let P be a UG-program. IfAppx 1(P ) is coherent and complete then
Appx 1(P ) ∩ U is a unique answer set ofP .

Proof: SinceAppx 1(P ) is coherent and complete, Theorem 2 implies thatP has at most
one answer set. To prove the assertion it is then enough to show thatM = Appx 1(P )∩
U is an answer set ofP .

Let (W l, Wu) be the well-founded model ofP+. SinceAppx 1(P ) = [P ∪not(U \
Wu)]∗, [P ∪ not(U \Wu)]∗ is coherent and complete. Consequently,

M c = [P ∪ not(U \Wu)]∗.

It follows that not(U \ Wu) ⊆ not(U \ M). Thus,M c ⊆ [P ∪ not(U \ M)]∗.
It also follows thatM c is closed under the rules inP . Sincenot(U \ M) ⊆ M c,
[P ∪ not(U \M)]∗ ⊆M c. Thus,

M c = [P ∪ not(U \M)]∗.

It follows now thatM is a model ofP−. Moreover, it also follows thatM = [P+ ∪
not(U \M)]∗ and so,M is a stable model ofP+. Thus,M is an answer set ofP . 2

We will now introduce another approximation to answer sets of a UG-programP .
This time, we will use the operatorγP . LetYi be the alternating sequence of the operator
γP and let(Y l, Y u) be the limit of(Yi). We define

Appx 2(P ) = Y l.

Theorem 3. Let P be a UP-program. IfM is an answer-set forP thenAppx 2(P ) ⊆
M c. In addition, ifAppx 2 is incoherent, thenP has no answer sets.



Proof: LetM be an answer set ofP and let(Yi) be the alternating sequence for the
operatorγP . We will show by induction that for everyi ≥ 0, Y2i ∩ U ⊆M ⊆ Y2i+1.

SinceY0 = ∅, Y0 ∩ U ⊆M . We will now assume thatY2i ∩U ⊆M and show that
M ⊆ Y2i+1. Our assumption implies thatnot(U \M) ⊆ not(U \ Y2i). Thus, since
M is a stable model ofP+, it follows from (3) that

M = [P+∪not(U \M)]∗∩U ⊆ [P ∪not(U \M)]∗ ⊆ [P ∪not(U \Y2i)]
∗ = Y2i+1.

Next, we assume thatM ⊆ Y2i+1 and show thatY2i+2 ∩ U ⊆ M . The assumption
implies thatnot(U \ Y2i+1) ⊆ not(U \M). Thus,

Y2i+2 ∩ U = [P ∪ not(U \ Y2i+1)]
∗ ∩ U ⊆ [P ∪ not(U \M)]∗ ∩ U

= [P+ ∪ not(U \M)]∗ ∩ U = M.

The last but one equality follows from the fact thatM is a model ofP− and the last
inequality follows from the fact thatM is a stable model ofP+.

From the claim it follows thatM ⊆ Y u. Thus,not(U \ Y u) ⊆ M c. SinceM is a
model ofP , M c is closed underP . Thus,Y l = [P ∪ not(U \ Y u)]∗ ⊆M c. 2

As before, if the approximation provided byAppx 2(P ) is complete and coherent,
P has a unique answer set.

Corollary 2. Let P be a UG-program such thatAppx 2(P ) is complete and coherent.
Then,Appx 2(P ) ∩ U is a unique answer set ofP .

The following example illustrates our second approach.

Example 2.Let U = {a, b}. Let P be a UG-program consisting of rules:

not(a)← not(b)

b← not(a)

a←

Iterating the operatorγP results in the following alternating sequence:

∅ 7→ {a, b,not(a),not(b)} 7→ {a} 7→ {a, b,not(a),not(b)} 7→ . . . .

Its limit is ({a}, {a, b,not(a),not(b)}) and so,Appx 2(P ) = {a}. 2

We conclude this section by showing that the approximationsAppx 1 andAppx 2

are, in general, not comparable.
The following example shows that there is a UG-programP such thatAppx 1(P )

andAppx 2(P ) are coherent andAppx 2(P ) is apropersubset ofAppx 1(P ).

Example 3.Let U = {a, b, c, d, e} and letP be a UG-program consisting of the rules:

a← not(a)

b← not(a)

c← not(d)

d← not(c),not(e)

e←

a← c, e

not(e)← a, b



Computing Appx 1(P ). The programP+ consists of all rules ofP except the last one.
The alternating sequence ofγP+,U starts as follows:

∅ 7→
{

a, b, c, d, e
}

7→ {e} 7→
{

a, b, c, e
}

7→
{

a, c, e
}

7→
{

a, c, e
}

7→ . . . .

Thus, its limit is({a, c, e}, {a, c, e}) and

Appx 1(P ) = [P ∪ {a, c, e} ∪ {not(b),not(d)}]∗ = {a, c, e,not(b),not(d)}.

Computing Appx 2(P ). Iterating the operatorγP yields the following sequence:

∅ 7→ Lit(U) 7→ {e} 7→ Lit(U) 7→ . . . .

Thus, the limit is({e},Lit(U)) and so,Appx 2(P ) = {e}. 2

The next example shows that for some programs the opposite istrue and the second
approximation is strictly more precise.

Example 4.Let U = {a, b, c} and letP be a UG-program consisting of the rules:

a← not(b)

b← not(a)

c← a, b

not(a)←

Computing Appx 1(P ). The alternating sequence of the operatorγP+,U is

∅ 7→ {a, b, c} 7→ ∅ 7→ . . . .

Thus,
Appx 1(P ) = P ∗ = {not(a), b}.

Computing Appx 2(P ). IteratingγP yields:

∅ 7→ Lit(U) 7→ {not(a), b} 7→ {not(a), b,not(c)} 7→ {not(a), b,not(c)} 7→ . . . .

Thus,Appx 2(P ) = {not(a), b,not(c)}. 2

4 Strong approximation

Let P be a UG-program andZ ⊆ Lit(U) a set of literals (not necessarilycoherent). By
theweak reductof P with respect toZ we mean the programP Z

w obtained fromP by:

1. removing all rules that contain in the body a literalnot(a) such thata ∈ Z and
not(a) /∈ Z;

2. removing from the bodies of the remaining rules all literalsnot(a) such thata /∈ Z.

Let us note that ifa ∈ Z andnot(a) ∈ Z, not(a) will not be removed from the rules
that remain after Step 1.

Let Z be a set of literals,Z ⊆ Lit(U). We define

γw
P (Z) = [PZ

w ]∗.

In general, the operatorγw
P is not antimonotone. Thus, the sequence(Zi) obtained by

iteratingγw
P (starting with the empty set) in general is not alternating.



Example 5.Let P be a UG-program consisting of the rules:

a← not(b)

b←

not(b)← not(c)

c← not(d)

d←

By the definition,Z0 = ∅. When computingPZ0 , no rule is removed in Step 1 of the
definition of the weak reduct, and every literal of the formnot(a) is removed from
the bodies of rules inP . Thus,Z1 = {a, b, c, d,not(b)}. When computingPZ1

w , we
observe thatnot(b) ∈ Z1. Thus, the first rule is not removed despite the fact that
b ∈ Z1. Hence, we have:

PZ1

w =







a← not(b)
b←
d←







, and so,Z2 = {b, d}.

In the next step, we compute:

PZ2

w =







b←
not(b)←

d←







, and so,Z3 = {b, d,not(b)}.

When computingPZ3
w , the rulea← not(b) is againnot removed in Step 1. Thus,

PZ3

w =















a← not(b)
b←

not(b)←
d←















, and so,Z4 = {a, b, d,not(b)}.

We note thatZ4 is not a subset ofZ3. Thus, for this programP , the sequence(Zi) is
not alternating. 2

In the remainder of this section we show that under some conditions the sequence
(Zi) is alternating and may be used to approximate answer sets of UG-programs. We
first establish a lemma providing conditions, under which[PX

w ]∗ is antimonotone inX .

Lemma 1. Let P be a UG-program,X andX ′ be sets of literals such thatX ⊆ X ′.
Moreover, let at least one of the following conditions hold:

1. X ′ is coherent
2. X ⊆ [PX′

w ]∗ and[PX′

w ]∗ is coherent.
3. [PX′

w ]∗ ⊆ X
4. X ⊆ [PX

w ]∗ and[PX
w ]∗ is coherent.

Then[PX′

w ]∗ ⊆ [PX
w ]∗.

The next lemma describes two properties of[PX
w ]∗ under the assumption thatX is

coherent.



Lemma 2. LetP be a UG-program andX a coherent set of literals,X ⊆ Lit(U).

1. [PX
w ]∗ = [PX∩U

w ]∗.
2. [PX

w ]∗ = [(P+)X∩U
w ]∗ ∪ not(X ′) = [(P+)X∩U ]∗ ∪ not(X ′),

whereX ′ is the set of atoms such thata ∈ X ′ if and only if there is a rulenot(a)←
Body in (P−)X

w such that[(P+)X∩U
w ]∗ |= Body .

We can now prove the following characterization of answer sets of UG-programs.

Lemma 3. Let P be a UG-program,M ⊆ U a set of atoms, andN a set of atoms
consisting of all atomsa ∈ U such thata /∈ M and there is a rulenot(a) ← Body

in P such thatM |= Body . ThenM is an answer set ofP if and only if [P M
w ]∗ =

M ∪ not(N).

Proof: (⇒) By Proposition 1,M is a stable model ofP+ and a model ofP−. In partic-
ular, [(P+)M ]∗ = M . Let X ′ be the set specified in Lemma 2(2), defined forX = M .
Since[(P+)M ]∗ = M andM is a model ofP−, for everya ∈ X ′, a /∈ M . Thus,
X ′ = N and the assertion follows from Lemma 2(2).
(⇐) It follows from Lemma 2(2) thatM = [(P+)M ]∗. Thus,M is stable model of
P+. Let us consider a rulenot(a) ← Body from P− such thatM satisfiesBody .
Let Body ′ consist of all atoms inBody . It follows thatnot(a) ← Body ′ is a rule in
(P−)M

w . SinceM |= Body , M |= Body ′. Thus, by Lemma 2(2),not(a) ∈ [PM
w ]∗.

Since[PM
w ]∗ = M ∪ not(N), a ∈ not(N) which, in turn, impliesa /∈ M . It follows

thatM is a model ofP− and so, an answer set ofP . 2

The results we presented above allow us to prove that as long as the lower (even)
terms of the sequence(Zi) are coherent, the sequence behaves as an alternating one.

Proposition 3. Let i be an integer,i ≥ 0, such thatZ2i is coherent. Then

1. Z0 ⊆ Z2 ⊆ . . . ⊆ Z2i

2. Z1 ⊇ Z3 ⊇ . . . ⊇ Z2i+1

3. Z2i ⊆ Z2i+1.

This last proposition is crucial for the definition of our third approximation. Let us
consider the sequence(Zi). If for every i, Z2i is coherent, Proposition 3 implies that
the sequence(Zi) is alternating. Let(Z l, Zu) be the limit of(Zi). We define

Appx 3(P ) = Z l ∪ {not(a) : a ∈ U \ Zu}.

Otherwise, there isi such thatZ2i is incoherent. In this case, we say thatAppx 3(P ) is
undefined.

Theorem 4. Let P be a UG-program. IfM is an answer set ofP thenAppx 3(P ) is
defined andAppx 3(P ) ⊆M c. If Appx 3(P ) is not defined, thenP has no answer sets.

Proof: The second part of the assertion follows from the firstone. To prove the first part
of the assertion, we will show that for everyi ≥ 0, Z2i ⊆M c, andM ⊆ Z2i+1.

We proceed by induction oni. If i = 0, thenZ0 = ∅ ⊆ M c. We now assume that
Z2i ⊆M c and prove thatM ⊆ Z2i+1.



SinceZ2i ⊆ M c andM c is coherent,Z2i is coherent, too. By Lemma 1 (applied
to X = Z2i and X ′ = M c, under the assumption (4)),[PMc

w ]∗ ⊆ [PZ2i

w ]∗. Thus,
[PMc

w ]∗ ⊆ Z2i+1. By Lemma 2(1),[PM
w ]∗ ⊆ Z2i+1. By Lemma 3,M ⊆ [PM

w ]∗.
Therefore,M ⊆ Z2i+1.

Next, we assume thatM ⊆ Z2i+1 and prove thatZ2i+2 ⊆ M c. Let us note that
Z2i+2 = [P

Z2i+1

w ]∗ and that by Lemma 3,[PM
w ]∗ ⊆ M c. Thus, it will suffice to show

that [PZ2i+1

w ]∗ ⊆ [PM
w ]∗. To this end, we note that by Lemma 3,M ⊆ [P M

w ]∗ and so
Lemma 1 applies (under the condition (4)) toX = M andX ′ = Z2i+1, and implies
the required inclusion.

It follows that Z l ⊆ M c and thatM ⊆ Zu. If a /∈ Zu, thena /∈ M and so,
not(a) ∈M c. Thus,Appx 3(P ) = Z l ∪ not(U \ Zu) ⊆M c. 2

Example 6.Let P be a UG-program consisting of the rules:

not(a)←

a← not(b)

b← not(a)

c← a, b

not(d)← not(c)

d← not(e)

e← not(d)

f ← d, e

Iterating the operatorγw
P results in the following sequence:

∅ 7→ {a, b, c, d, e, f,not(a),not(d)} 7→ {not(a), b} 7→ {b, d, e, f,not(a),not(d)}

7→ {b, e,not(a),not(d)} 7→ {b, e,not(a),not(d)} 7→ . . . .

Thus, the sequence(Zi) is alternating. Its limit is(Z l, Zu), whereZ l = Zu = {b, e,
not(a),not(d)}. Thus,

Appx 3(P ) = Z l ∪ not(U \ Zu) = {b, e,not(a),not(c),not(d),not(f)}.

SinceAppx 3(P ) is coherent and complete,P has a unique answer set,{b, e}. This
example also demonstrates thatZu can improve on the bound provided byZ l itself. 2

5 Properties of Appx
3

In this section we will show that ifAppx 3 is defined then it is stronger than the other
two approximations. We recall that ifAppx 3(P ) is undefined, thenP has no answer
sets, that is,P is inconsistent. It follows that for allconsistentUG-programs,Appx 3 is
stronger than the the other two approximations.

Theorem 5. LetP be a UG-program. IfAppx 3(P ) is defined then

Appx 1(P ) ∪ Appx 2(P ) ⊆ Appx 3(P )

There are programs which show thatAppx 3 is strictly stronger.



Example 7.Let P be the UG-program from Example 4. We recall thatAppx 1(P ) =
{not(a), b}. Let us computeAppx 3(P ). By iterating the operatorγP

w , we obtain the
following sequence:

Z0 = ∅ 7→ Z1 = {a, b, c,not(a)} 7→ Z2 = {not(a), b} 7→ Z3 = {not(a), b} . . . .

Hence,Appx 3(P ) = {not(a), b,not(c)} andAppx 1(P ) is apropersubset ofAppx 3(P ).
2

Example 8.Let P be the UG-program from Example 3. We recall thatAppx 2(P ) =
{e}. To computeAppx 3(P ), we note that by iterating the operatorγP

w we get the fol-
lowing sequence:

Z0 = ∅ 7→ Z1 = {a, b, c, d, e,not(e)} 7→ Z2 = {e} 7→

Z3 = {a, b, c, e,not(e)} 7→ Z4 = {a, c, e} 7→ Z5 = {a, c, e} . . . .

Hence,Appx 3(P ) = {a,not(b), c,not(d), e} andAppx 2(P ) is a proper subset of
Appx 3(P ). 2

Finally, we show that ifAppx 3(P ) is defined and complete thenP has a unique
answer set.

Corollary 3. Let P be a UG-program such thatAppx 3(P ) is defined and complete.
ThenAppx 3(P ) ∩ U is an answer set ofP andP has no other answer sets.

6 Corollaries for the case of revision programs

Revision programming [MT98] is a formalism for describing and enforcing constraints
on databases. The main concepts in the formalism are an initial database, a revision
program, and justified revisions.

Expressions of the formin(a) andout(a) (a ∈ U ) arerevision literals. Intuitively,
in(a) (respectively,out(a)) means that atoma is in (respectively, is not in) a database.

A revision programconsists of rulesα ← α1, . . . , αn, whereα, αi, . . . , αn are
revision literals. Given a revision programP and an initial databaseI, [MT98] defined
P -justified revisionsof I to represent revisions that satisfy the constraints ofP , are
“grounded” inP andI, and differ minimally from the initial database.

As we mentioned earlier, unitary general programs are equivalent to revision pro-
grams. The equivalence is established by the so calledshifting theorem[MPT99], which
allows us to reduce any pair(P, I), whereP is a revision program andI is an initial
database, to a unitary general program so thatP -justified revisions ofI correspond to
answer sets of the unitary general program. Consequently, all results of our paper im-
ply results about approximations of justified revisions. Formal descriptions ofAppx 1,
Appx 2, andAppx 3 for revision programs can be found in [Piv05]. Approximations
Appx 1 andAppx 2 for revision programs were originally described in [Piv01].
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[MT98] W. Marek and M. Truszczyński. Revision programming. Theoretical Computer Science,
190(2):241–277, 1998.

[Piv01] I. Pivkina. Revision programming: a knowledge representation formalism. PhD disser-
tation, University of Kentucky, 2001.

[Piv05] I. Pivkina. Defining well-founded semantics for revision programming Technical Report
NMSU-CS-2005-001, New Mexico State University, Computer Science Department,
2005.

[PT95] T.C. Przymusiński and H. Turner. Update by means of inference rules. InLogic pro-
gramming and nonmonotonic reasoning (Lexington, KY, 1995), volume 928 ofLecture
Notes in Computer Science, pages 156–174, Berlin, 1995. Springer.
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